AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
View PDF
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Perovskite solar cells with high-efficiency exceeding 25%: A review

Fengren Cao1,2Liukang Bian1Liang Li1( )
School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
Show Author Information

Graphical Abstract

Abstract

Metal halide perovskite solar cells (PSCs) are one of the most promising photovoltaic devices. Over time, many strategies have been adopted to improve PSC efficiency, and the certified efficiency has reached 26.1%. However, only a few research groups have fabricated PSCs with an efficiency of >25%, indicating that achieving this efficiency remains uncommon. To develop the PSC industry, outstanding talent must be reserved with the latest technologies. Herein, we summarize the recent developments in high-efficiency PSCs (>25%) and highlight their effective strategies in crystal regulation, interface passivation, and component layer structural design. Finally, we propose perspectives based on current research to further enhance the efficiency and promote the commercialization process of PSCs.

References

[1]

Jana, A., Meena, A., Patil, S. A., Jo, Y., Cho, S., Park, Y., Sree, V. G., Kim, H., Im, H., Taylor, R. A. (2022). Self-assembly of perovskite nanocrystals. Prog. Mater. Sci. 129, 100975.

[2]

Singh, A., Yuan, B., Rahman, M. H., Yang, H. J., De, A., Park, J. Y., Zhang, S. C., Huang, L. B., Mannodi-Kanakkithodi, A., Pennycook, T. J., et al. (2023). Two-dimensional halide Pb-perovskite-double perovskite epitaxial heterostructures. J. Am. Chem. Soc. 145, 19885–19893.

[3]

Liu, Y. L., Yuan, S. Y., Zheng, H. Q., Wu, M., Zhang, S. T., Lan, J., Li, W. Z., Fan, J. D. (2023). Structurally dimensional engineering in perovskite photovoltaics. Adv. Energy Mater. 13, 2300188.

[4]

Kim, T. W., Park, N. G. (2020). Methodologies for structural investigations of organic lead halide perovskites. Mater. Today 38, 67–83.

[5]

Huang, Y. C., Yan, K. R., Niu, B. F., Chen, Z., Gu, E., Liu, H. R., Yan, B. Y., Yao, J. Z., Zhu, H. M., Chen, H. Z., et al. (2023). Finite perovskite hierarchical structures via ligand confinement leading to efficient inverted perovskite solar cells. Energy Environ. Sci. 16, 557–564.

[6]
National Renewable Energy Laboratory. Best research-cell efficiency chart. (2024). https://www.nrel.gov/pv/cell-efficiency.html.
[7]

Kim, J. Y., Lee, J. W., Jung, H. S., Shin, H., Park, N. G. (2020). High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918.

[8]

Lal, N. N., Dkhissi, Y., Li, W., Hou, Q. C., Cheng, Y. B., Bach, U. (2017). Perovskite tandem solar cells. Adv. Energy Mater. 7, 1602761.

[9]

Jung, H. S., Han, G. S., Park, N. G., Ko, M. J. (2019). Flexible perovskite solar cells. Joule 3, 1850–1880.

[10]

Chiang, Y. H., Frohna, K., Salway, H., Abfalterer, A., Pan, L. F., Roose, B., Anaya, M., Stranks, S. D. (2023). Vacuum-deposited wide-bandgap perovskite for all-perovskite tandem solar cells. ACS Energy Lett. 8, 2728–2737.

[11]

Zhan, Y., Cheng, Q. F., Song, Y. L., Li, M. Z. (2022). Micro-Nano structure functionalized perovskite optoelectronics: from structure functionalities to device applications. Adv. Funct. Mater. 32, 2200385.

[12]

Cao, F. R., Wang, M., Sun, H. X., Tian, W., Li, L. (2020). Ordered array structures for efficient perovskite solar cells. Eng. Rep. 2, e12319.

[13]

Mu, Y. F., Zhao, J. S., Wu, L. Y., Tao, K. Y., Liu, Z. L., Bai, F. Q., Zhong, D. C., Zhang, M., Lu, T. B. (2023). Lead-free halide perovskite hollow nanospheres to boost photocatalytic activity for CO2 reduction. Appl. Catal. B Environ. 338, 123024.

