AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
View PDF
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Advances on new configuration of zinc anode towards high-performance emerging zinc-based electronic devices

Yajue ZhangMingzhu LiShuquan LiangGuozhao Fang( )
Department of Materials Science and Engineering, Central South University, Changsha 410083, China

Yajue Zhang and Mingzhu Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Rechargeable Zn metal batteries (RZMBs) have emerged as promising candidates for large-scale energy storage systems due to their high safety, environmental friendliness, and low cost. However, Zn metal anode still faces a series of side reactions, including hydrogen evolution, dendrite, corrosion, and passivation. Moreover, emerging electronic devices such as flexible electronic devices, portable electronic devices and linear energy devices, have different functional requirements for energy storage technologies, which cannot be met by conventional Zn foil anode. In the face of these challenges, designing new configuration of Zn anode is urgently needed. This review summarizes the advances of various new configuration anode materials, including three-dimensional Zn anode, 3D printed Zn anode, printed Zn anode, imprinted Zn anode, linear Zn anode and their energy storage devices. The advantages, challenges and corresponding strategies of these new configuration anode were discussed. Finally, future development directions and perspectives of these anode materials were presented.

References

[1]

Alfaruqi, M. H., Mathew, V., Gim, J., Kim, S., Song, J. J., Baboo, J. P., Choi, S. H., Kim, J. (2015). Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620.

[2]

Pramudita, J. C., Sehrawat, D., Goonetilleke, D., Sharma, N. (2017). An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 7, 1602911.

[3]

Blanc, L. E., Kundu, D., Nazar, L. F. (2020). Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799.

[4]

Liu, Z. X., Huang, Y., Huang, Y., Yang, Q., Li, X. L., Huang, Z. D., Zhi, C. Y. (2020). Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49, 180–232.

[5]

Wang, L. L., Huang, K. W., Chen, J. T., Zheng, J. R. (2019). Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv. 5, eaax4279.

[6]

Jia, X. X., Liu, C. F., Neale, Z. G., Yang, J. H., Cao, G. Z. (2020). Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120, 7795–7866.

[7]

Yamamoto, T., Shoji, T. (1986). Rechargeable Zn∣ZnSO4∣MnO2-type cells. Inorg. Chim. Acta 117, L27–L28.

[8]

Liu, Z. X., Li, L. Y., Qin, L. P., Guo, S., Fang, G. Z., Luo, Z. G., Liang, S. Q. (2022). Balanced interfacial ion concentration and migration steric hindrance promoting high-efficiency deposition/dissolution battery chemistry. Adv. Mater. 34, 2204681.

[9]

Zhang, X. T., Li, J. X., Qi, K. W., Yang, Y. Q., Liu, D. Y., Wang, T. Q., Liang, S. Q., Lu, B. G., Zhu, Y. C., Zhou, J. (2022). An ion-sieving janus separator toward planar electrodeposition for deeply rechargeable Zn-metal anodes. Adv. Mater. 34, 2205175.

[10]

Luo, X. B., Zhou, M., Luo, Z. G., Shi, T. X., Li, L. Y., Xie, X. F., Sun, Y. Y., Cao, X. X., Long, M. Q., Liang, S. Q., et al. (2023). Regulation of desolvation process and dense electrocrystalization behavior for stable Zn metal anode. Energy Storage Mater. 57, 628–638.

[11]

Li, B., Zhang, X. T., Wang, T. T., He, Z. X., Lu, B. G., Liang, S. Q., Zhou, J. (2022). Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6.

[12]

Zhang, T. S., Tang, Y., Guo, S., Cao, X. X., Pan, A. Q., Fang, G. Z., Zhou, J., Liang, S. Q. (2020). Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13, 4625–4665.

[13]

Wang, Z. Q., Zhou, M., Qin, L. P., Chen, M. H., Chen, Z. X., Guo, S., Wang, L. B., Fang, G. Z., Liang, S. Q. (2022). Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries. eScience 2, 209–218.

