AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (32.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Synthesis of Co, Ni-doped MoS2 as durable and pH-universal catalyst for hydrogen evolution

Ning Cao1Yiming Di1Shan Chen1Jiayi Qian1Minglei Liu2Xin Jin3Xiaobei Zang1( )
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
China Petroleum Pipeline Engineering Co., Ltd., Langfang 065000, China
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
Show Author Information

Graphical Abstract

Abstract

Molybdenum disulfide (MoS2) has garnered significant attention as a potential substitute for Pt catalysts in the hydrogen evolution reaction (HER). Furthermore, there is a need to explore cost-effective and efficient electrocatalysts that can perform well across different pH levels. In this study, a straightforward hydrothermal method is presented to synthesize Ni, Co-doped MoS2 nanosheets on carbon fiber paper (Ni, Co-MoS2/CFP) for HER in various pH environments. The findings suggest that strategic doping not only alters the structure and composition of Ni, Co-MoS2/CFP but also enhances its inherent electrocatalytic activity while facilitating the transformation of the MoS2 phase. The overpotentials observed for Ni, Co-MoS2/CFP are 95.6, 154, and 144 mV (at 10 mA cm−2) under alkaline, acidic, and neutral environments respectively. The exceptional performance of Ni, Co-MoS2/CFP in HER can be attributed to the introduction of nickel and cobalt dopants which increase porosity and expose more active sites. This one-step doping technique presents a novel approach to modulating catalytic activity across all pH ranges.

Electronic Supplementary Material

Download File(s)
EMD-2024-0001_ESM.pdf (12 MB)

References

[1]

Besada, H. G., Olender, M. (2015). Fossil fuel subsidies and sustainable energy for all: the governance reform debate. Glob. Gov. 21, 79–98.

[2]

Song, L. Z., Wang, X. L., Wen, F. S., Niu, L. J., Shi, X. M., Yan, J. Y. (2016). Hydrogen evolution reaction performance of the molybdenum disulfide/nickel-phosphorus composites in alkaline solution. Int. J. Hydrogen Energy 41, 18942–18952.

[3]

Weger, L., Abánades, A., Butler, T. (2017). Methane cracking as a bridge technology to the hydrogen economy. Int. J. Hydrogen Energy 42, 720–731.

[4]

Hu, C. L., Zhang, L., Gong, J. L. (2019). Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 12, 2620–2645.

[5]

Feng, F. K., Han, S. M., Lu, Q. P., Yun, Q. B. (2023). Two-dimensional noble metal-based intermetallics for electrocatalysis. Energy Mater. Devices 1, 9370008.

[6]

Pang, Q. Q., Niu, Z. L., Yi, S. S., Zhang, S., Liu, Z. Y., Yue, X. Z. (2020). Hydrogen‐etched bifunctional sulfur‐defect‐rich ReS2/CC electrocatalyst for highly efficient HER and OER. Small 16, 2003007.

[7]

Li, J. Y., Xia, Z. M., Zhang, M. K., Zhang, S., Li, J., Ma, Y. Y., Qu, Y. Q. (2019). Ce-doped CoS2 pyrite with weakened O2 adsorption suppresses catalyst leaching and stabilizes electrocatalytic H2 evolution. J. Mater. Chem. A 7, 17775–17781.

[8]

Song, S. W., Wang, Y. H., Li, W., Tian, P. F., Zhou, S. Y., Gao, H. W., Tian, X. Q., Zang, J. B. (2020). Amorphous MoS2 coated Ni3S2 nanosheets as bifunctional electrocatalysts for high-efficiency overall water splitting. Electrochim. Acta 332, 135454.

[9]

El-Refaei, S. M., Russo, P. A., Pinna, N. (2021). Recent advances in multimetal and doped transition-metal phosphides for the hydrogen evolution reaction at different pH values. ACS Appl. Mater. Interfaces 13, 22077–22097.

[10]

Fu, R. R., Feng, C. H., Jiao, Q. Z., Ma, K. X., Ge, S. Y., Zhao, Y. (2023). Molybdate intercalated nickel–iron-layered double hydroxide derived Mo-doped nickel–iron phosphide nanoflowers for efficient oxygen evolution reaction. Energy Mater. Devices 1, 9370002.

[11]

Jin, Y. S., Shen, P. K. (2015). Nanoflower-like metallic conductive MoO2 as a high-performance non-precious metal electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 3, 20080–20085.