[14]

Wang, M. H., Yin, Y. F., Cai, W. X., Liu, J., Han, Y. L., Feng, Y. L., Dong, Q. S., Wang, Y. D., Bian, J. M., Shi, Y. T. (2021). Synergetic co-modulation of crystallization and co-passivation of defects for FAPbI3 perovskite solar cells. Adv. Funct. Mater. 32, 2108567.

[15]

Baumeler, T. P., Alharbi, E. A., Kakavelakis, G., Fish, G. C., Aldosari, M. T., Albishi, M. S., Pfeifer, L., Carlsen, B. I., Yum, J. H., Alharbi, A. S., et al. (2023). Surface passivation of FAPbI3-rich perovskite with cesium iodide outperforms bulk incorporation. ACS Energy Lett. 8, 2456–2462.

[16]

Zhao, C. X., Zhang, H., Almalki, M., Xu, J., Krishna, A., Eickemeyer, F. T., Gao, J., Wu, Y. M., Zakeeruddin, S. M., Chu, J. H., et al. (2023). Stabilization of FAPbI3 with multifunctional alkali-functionalized polymer. Adv. Mater. 35, 2211619.

[17]

Chen, Y. H., Tan, S. Q., Li, N. X., Huang, B. L., Niu, X. X., Li, L., Sun, M. Z., Zhang, Y., Zhang, X., Zhu, C., et al. (2020). Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics. Joule 4, 1961–1976.

[18]

Cao, J. P., Loi, H. L., Xu, Y., Guo, X. Y., Wang, N. X., Liu, C. K., Wang, T. Y., Cheng, H. Y., Zhu, Y., Li, M. G., et al. (2022). High-performance tin-lead mixed-perovskite solar cells with vertical compositional gradient. Adv. Mater. 34, 2107729.

[19]

Cao, F. R., Wang, M., Li, L. (2020). Graded energy band engineering for efficient perovskite solar cells. Nano Sel. 1, 152–168.

[20]

Tian, W. M., Leng, J., Zhao, C. Y., Jin, S. Y. (2017). Long-distance charge carrier funneling in perovskite nanowires enabled by built-in halide gradient. J. Am. Chem. Soc. 139, 579–582.

[21]

Cao, F. R., Meng, L. X., Wang, M., Tian, W., Li, L. (2019). Gradient energy band driven high-performance self-powered perovskite/CdS photodetector. Adv. Mater. 31, 1806725.

[22]

Chen, N., Luo, D. Y., Chen, P., Li, S. D., Hu, J. T., Wang, D. K., Zhu, R., Lu, Z. H. (2023). Universal band alignment rule for perovskite/organic heterojunction interfaces. ACS Energy Lett. 8, 1313–1321.

[23]

Zhang, M. Y., Chen, Q., Xue, R. M., Zhan, Y., Wang, C., Lai, J. Q., Yang, J., Lin, H. Z., Yao, J. L., Li, Y. W., et al. (2019). Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 10, 4593.

[24]

Ahmad, S., Kanaujia, P. K., Beeson, H. J., Abate, A., Deschler, F., Credgington, D., Steiner, U., Prakash, G. V., Baumberg, J. J. (2015). Strong photocurrent from two-dimensional excitons in solution-processed stacked perovskite semiconductor sheets. ACS Appl. Mater. Interfaces 7, 25227–25236.

[25]

Ye, S., Rao, H., Feng, M., Xi, L., Yen, Z., Seng, D. H. L., Xu, Q., Boothroyd, C., Chen, B., Guo, Y., et al. (2023). Expanding the low-dimensional interface engineering toolbox for efficient perovskite solar cells. Nat. Energy. 8, 284–293.

[26]

Li, F., Deng, X., Shi, Z., Wu, S., Zeng, Z., Wang, D., Li, Y., Qi, F., Zhang, Z., Yang, Z., et al. (2023). Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photonics. 8, 478–484.

[27]

Lu, Y. L., Shih, M. C., Tan, S., Grotevent, M. J., Wang, L. L., Zhu, H., Zhang, R. Q., Lee, J. H., Lee, J. W., Bulović, V., et al. (2023). Rational design of a chemical bath deposition based tin oxide electron-transport layer for perovskite photovoltaics. Adv. Mater. 35, 2304168.

