AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (23.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Construction of metal–organic framework-derived Al-doped Na3V2(PO4)3 cathode materials for high-performance rechargeable Na-ion batteries

Yihan Zhao1,2Xueqi Lai2Pengfei Wang1,2Zonglin Liu2Tingfeng Yi1,2( )
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
Show Author Information

Graphical Abstract

Abstract

Na3V2(PO4)3 (NVP) has emerged as one of the most promising cathode materials for sodium-ion batteries (SIBs) owing to its high ionic conductivity and high theoretical energy density. However, the inherent inferior conductivity of NVP prevents its achievement of the theoretical energy density even at low rates, thereby limiting the practical application of NVP in massive energy storage. Here, Al3+-doped Na3V2−xAlx(PO4)3 (NVAP) materials derived from aluminum terephthalate (MIL-53(Al)) were synthesized for the first time, and the effects of Al3+ doping on the structural and electrochemical performances of NVP were investigated. The NVAP materials, particularly Na3V1.97Al0.03(PO4)3 (NVAP2), exhibited superior cycling performance and rate capabilities compared with the NVP material. NVAP2 exhibited a good rate capability, with high reversible discharge capacities of 111.6, 110.3, 108.9, 106.6, 103.4, 96.9, and 88.7 mAh g−1 at 0.1, 0.2, 0.5, 1, 2, 5, and 10C rates, respectively. Moreover, the NVAP2 material exhibited a prominent initial discharge capacity of 102.3 mAh g−1 and maintained an excellent capacity retention rate of 92.0% after 2000 cycles at 10C, indicating significant cycling stability. Overall, this work provides an efficient technique for enhancing the electrochemical properties of cathode materials with a sodium superionic conductor structure for SIBs.

Electronic Supplementary Material

Download File(s)
EMD-2024-0002_ESM.pdf (9.5 MB)

References

[1]

Cai, Y. Q., Liu, H. G., Li, H. R., Sun, Q. Z., Wang, X., Zhu, F. Y., Li, Z. Q., Kim, J. K., Huang, Z. D. (2023). Strong coordination interaction in amorphous Sn-Ti-ethylene glycol compound for stable Li-ion storage. Energy Mater. Devices 1, 9370013.

[2]

Wang, Z. J., Zhang, B. (2023). Weakly solvating electrolytes for next-generation lithium batteries: design principles and recent advances. Energy Mater. Devices 1, 9370003.

[3]

Singh, A. N., Islam, M., Meena, A., Faizan, M., Han, D., Bathula, C., Hajibabaei, A., Anand, R., Nam, K. W. (2023). Unleashing the potential of sodium-ion batteries: current state and future directions for sustainable energy storage. Adv. Funct. Mater. 33, 2304617.

[4]

Li, C. C., Xu, H. Y., Ni, L., Qin, B. S., Ma, Y. L., Jiang, H. Z., Xu, G. J., Zhao, J. W., Cui, G. L. (2023). Nonaqueous liquid electrolytes for sodium-ion batteries: fundamentals, progress and perspectives. Adv. Energy Mater. 13, 2301758.

[5]
Song, X. X., Li, X. F., Shan, H., Wang, J. J., Li, W. B., Xu, K. H., Zhang, K., Sari, H. M. K., Lei, L., Xiao, W., et al. (2023). V–O–C bonding of heterointerface boosting kinetics of free-standing Na5V12O32 cathode for ultralong lifespan sodium-ion batteries. Adv. Funct. Mater. in press. https://doi.org/10.1002/adfm.202303211.
[6]
Xi, Y. K., Wang, X. X., Wang, H., Wang, M. J., Wang, G. J., Peng, J. Q., Hou, N. J., Huang, X., Cao, Y. Y., Yang, Z. H., et al. (2023). Optimizing the electron spin states of Na4Fe3(PO4)2P2O7 cathodes via Mn/F dual-doping for enhanced sodium storage. Adv. Funct. Mater. in press. https://doi.org/10.1002/adfm.202309701.
[7]

Or, T., Gourley, S. W. D., Kaliyappan, K., Zheng, Y., Li, M., Chen, Z. W. (2022). Recent progress in surface coatings for sodium-ion battery electrode materials. Electrochem. Energy Rev. 5, 20.

[8]

Tang, Z., Zhou, S. Y., Huang, Y. C., Wang, H., Zhang, R., Wang, Q., Sun, D., Tang, Y. G., Wang, H. Y. (2023). Improving the initial coulombic efficiency of carbonaceous materials for Li/Na-ion batteries: origins, solutions, and perspectives. Electrochem. Energy Rev. 6, 8.

[9]

Dai, Z. F., Mani, U., Tan, H. T., Yan, Q. Y. (2017). Advanced cathode materials for sodium-ion batteries: what determines our choices? Small Methods 1, 1700098.

[10]

Sada, K., Darga, J., Manthiram, A. (2023). Challenges and prospects of sodium-ion and potassium-ion batteries for mass production. Adv. Energy Mater. 13, 2302321.

[11]

Fang, Y. J., Zhang, J. X., Xiao, L. F., Ai, X. P., Cao, Y. L., Yang, H. X. (2017). Phosphate framework electrode materials for sodium ion batteries. Adv. Sci. 4, 1600392.

[12]

Liang, X. H., Hwang, J. Y., Sun, Y. K. (2023). Practical cathodes for sodium-ion batteries: who will take the crown? Adv. Energy Mater. 13, 2301975.

[13]

Liu, Y. F., Han, K., Peng, D. N., Kong, L. Y., Su, Y., Li, H. W., Hu, H. Y., Li, J. Y., Wang, H. R., Fu, Z. Q., et al. (2023). Layered oxide cathodes for sodium-ion batteries: from air stability, interface chemistry to phase transition. InfoMat 5, e12422.