[14]

Zhou, J. H., Xie, M., Wu, F., Mei, Y., Hao, Y. T., Huang, R. L., Wei, G. L., Liu, A. N., Li, L., Chen, R. J. (2021). Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33, 2101649.

[15]

Li, Z. W., Wu, L. Y., Dong, S. Y., Xu, T. Z., Li, S. P., An, Y. F., Jiang, J. M., Zhang, X. G. (2021). Pencil drawing stable interface for reversible and durable aqueous zinc-ion batteries. Adv. Funct. Mater. 31, 2006495.

[16]

Zhang, Y. J., Bi, S. S., Niu, Z. Q., Zhou, W. Y., Xie, S. S. (2022). Design of Zn anode protection materials for mild aqueous Zn-ion batteries. Energy Mater. 2, 200012.

[17]

Kundu, S., Fowler, M. W., Simon, L. C., Grot, S. (2006). Morphological features (defects) in fuel cell membrane electrode assemblies. J. Power Sources 157, 650–656.

[18]

He, P., Huang, J. X. (2021). Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode. ACS Energy Lett. 6, 1990–1995.

[19]

Zhou, M., Chen, Y., Fang, G. Z., Liang, S. Q. (2022). Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Storage Mater. 45, 618–646.

[20]

Zuo, Y. Y., Wang, K. L., Zhao, S. Y., Wei, M. H., Liu, X. T., Zhang, P. F., Xiao, Y., Xiong, J. Y. (2022). A high areal capacity solid-state zinc-air battery via interface optimization of electrode and electrolyte. Chem. Eng. J. 430, 132996.

[21]

Han, C., Li, W. J., Liu, H. K., Dou, S. X., Wang, J. Z. (2020). Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy 74, 104880.

[22]

Zhang, Z. Y., Ding, T., Zhou, Q., Sun, Y. G., Qu, M., Zeng, Z. Y., Ju, Y. T., Li, L., Wang, K., Chi, F. D. (2021). A review of technologies and applications on versatile energy storage systems. Renew. Sustain. Energy Rev. 148, 111263.

[23]

Yan, C. L., Gu, X., Zhang, L., Wang, Y., Yan, L. T., Liu, D. D., Li, L. J., Dai, P. C., Zhao, X. B. (2018). Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: promising anode materials for sodium and potassium ion batteries. J. Mater. Chem. A 6, 17371–17377.

[24]

Wu, H. Y., Lv, R. G., Wang, R., Zhao, Z. Y., Sun, Y. Z., Liu, Y., Chang, Y. N., Wang, J. D., Song, K. F., Chen, M., et al. (2024). Flexible 3D porous MnOx/rGO hydrogel with fiber reinforced effect for enhancing mechanical and zinc storage performances. J. Alloys Compd. 976, 173363.

[25]

Zhou, B., Miao, B. L., Gao, Y., Yu, A. S., Shao, Z. Z. (2023). Self-assembled protein nanofilm regulating uniform zn nucleation and deposition enabling long-life Zn anodes. Small 19, 2300895.

[26]

Guo, N., Huo, W. J., Dong, X. Y., Sun, Z. F., Lu, Y. T., Wu, X. W., Dai, L., Wang, L., Lin, H. C., Liu, H. D., et al. (2022). A review on 3D zinc anodes for zinc ion batteries. Small Methods 6, 2200597.

[27]

Mu, Y. B., Li, Z., Wu, B. K., Huang, H. D., Wu, F. H., Chu, Y. Q., Zou, L. F., Yang, M., He, J. F., Ye, L., et al. (2023). 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 14, 4205.

[28]

Li, L. P., Liu, W. Y., Dong, H. Y., Gui, Q. Y., Hu, Z. Q., Li, Y. Y., Liu, J. P. (2021). Surface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devices. Adv. Mater. 33, 2004959.

[29]

Zhang, M. G., Deng, Y. F., Yan, Y. K., Mei, H., Cheng, L. F., Zhang, L. T. (2023). Spatially restricted deposition of Zn metal in localized-activation 3D electrode enables long-term stable zinc ion batteries. Energy Storage Mater. 65, 103156.