[28]

Ke, W. J., Fang, G. J., Liu, Q., Xiong, L. B., Qin, P. L., Tao, H., Wang, J., Lei, H. W., Li, B. R., Wan, J. W., et al. (2015). Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730–6733.

[29]

Zaky, A. A., Christopoulos, E., Gkini, K., Arfanis, M. K., Sygellou, L., Kaltzoglou, A., Stergiou, A., Tagmatarchis, N., Balis, N., Falaras, P. (2021). Enhancing efficiency and decreasing photocatalytic degradation of perovskite solar cells using a hydrophobic copper-modified Titania electron transport layer. Appl. Catal. B Environ. 284, 119714.

[30]

Zhang, J. H., Chen, Y. Q., Guo, W. L. (2018). Optimizing the efficiency of perovskite solar cells by a sub-nanometer compact titanium oxide electron transport layer. Nano Energy 49, 230–236.

[31]

Sutherland, B. R. (2017). Thermally decomposing perovskites one layer at a time. Joule 1, 423–424.

[32]

Zhao, Y. X., Zhu, K. (2014). Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. J. Am. Chem. Soc. 136, 12241–12244.

[33]

Jo, Y. R., Tersoff, J., Kim, M. W., Kim, J., Kim, B. J. (2020). Reversible decomposition of single-crystal methylammonium lead iodide perovskite nanorods. ACS Cent. Sci. 6, 959–968.

[34]

Zhang, J. B., Bai, C., Dong, Y., Shen, W. J., Zhang, Q., Huang, F. Z., Cheng, Y. B., Zhong, J. (2021). Batch chemical bath deposition of large-area SnO2 film with mercaptosuccinic acid decoration for homogenized and efficient perovskite solar cells. Chem. Eng. J. 425, 131444.

[35]

Zhao, Q. Q., Liu, D. C., Li, Z. P., Zhang, B. Q., Sun, X. H., Shao, Z. P., Chen, C., Wang, X., Hao, L. Z., Wang, X. Z., et al. (2022). Chemical bath deposition of mesoporous SnO2 to improve interface adhesion and device operational stability. Chem. Eng. J. 443, 136308.

[36]

Nie, R. M., Mehta, A., Park, B. W., Kwon, H. W., Im, J., Seok, S. I. (2018). Mixed sulfur and iodide-based lead-free perovskite solar cells. J. Am. Chem. Soc. 140, 872–875.

[37]

Zhuang, J., Mao, P., Luan, Y. G., Chen, N. L., Cao, X. F., Niu, G. S., Jia, F. F., Wang, F. Y., Cao, S. K., Wang, J. Z. (2021). Rubidium fluoride modified SnO2 for planar n-i-p perovskite solar cells. Adv. Funct. Mater. 31, 2010385.

[38]

Dahlman, C. J., Venkatesan, N. R., Corona, P. T., Kennard, R. M., Mao, L. L., Smith, N. C., Zhang, J. M., Seshadri, R., Helgeson, M. E., Chabinyc, M. L. (2020). Structural evolution of layered hybrid lead iodide perovskites in colloidal dispersions. ACS Nano 14, 11294–11308.

[39]

Smock, S. R., Chen, Y. H., Rossini, A. J., Brutchey, R. L. (2021). The surface chemistry and structure of colloidal lead halide perovskite nanocrystals. Acc. Chem. Res. 54, 707–718.

[40]

Kim, M., Jeong, J., Lu, H. Z., Lee, T. K., Eickemeyer, F. T., Liu, Y. H., Choi, I. W., Choi, S. J., Jo, Y., Kim, H. B., et al. (2022). Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306.

[41]

Yoo, J. J., Seo, G., Chua, M. R., Park, T. G., Lu, Y. L., Rotermund, F., Kim, Y. K., Moon, C. S., Jeon, N. J., Correa-Baena, J. P., et al. (2021). Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593.

[42]

Kim, M., Choi, I. W., Choi, S. J., Song, J. W., Mo, S. I., An, J. H., Jo, Y., Ahn, S., Ahn, S. K., Kim, G. H., et al. (2021). Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells. Joule 5, 659–672.