[12]

Sun, H. M., Tian, C. Y., Fan, G. L., Qi, J. N., Liu, Z. T., Yan, Z. H., Cheng, F. Y., Chen, J., Li, C. P., Du, M. (2020). Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 30, 1910596.

[13]

Yang, C. C., Zai, S. F., Zhou, Y. T., Du, L., Jiang, Q. (2019). Fe3C‐Co nanoparticles encapsulated in a hierarchical structure of N‐doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER. Adv. Funct. Mater. 29, 1901949.

[14]

Huang, Z. F., Song, J. J., Li, K., Tahir, M., Wang, Y. T., Pan, L., Wang, L., Zhang, X. W., Zou, J. J. (2016). Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 138, 1359–1365.

[15]

Wang, S. P., Wang, J., Zhu, M. L., Bao, X. B., Xiao, B. Y., Su, D. F., Li, H. R., Wang, Y. (2015). Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: a highly efficient, low-cost catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 137, 15753–15759.

[16]

Du, R., Jin, W., Hübner, R., Zhou, L., Hu, Y., Eychmüller, A. (2020). Engineering multimetallic aerogels for pH‐universal HER and ORR electrocatalysis. Adv. Energy Mater. 10, 1903857.

[17]

Han, A. L., Chen, H. L., Zhang, H. Y., Sun, Z. J., Du, P. W. (2016). Ternary metal phosphide nanosheets as a highly efficient electrocatalyst for water reduction to hydrogen over a wide pH range from 0 to 14. J. Mater. Chem. A 4, 10195–10202.

[18]

Staszak-Jirkovský, J., Malliakas, C. D., Lopes, P. P., Danilovic, N., Kota, S. S., Chang, K. C., Genorio, B., Strmcnik, D., Stamenkovic, V. R., Kanatzidis, M. G., et al. (2016). Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 15, 197–203.

[19]

Li, G. Q., Zhang, D., Yu, Y. F., Huang, S. Y., Yang, W. T, Cao, L. Y. (2017). Activating MoS2 for pH-universal hydrogen evolution catalysis. J. Am. Chem. Soc. 139, 16194–16200.

[20]

Deng, S. J., Luo, M., Ai, C. Z., Zhang, Y., Liu, B., Huang, L., Jiang, Z., Zhang, Q. H., Gu, L., Lin, S. W., et al. (2019). Synergistic doping and intercalation: realizing deep phase modulation on MoS2 arrays for high‐efficiency hydrogen evolution reaction. Angew. Chem. Int. Ed. 58, 16289–16296.

[21]

Allard, C. (2023). Phase engineering of MoS2 heterostructures. Nat. Rev. Mater. 8, 781.

[22]

Kwon, I. S., Kwak, I. H., Abbas, H. G., Jung, G., Lee, Y., Park, J., Yoo, S. J., Kim, J. G., Kang, H. S. (2018). Intercalation of aromatic amine for the 2H-1T′ phase transition of MoS2 by experiments and calculations. Nanoscale 10, 11349–11356.

[23]

Jin, H. Q., Yu, Y., Shen, Q. K., Li, P. P., Yu, J., Chen, W. M., Wang, X., Kang, Z., Zhu, L., Zhao, R. Q., et al. (2021). Direct synthesis of 1T-phase MoS2 nanosheets with abundant sulfur-vacancies through (CH3)4N+ cation-intercalation for the hydrogen evolution reaction. J. Mater. Chem. A 9, 13996–14003.

[24]

Qiao, W., Xu, W., Xu, X. Y., Wu, L. Q., Yan, S. M., Wang, D. H. (2020). Construction of active orbital via single-atom cobalt anchoring on the surface of 1T-MoS2 basal plane toward efficient hydrogen evolution. ACS Appl. Energy Mater. 3, 2315–2322.

[25]

Meng, X. Y., Yu, L., Ma, C., Nan, B., Si, R., Tu, Y. C., Deng, J., Deng, D. H., Bao, X. H. (2019). Three-dimensionally hierarchical MoS2/graphene architecture for high-performance hydrogen evolution reaction. Nano Energy 61, 611–616.

[26]

Zhou, Y., Zhang, J., Song, E. H., Lin, J. H., Zhou, J. D., Suenaga, K., Zhou, W., Liu, Z., Liu, J. J., Lou, J., et al. (2020). Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures. Nat. Commun. 11, 2253.