[30]

Wang, J. H., Chen, L. F., Dong, W. X., Zhang, K. L., Qu, Y. F., Qian, J. W., Yu, S. H. (2023). Three-dimensional zinc-seeded carbon nanofiber architectures as lightweight and flexible hosts for a highly reversible zinc metal anode. ACS Nano 17, 19087–19097.

[31]

Zeng, L., He, J., Yang, C. Y., Luo, D., Yu, H. B., He, H. N., Zhang, C. H. (2023). Direct 3D printing of stress-released Zn powder anodes toward flexible dendrite-free Zn batteries. Energy Storage Mater. 54, 469–477.

[32]

Li, G. P., Wang, X. L., Lv, S. H., Wang, J. X., Yu, W. S., Dong, X. T., Liu, D. T. (2023). In situ constructing a film-coated 3D porous Zn anode by iodine etching strategy toward horizontally arranged dendrite-free Zn deposition. Adv. Funct. Mater. 33, 2208288.

[33]

Fang, G. Z., Zhou, J., Pan, A. Q., Liang, S. Q. (2018). Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501.

[34]

Liang, P. C., Yi, J., Liu, X. Y., Wu, K., Wang, Z., Cui, J., Liu, Y. Y., Wang, Y. G., Xia, Y. Y., Zhang, J. J. (2020). Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30, 1908528.

[35]

Zhang, Q., Luan, J. Y., Fu, L., Wu, S. G., Tang, Y. G., Ji, X. B., Wang, H. Y. (2019). The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58, 15841–15847.

[36]

Li, C. P., Shi, X. D., Liang, S. Q., Ma, X. M., Han, M. M., Wu, X. W., Zhou, J. (2020). Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem. Eng. J. 379, 122248.

[37]

Kang, Z., Wu, C. L., Dong, L. B., Liu, W. B., Mou, J., Zhang, J. W., Chang, Z. W., Jiang, B. Z., Wang, G. X., Kang, F. Y., et al. (2019). 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustain. Chem. Eng. 7, 3364–3371.

[38]

Su, S. Y., Xu, Y., Wang, Y., Wang, X. Y., Shi, L., Wu, D., Zou, P. C., Nairan, A., Lin, Z. Y., Kang, F. Y., et al. (2019). Holey nickel nanotube reticular network scaffold for high-performance flexible rechargeable Zn/MnO2 batteries. Chem. Eng. J. 370, 330–336.

[39]

Liu, X. R., Wang, Q. Y., Wang, H. Z., Liu, J., Fan, X. Y., Zhong, C., Hu, W. B. (2022). Mesoporous Ti4O7 spheres with enhanced zinc-anchoring effect for high-performance zinc–nickel batteries. ACS Appl. Mater. Interfaces 14, 56856–56866.

[40]

Guo, W. B., Cong, Z. F., Guo, Z. H., Chang, C. Y., Liang, X. Q., Liu, Y. D., Hu, W. G., Pu, X. (2020). Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries. Energy Storage Mater. 30, 104–112.

[41]

Wang, J. D., Cai, Z., Xiao, R., Ou, Y. T., Zhan, R. M., Yuan, Z., Sun, Y. M. (2020). A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries. ACS Appl. Mater. Interfaces 12, 23028–23034.

[42]

Meng, H., Ran, Q., Dai, T. Y., Shi, H., Zeng, S. P., Zhu, Y. F., Wen, Z., Zhang, W., Lang, X. Y., Zheng, W. T., et al. (2022). Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14, 128.

[43]

Xie, S. Y., Li, Y., Li, X., Zhou, Y. J., Dang, Z. Q., Rong, J. H., Dong, L. B. (2022). Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 14, 39.