[43]

Zhao, W. H., Guo, P. F., Liu, C., Jia, N., Fang, Z. Y., Ye, L. F., Ye, Q., Xu, Y. D., Glotov, A. P., Novikov, A. A., et al. (2023). Laser derived electron transport layers with embedded p–n heterointerfaces enabling planar perovskite solar cells with efficiency over 25%. Adv. Mater. 35, 2300403.

[44]

Xue, D. J., Hou, Y., Liu, S. C., Wei, M. Y., Chen, B., Huang, Z. R., Li, Z. B., Sun, B., Proppe, A. H., Dong, Y. T., et al. (2020). Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514.

[45]

Rolston, N., Bush, K. A., Printz, A. D., Gold-Parker, A., Ding, Y. C., Toney, M. F., McGehee, M. D., Dauskardt, R. H. (2018). Engineering stress in perovskite solar cells to improve stability. Adv. Energy Mater. 8, 1802139.

[46]

Luo, C., Zheng, G. H. J., Gao, F., Wang, X. J., Zhan, C. L., Gao, X. Y., Zhao, Q. (2023). Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photonics 17, 856–864.

[47]

Chen, S. S., Dai, X. Z., Xu, S., Jiao, H. Y., Zhao, L., Huang, J. S. (2021). Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907.

[48]

Sherkar, T. S., Momblona, C., Gil-Escrig, L., Ávila, J., Sessolo, M., Bolink, H. J., Koster, L. J. A. (2017). Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect Ions. ACS Energy Lett. 2, 1214–1222.

[49]

Cho, K. T., Paek, S., Grancini, G., Roldán-Carmona, C., Gao, P., Lee, Y., Nazeeruddin, M. K. (2017). Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 10, 621–627.

[50]

Gu, L. L., Fan, Z. Y. (2017). Perovskite/organic-semiconductor heterojunctions for ultrasensitive photodetection. Light Sci. Appl. 6, e17090.

[51]

Zhang, T. K., Wang, F., Kim, H. B., Choi, I. W., Wang, C. F., Cho, E., Konefal, R., Puttisong, Y., Terado, K., Kobera, L., et al. (2022). Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377, 495–501.

[52]

Wu, Y. H., Wang, Q., Chen, Y. T., Qiu, W. K., Peng, Q. (2022). Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically. Energy Environ. Sci. 15, 4700–4709.

[53]

Chen, J. B., Dong, H., Li, J. R., Zhu, X. Y., Xu, J., Pan, F., Xu, R. Y., Xi, J., Jiao, B., Hou, X., et al. (2022). Solar cell efficiency exceeding 25% through Rb-based perovskitoid scaffold stabilizing the buried perovskite surface. ACS Energy Lett. 7, 3685–3694.

[54]

Jeong, M. J., Moon, C. S., Lee, S., Im, J. M., Woo, M. Y., Lee, J. H., Cho, H., Jeon, S. W., Noh, J. H. (2023). Boosting radiation of stacked halide layer for perovskite solar cells with efficiency over 25%. Joule 7, 112–127.

[55]

Yang, L., Zhou, H., Duan, Y. W., Wu, M. Z., He, K., Li, Y., Xu, D. F., Zou, H., Yang, S. M., Fang, Z. M., et al. (2023). 25.24%-efficiency FACsPbI3 perovskite solar cells enabled by intermolecular esterification reaction of DL-carnitine hydrochloride. Adv. Mater. 35, 2211545.

[56]

Min, H., Lee, D. Y., Kim, J., Kim, G., Lee, K. S., Kim, J., Paik, M. J., Kim, Y. K., Kim, K. S., Kim, M. G., et al. (2021). Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450.

[57]

Ji, X. F., Bi, L. Y., Fu, Q., Li, B. L., Wang, J. W., Jeong, S. Y., Feng, K., Ma, S. X., Liao, Q. G., Lin, F. R., et al. (2023). Target therapy for buried interface enables stable perovskite solar cells with 25.05% efficiency. Adv. Mater. 35, 2303665.

[58]

Gao, Y. J., Huang, K. Q., Long, C. Y., Ding, Y., Chang, J. H., Zhang, D., Etgar, L., Liu, M. Z., Zhang, J., Yang, J. L. (2022). Flexible perovskite solar cells: from materials and device architectures to applications. ACS Energy Lett. 7, 1412–1445.