[27]

Vikraman, D., Hussain, S., Karuppasamy, K., Kathalingam, A., Jo, E. B., Sanmugam, A., Jung, J., Kim, H. S. (2022). Engineering the active sites tuned MoS2 nanoarray structures by transition metal doping for hydrogen evolution and supercapacitor applications. J. Alloys Compd. 893, 162271.

[28]

Lau, T. H. M., Lu, X. W., Kulhavý, J., Wu, S., Lu, L. L., Wu, T. S., Kato, R., Foord, J. S., Soo, Y. L., Suenaga, K., Tsang, S. C. E. (2018). Transition metal atom doping of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution. Chem. Sci. 9, 4769–4776.

[29]

Qi, K., Cui, X. Q., Gu, L., Yu, S. S., Fan, X. F., Luo, M. C., Xu, S., Li, N. B., Zheng, L. R., Zhang, Q. H., et al. (2019). Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10, 5231.

[30]

Gao, B., Zhao, Y. W., Du, X. Y., Li, D., Ding, S. J., Li, Y. H., Xiao, C. H., Song, Z. X. (2021). Electron injection induced phase transition of 2H to 1T MoS2 by cobalt and nickel substitutional doping. Chem. Eng. J. 411, 128567.

[31]

Yang, J. T., Xuan, H. C., Zhang, G. H., Wang, R., Yang, J. L., Liang, X. H., Li, Y. P., Han, P. D. (2021). The 3D core–shell heterostructure catalysts by CoNiS nanosheets interfacial assembled on CuO nanorods for efficient water electrolysis. Appl. Surf. Sci. 570, 151181.

[32]

Sekar, S., Devi, S. B., Maruthasalamoorthy, S., Maiyalagan, T., Kim, D. Y., Lee, S., Navamathavan, R. (2022). One-step facile hydrothermal synthesis of rGO-CoS2 nanocomposites for high performance HER electrocatalysts. Int. J. Hydrogen Energy 47, 40359–40367.

[33]

Jiang, N., Tang, Q., Sheng, M. L., You, B., Jiang, D. E., Sun, Y. J. (2016). Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 6, 1077–1084.

[34]

Feng, Y. T., Liu, G. L., Li, L., Ma, J., Zhang, C., Yang, J. H. (2022). Competitive‐reduction chemistry on Ni‐doped FeS2 catalyst reinforcing acid‐corrosion resistance for stable hydrogen evolution reactions. Adv. Energy Sustain. Res. 3, 2200044.

[35]

Zhang, B. S., Xu, W. W., Liu, S., Chen, X., Ma, T. F., Wang, G. H., Lu, Z. Y., Sun, J. (2021). Enhanced interface interaction in Cu2S@ Ni core-shell nanorod arrays as hydrogen evolution reaction electrode for alkaline seawater electrolysis. J. Power Sources 506, 230235.

[36]

Wang, S., Zhang, D., Li, B., Zhang, C., Du, Z. G., Yin, H. M., Bi, X. F., Yang, S. B. (2018). Ultrastable in‐plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 8, 1801345.

[37]

Hu, W. H., Han, G. Q., Dai, F. N., Liu, Y. R., Shang, X., Dong, B., Chai, Y. M., Liu, Y. Q., Liu, C. G. (2016). Effect of pH on the growth of MoS2 (002) plane and electrocatalytic activity for HER. Int. J. Hydrogen Energy 41, 294–299.

[38]

Wu, A. P., Gu, Y., Xie, Y., Tian, C. G., Yan, H. J., Wang, D. X., Zhang, X. M., Cai, Z. C., Fu, H. G. (2019). Effective electrocatalytic hydrogen evolution in neutral medium based on 2D MoP/MoS2 heterostructure nanosheets. ACS Appl. Mater. Interfaces 11, 25986–25995.

Energy Materials and Devices
Article number: 9370024
Cite this article:
Cao N, Di Y, Chen S, et al. Synthesis of Co, Ni-doped MoS2 as durable and pH-universal catalyst for hydrogen evolution. Energy Materials and Devices, 2023, 1(2): 9370024. https://doi.org/10.26599/EMD.2023.9370024

3163

Views

1765

Downloads

1

Crossref

Altmetrics

Received: 11 January 2024
Revised: 25 January 2024
Accepted: 26 January 2024
Published: 29 January 2024
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return