[44]
Han, L. S., Guo, Y. M., Ning, F. H., Liu, X. Y., Yi, J., Luo, Q., Qu, B. H., Yue, J. L., Lu, Y. F., Li, Q. (2023). Lotus effect inspired hydrophobic strategy for stable Zn metal anodes. Adv. Mater. in press. https://doi.org/10.1002/adma.202308086.
DOI
[45]

Xiao, X. C., Liu, W. J., Wang, K., Li, C., Sun, X. Z., Zhang, X., Liu, W. H., Ma, Y. W. (2020). High-performance solid-state Zn batteries based on a free-standing organic cathode and metal Zn anode with an ordered nano-architecture. Nanoscale Adv. 2, 296–303.

[46]

Cao, Q. H., Gao, H., Gao, Y., Yang, J., Li, C., Pu, J., Du, J. J., Yang, J. Y., Cai, D. M., Pan, Z. H., et al. (2021). Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater. 31, 2103922.

[47]

Lin, Y. H., Hu, Y. Z., Zhang, S., Xu, Z. Q., Feng, T. T., Zhou, H. P., Wu, M. Q. (2022). Binder-free freestanding 3D Zn-graphene anode induced from commercial zinc powders and graphene oxide for zinc ion battery with high utilization rate. ACS Appl. Energy Mater. 5, 15222–15232.

[48]

Zeng, Y. X., Zhang, X. Y., Qin, R. F., Liu, X. Q., Fang, P. P., Zheng, D. Z., Tong, Y. X., Lu, X. H. (2019). Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, 1903675.

[49]

Yu, H., Zeng, Y. X., Li, N. W., Luan, D. Y., Yu, L., Lou, X. W. (2022). Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes. Sci. Adv. 8, eabm5766.

[50]

Dai, L. X., Wang, Y., Sun, L., Ding, Y., Yao, Y. Q., Yao, L. D., Drewett, N. E., Zhang, W., Tang, J., Zheng, W. T. (2021). Jahn–teller distortion induced Mn2+-rich cathode enables optimal flexible aqueous high-voltage Zn-Mn batteries. Adv. Sci. 8, 2004995.

[51]

Li, Y., Wu, L. S., Dong, C., Wang, X., Dong, Y. F., He, R. H., Wu, Z. S. (2023). Manipulating horizontal Zn deposition with graphene interpenetrated Zn hybrid foils for dendrite-free aqueous zinc Ion batteries. Energy Environ. Mater. 6, e12423.

[52]

Li, H. X., Shi, W. J., Liu, L. Y., Zhang, X. H., Zhang, P. F., Zhai, Y. J., Wang, Z. Y., Liu, Y. (2023). Fabrication of dual heteroatom-doped graphitic carbon from waste sponge with “killing two birds with one stone” strategy for advanced aqueous zinc–ion hybrid capacitors. J. Colloid Interface Sci. 647, 306–317.

[53]

Mu, Y. B., Chu, Y. Q., Pan, L., Wu, B. K., Zou, L. F., He, J. F., Han, M. S., Zhao, T. S., Zeng, L. (2023). 3D printing critical materials for rechargeable batteries: from materials, design and optimization strategies to applications. Int. J. Extrem. Manuf. 5, 042008.

[54]

Fu, J., Cano, Z. P., Park, M. G., Yu, A. P., Fowler, M., Chen, Z. W. (2017). Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv. Mater. 29, 1604685.

[55]

Zeng, L., He, H. N., Chen, H. Y., Luo, D., He, J., Zhang, C. H. (2022). 3D printing architecting reservoir-integrated anode for dendrite-free, safe, and durable Zn batteries. Adv. Energy Mater. 12, 2103708.

[56]

He, H. N., Zeng, L., Luo, D., He, J., Li, X. L., Guo, Z. P., Zhang, C. H. (2023). 3D printing of electron/ion-flux dual-gradient anodes for dendrite-free zinc batteries. Adv. Mater. 35, 2211498.

[57]
Lu, H. Y., Hu, J. S., Zhang, K. Q., Zhao, J. X., Deng, S. Z., Li, Y. J., Xu, B. G., Pang, H. (2023). Microfluidic-assisted 3D printing zinc powder anode with 2D conductive MOF/MXene heterostructures for high-stable zinc−organic battery. Adv. Mater. in press. https://doi.org/10.1002/adma.202309753.
DOI
[58]

Lu, W. J., Xie, C. X., Zhang, H. M., Li, X. F. (2018). Inhibition of zinc dendrite growth in zinc-based batteries. ChemSusChem 11, 3996–4006.