[59]

Dai, Z. H., Li, S. R., Liu, X., Chen, M., Athanasiou, C. E., Sheldon, B. W., Gao, H. J., Guo, P. J., Padture, N. P. (2022). Dual-interface-reinforced flexible perovskite solar cells for enhanced performance and mechanical reliability. Adv. Mater. 34, 2205301.

[60]

Dong, Q. S., Zhu, C., Chen, M., Jiang, C., Guo, J. Y., Feng, Y. L., Dai, Z. H., Yadavalli, S. K., Hu, M. Y., Cao, X., et al. (2021). Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat. Commun. 12, 973.

[61]

Li, Z. H., Jia, C. M., Wan, Z., Xue, J. Y., Cao, J. C., Zhang, M., Li, C., Shen, J. H., Zhang, C., Li, Z. (2023). Hyperbranched polymer functionalized flexible perovskite solar cells with mechanical robustness and reduced lead leakage. Nat. Commun. 14, 6451.

[62]

Jeong, J., Kim, M., Seo, J., Lu, H. Z., Ahlawat, P., Mishra, A., Yang, Y. G., Hope, M. A., Eickemeyer, F. T., Kim, M., et al. (2021). Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385.

[63]

Zhao, Y., Ma, F., Qu, Z. H., Yu, S. Q., Shen, T., Deng, H. X., Chu, X. B., Peng, X. X., Yuan, Y. B., Zhang, X. W., et al. (2022). Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534.

[64]

Xu, H. F., Liang, Z., Ye, J. J., Zhang, Y., Wang, Z. H., Zhang, H., Wan, C. M., Xu, G. K., Zeng, J., Xu, B. M., et al. (2023). Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 16, 5792–5804.

[65]

Zhao, W. J., Lin, H., Li, Y., Wang, D. P., Wang, J., Liu, Z. K., Yuan, N. Y., Ding, J. N., Wang, Q., Liu, S. Z. (2022). Symmetrical Acceptor-Donor-Acceptor molecule as a versatile defect passivation agent toward efficient FA0.85MA0.15PbI3 perovskite solar cells. Adv. Funct. Mater. 32, 2112032.

[66]

Luo, M., Zong, X. P., Zhao, M., Sun, Z., Chen, Y., Liang, M., Wu, Y. Z., Xue, S. (2022). Synergistic effect of amide and fluorine of polymers assist stable inverted perovskite solar cells with fill factor>83%. Chem. Eng. J. 442, 136136.

[67]

Meng, X. Y., Lin, J. B., Liu, X., He, X., Wang, Y., Noda, T., Wu, T. H., Yang, X. D., Han, L. Y. (2019). Highly stable and efficient FASnI3-based perovskite solar cells by introducing hydrogen bonding. Adv. Mater. 31, 1903721.

[68]

Park, J., Kim, J., Yun, H. S., Paik, M. J., Noh, E., Mun, H. J., Kim, M. G., Shin, T. J., Seok, S. I. (2023). Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730.

[69]

Chen, R., Wang, J. N., Liu, Z. H., Ren, F. M., Liu, S. W., Zhou, J., Wang, H. X., Meng, X., Zhang, Z., Guan, X. Y., et al. (2023). Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 8, 839–849.

[70]

Kim, G., Min, H., Lee, K. S., Lee, D. Y., Yoon, S. M., Seok, S. I. (2020). Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112.

[71]

Li, X. C., Wu, X., Li, B., Cen, Z. Y., Shang, Y. B., Lian, W. T., Cao, R., Jia, L. B., Li, Z., Gao, D. P., et al. (2022). Modulating the deep-level defects and charge extraction for efficient perovskite solar cells with high fill factor over 86%. Energy Environ. Sci. 15, 4813–4822.

[72]

Yang, T. H., Gao, L. L., Lu, J., Ma, C., Du, Y. C., Wang, P. J., Ding, Z. C., Wang, S. Q., Xu, P., Liu, D. L., et al. (2023). One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nat. Commun. 14, 839.

[73]

Zhang, K., Wang, Y., Tao, M. Q., Guo, L. T., Yang, Y. R., Shao, J. Y., Zhang, Y. Y., Wang, F. Y., Song, Y. L. (2023). Efficient inorganic vapor-assisted defects passivation for perovskite solar module. Adv. Mater. 35, 2211593.

[74]

Li, H. Y., Zhang, C., Gong, C., Zhang, D. L., Zhang, H., Zhuang, Q. X., Yu, X. M., Gong, S. K., Chen, X. H., Yang, J. B., et al. (2023). 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8, 946–955.

[75]

Shi, P. J., Ding, Y., Ding, B., Xing, Q. Y., Kodalle, T., Sutter-Fella, C. M., Yavuz, I., Yao, C. L., Fan, W., Xu, J. Z., et al. (2023). Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327.

[76]

Ma, C. Q., Kang, M. C., Lee, S. H., Kwon, S. J., Cha, H. W., Yang, C. W., Park, N. G. (2022). Photovoltaically top-performing perovskite crystal facets. Joule 6, 2626–2643.

[77]

Jiang, Q., Zhang, L. Q., Wang, H. L., Yang, X. L., Meng, J. H., Liu, H., Yin, Z. G., Wu, J. L., Zhang, X. W., You, J. B. (2016). Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177.

[78]

Bi, D. Q., Tress, W., Dar, M. I., Gao, P., Luo, J. S., Renevier, C., Schenk, K., Abate, A., Giordano, F., Correa Baena, J. P., et al. (2016). Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170.

[79]

Luo, X. H., Shen, Z. C., Shen, Y. Z., Su, Z. H., Gao, X. Y., Wang, Y. B., Han, Q. F., Han, L. Y. (2022). Effective passivation with self-organized molecules for perovskite photovoltaics. Adv. Mater. 34, 2202100.

[80]

Ge, Y. S., Wang, H. B., Wang, C., Wang, C., Guan, H. L., Shao, W. L., Wang, T., Ke, W. J., Tao, C., Fang, G. J. (2023). Intermediate phase engineering with 2,2-Azodi(2-methylbutyronitrile) for efficient and stable perovskite solar cells. Adv. Mater. 35, 2210186.

[81]

Wang, H. N., Zheng, Y. F., Zhang, G. D., Wang, P. X., Sui, X., Yuan, H. Y., Shi, Y. F., Zhang, G., Ding, G. Y., Li, Y., et al. (2023). In situ dual-interface passivation strategy enables the efficiency of formamidinium perovskite solar cells over 25%. Adv. Mater., 2307855.

[82]

Huang, Z. J., Bai, Y., Huang, X. D., Li, J. T., Wu, Y. T., Chen, Y. H., Li, K. L., Niu, X. X., Li, N. X., Liu, G. L., et al. (2023). Anion–π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531–537.

[83]

Shen, Y. X., Xu, G. Y., Li, J. J., Lin, X., Yang, F., Yang, H. Y., Chen, W. J., Wu, Y. Y., Wu, X. X., Cheng, Q. R., et al. (2023). Functional ionic liquid polymer stabilizer for high-performance perovskite photovoltaics. Angew. Chem. Int. Ed. 62, e202300690.

[84]

Yan, L. Y., Huang, H., Cui, P., Du, S. X., Lan, Z. N., Yang, Y. Y., Qu, S. J., Wang, X. X., Zhang, Q., Liu, B. Y., et al. (2023). Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt. Nat. Energy 8, 1158–1167.

[85]

Yang, W. C., Ding, B., Lin, Z. D., Sun, J. S., Meng, Y. Y., Ding, Y., Sheng, J., Yang, Z. H., Ye, J. C., Dyson, P. J., et al. (2023). Visualizing interfacial energy offset and defects in efficient 2D/3D heterojunction perovskite solar cells and modules. Adv. Mater. 35, 2302071.

[86]

Shen, L. N., Song, P. Q., Zheng, L. F., Wang, L. P., Zhang, X. G., Liu, K. K., Liang, Y. M., Tian, W. J., Luo, Y. J., Qiu, J. H., et al. (2023). Ion-diffusion management enables all-interface defect passivation of perovskite solar cells. Adv. Mater. 35, 2301624.

[87]

Jiang, Q., Tong, J. H., Xian, Y. M., Kerner, R. A., Dunfield, S. P., Xiao, C. X., Scheidt, R. A., Kuciauskas, D., Wang, X. M., Hautzinger, M. P., et al. (2022). Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283.