[59]

Cao, Q. H., Pan, Z. H., Gao, Y., Pu, J., Fu, G. W., Cheng, G. H., Guan, C. (2022). Stable imprinted zincophilic Zn anodes with high capacity. Adv. Funct. Mater. 32, 2205771.

[60]

Cao, Q. H., Gao, Y., Pu, J., Zhao, X., Wang, Y. X., Chen, J. P., Guan, C. (2023). Gradient design of imprinted anode for stable Zn-ion batteries. Nat. Commun. 14, 641.

[61]

Zhang, H., Qu, Z., Tang, H. M., Wang, X., Koehler, R., Yu, M. H., Gerhard, C., Yin, Y., Zhu, M. S., Zhang, K., et al. (2021). On-chip integration of a covalent organic framework-based catalyst into a miniaturized Zn–air battery with high energy density. ACS Energy Lett. 6, 2491–2498.

[62]

Jiang, K., Zhou, Z. Y., Wen, X., Weng, Q. H. (2021). Fabrications of high-performance planar zinc-ion microbatteries by engraved soft templates. Small 17, 2007389.

[63]

Majee, S., Karlsson, M. C. F., Wojcik, P. J., Sawatdee, A., Mulla, M. Y., Alvi, N. U. H., Dyreklev, P., Beni, V., Nilsson, D. (2021). Low temperature chemical sintering of inkjet-printed Zn nanoparticles for highly conductive flexible electronic components. npj Flex. Electron. 5, 14.

[64]

Wang, Q. H., Zhao, J. Q., Zhang, J., Xue, X. L., Li, M., Sui, Z., Zhang, X., Zhang, W., Lu, C. H. (2023). Dendrite-free Zn/rGO@CC composite anodes constructed by one-step co-electrodeposition for flexible and high-performance Zn-ion batteries. Adv. Funct. Mater. 33, 2306346.

[65]

Zhang, M., Yu, P. F., Xiong, K. R., Wang, Y. Y., Liu, Y. L., Liang, Y. R. (2022). Construction of mixed ionic-electronic conducting scaffolds in Zn powder: a scalable route to dendrite-free and flexible Zn anodes. Adv. Mater. 34, 2200860.

[66]

Gao, T. T., Yan, G. Y., Yang, X., Yan, Q., Tian, Y. K., Song, J. W., Li, F. X., Wang, X. L., Yu, J. Y., Li, Y. J., et al. (2022). Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage. J. Energy Chem. 71, 192–200.

[67]

Subjalearndee, N., He, N. F., Cheng, H., Tesatchabut, P., Eiamlamai, P., Limthongkul, P., Intasanta, V., Gao, W., Zhang, X. W. (2022). Gamma (ɣ)-MnO2/rGO fibered cathode fabrication from wet spinning and dip coating techniques for cable-shaped Zn-ion batteries. Adv. Fiber Mater. 4, 457–474.

[68]

Xie, X. S., Li, J. J., Xing, Z. Y., Lu, B. G., Liang, S. Q., Zhou, J. (2023). Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10, nwac281.

[69]

Li, H. F., Liu, Z. X., Liang, G. J., Huang, Y., Huang, Y., Zhu, M. S., Pei, Z. X., Xue, Q., Tang, Z. J., Wang, Y. K., et al. (2018). Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12, 3140–3148.

Energy Materials and Devices
Article number: 9370023
Cite this article:
Zhang Y, Li M, Liang S, et al. Advances on new configuration of zinc anode towards high-performance emerging zinc-based electronic devices. Energy Materials and Devices, 2023, 1(2): 9370023. https://doi.org/10.26599/EMD.2023.9370023

2137

Views

231

Downloads

1

Crossref

Altmetrics

Received: 15 January 2024
Revised: 25 January 2024
Accepted: 25 January 2024
Published: 29 January 2024
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return