[88]

Li, Z., Li, B., Wu, X., Sheppard, S. A., Zhang, S. F., Gao, D. P., Long, N. J., Zhu, Z. L. (2022). Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420.

[89]

Liu, C., Yang, Y., Chen, H., Xu, J., Liu, A., Bati, A. S. R., Zhu, H. H., Grater, L., Hadke, S. S., Huang, C. Y., et al. (2023). Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 382, 810–815.

[90]

Chen, T., Xie, J. S., Wen, B., Yin, Q. X., Lin, R. H., Zhu, S. C., Gao, P. Q. (2023). Inhibition of defect-induced α-to-δ phase transition for efficient and stable formamidinium perovskite solar cells. Nat. Commun. 14, 6125.

[91]

Kim, D., Choi, H., Jung, W., Kim, C., Park, E. Y., Kim, S., Jeon, N. J., Song, S., Park, T. (2023). Phase transition engineering for effective defect passivation to achieve highly efficient and stable perovskite solar cells. Energy Environ. Sci. 16, 2045–2055.

[92]

Luo, C., Zheng, G. H. J., Wang, X. J., Gao, F., Zhan, C. L., Gao, X. Y., Zhao, Q. (2023). Solid-solid chemical bonding featuring targeted defect passivation for efficient perovskite photovoltaics. Energy Environ. Sci. 16, 178–189.

[93]

Liu, X. P., Ding, B., Han, M. Y., Yang, Z. H., Chen, J. L., Shi, P. J., Xue, X. Y., Ghadari, R., Zhang, X. F., Wang, R., et al. (2023). Extending the π-conjugated system in spiro-type hole transport material enhances the efficiency and stability of perovskite solar modules. Angew. Chem. Int. Ed. 62, e202304350.

[94]

Li, Z., Sun, X. L., Zheng, X. P., Li, B., Gao, D. P., Zhang, S. F., Wu, X., Li, S., Gong, J. Q., Luther, J. M., et al. (2023). Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 382, 284–289.

[95]

Zhang, S., Ye, F. Y., Wang, X. Y., Chen, R., Zhang, H. D., Zhan, L. Q., Jiang, X. Y., Li, Y. W., Ji, X. Y., Liu, S. J., et al. (2023). Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409.

[96]

Tan, Q., Li, Z. N., Luo, G. F., Zhang, X. S., Che, B., Chen, G. C., Gao, H., He, D., Ma, G. Q., Wang, J. F., et al. (2023). Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551.

[97]

Peng, W., Mao, K. T., Cai, F. C., Meng, H. G., Zhu, Z. J., Li, T. Q., Yuan, S. J., Xu, Z. J., Feng, X. Y., Xu, J. H., et al. (2023). Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690.

[98]

Camaioni, N., Carbonera, C., Ciammaruchi, L., Corso, G., Mwaura, J., Po, R., Tinti, F. (2023). Polymer solar cells with active layer thickness compatible with scalable fabrication processes: a meta-analysis. Adv. Mater. 35, 2210146.

[99]

Park, S. M., Wei, M. Y., Lempesis, N., Yu, W. J., Hossain, T., Agosta, L., Carnevali, V., Atapattu, H. R., Serles, P., Eickemeyer, F. T., et al. (2023). Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294.

[100]

Yu, S. Q., Xiong, Z., Zhou, H. T., Zhang, Q., Wang, Z. H., Ma, F., Qu, Z. H., Zhao, Y., Chu, X. B., Zhang, X. W., et al. (2023). Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399–1404.

[101]

Yun, H. S., Kwon, H. W., Paik, M. J., Hong, S., Kim, J., Noh, E., Park, J., Lee, Y., Il Seok, S. (2022). Ethanol-based green-solution processing of α-formamidinium lead triiodide perovskite layers. Nat. Energy 7, 828–834.

Energy Materials and Devices
Cite this article:
Cao F, Bian L, Li L. Perovskite solar cells with high-efficiency exceeding 25%: A review. Energy Materials and Devices, 2024, 2(1): 9370018. https://doi.org/10.26599/EMD.2024.9370018

7071

Views

5811

Downloads

0

Crossref

Received: 27 December 2023
Revised: 30 January 2024
Accepted: 02 February 2024
Published: 04 February 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return