[14]

Liu, Q. N., Hu, Z., Li, W. J., Zou, C., Jin, H. L., Wang, S., Chou, S. L., Dou, S. X. (2021). Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries? Energy Environ. Sci. 14, 158–179.

[15]

Zhao, C. L., Wang, Q. D., Yao, Z. P., Wang, J. L., Sánchez-Lengeling, B., Ding, F. X., Qi, X. G., Lu, Y. X., Bai, X. D., Li, B. H., et al. (2020). Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711.

[16]

Liu, X. Y., Cao, Y., Sun, J. (2022). Defect engineering in prussian blue analogs for high-performance sodium-ion batteries. Adv. Energy Mater. 12, 2202532.

[17]

Peng, J., Zhang, W., Liu, Q. N., Wang, J. Z., Chou, S. L., Liu, H. K., Dou, S. X. (2022). Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34, 2108384.

[18]

Nai, J. W., Lou, X. W. (2019). Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion. Adv. Mater. 31, 1706825.

[19]

Jin, T., Li, H. X., Zhu, K. J., Wang, P. F., Liu, P., Jiao, L. F. (2020). Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 49, 2342–2377.

[20]

Guo, J. Z., Gu, Z. Y., Du, M., Zhao, X. X., Wang, X. T., Wu, X. L. (2023). Emerging characterization techniques for delving polyanion-type cathode materials of sodium-ion batteries. Mater. Today 66, 221–244.

[21]

Gao, Y., Zhang, H., Liu, X. H., Yang, Z., He, X. X., Li, L., Qiao, Y., Chou, S. L. (2021). Low-cost polyanion-type sulfate cathode for sodium-ion battery. Adv. Energy Mater. 11, 2101751.

[22]

Peng, B., Wan, G. L., Ahmad, N., Yu, L., Ma, X. Y., Zhang, G. Q. (2023). Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries. Adv. Energy Mater. 13, 2300334.

[23]

Zhao, Y. S., Liu, Q., Zhao, X. H., Mu, D. B., Tan, G. Q., Li, L., Chen, R. J., Wu, F. (2023). Structure evolution of layered transition metal oxide cathode materials for Na-ion batteries: issues, mechanism and strategies. Mater. Today 62, 271–295.

[24]

Xie, B. X., Sun, B. Y., Gao, T. Y., Ma, Y. L., Yin, G. P., Zuo, P. J. (2022). Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coord. Chem. Rev. 460, 214478.

[25]

Qian, J. F., Wu, C., Cao, Y. L., Ma, Z. F., Huang, Y. H., Ai, X. P., Yang, H. X. (2018). Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8, 1702619.

[26]

Xu, C. L., Zhao, J. M., Yang, C., Hu, Y. S. (2023). Polyanionic cathode materials for practical Na-ion batteries toward high energy density and long cycle life. ACS Cent. Sci. 9, 1721–1736.

[27]

Lv, Z. Q., Ling, M. X., Yue, M., Li, X. F., Song, M. M., Zheng, Q., Zhang, H. M. (2021). Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries: toward high-energy and high-power applications. J. Energy Chem. 55, 361–390.

[28]

Yuan, Y., Wei, Q. Y., Yang, S. K., Zhang, X. Y., Jia, M., Yuan, J. R., Yan, X. H. (2022). Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries. Energy Storage Mater. 50, 760–782.

[29]

Ahsan, M. T., Ali, Z., Usman, M., Hou, Y. L. (2022). Unfolding the structural features of NASICON materials for sodium-ion full cells. Carbon Energy 4, 776–819.

[30]

Thirupathi, R., Kumari, V., Chakrabarty, S., Omar, S. (2023). Recent progress and prospects of NASICON framework electrodes for Na-ion batteries. Prog. Mater. Sci. 137, 101128.

[31]

Peng, C. X., Xu, X. J., Li, F. K., Xi, L., Zeng, J., Song, X., Wan, X. H., Zhao, J. W., Liu, J. (2023). Recent progress of promising cathode candidates for sodium-ion batteries: current issues, strategy, challenge, and prospects. Small Struct. 4, 2300150.

[32]

Li, H. X., Xu, M., Zhang, Z. A., Lai, Y. Q., Ma, J. M. (2020). Engineering of polyanion type cathode materials for sodium-ion batteries: toward higher energy/power density. Adv. Funct. Mater. 30, 2000473.

[33]

Chen, G. X., Huang, Q., Wu, T., Lu, L. (2020). Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—a review. Adv. Funct. Mater. 30, 2001289.

[34]

Zheng, Q., Yi, H. M., Li, X. F., Zhang, H. M. (2018). Progress and prospect for NASICON-type Na3V2(PO4)3 for electrochemical energy storage. J. Energy Chem. 27, 1597–1617.

[35]

Huang, Y. Y., Li, X., Wang, J. S., Miao, L., Li, C., Han, J. T., Huang, Y. H. (2018). Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3. Energy Storage Mater. 15, 108–115.

[36]

Wang, H. B., Wang, R. W., Liu, L. J., Jiang, S., Ni, L., Bie, X. F., Yang, X., Hu, J. T., Wang, Z. Q., Chen, H. B., et al. (2017). In-situ self-polymerization restriction to form core-shell LiFePO4/C nanocomposite with ultrafast rate capability for high-power Li-ion batteries. Nano Energy 39, 346–354.

[37]

Hwang, J., Kong, K. C., Chang, W., Jo, E., Nam, K., Kim, J. (2017). New liquid carbon dioxide based strategy for high energy/power density LiFePO4. Nano Energy 36, 398–410.

[38]

Chen, Y. J., Tian, Z. Y., Li, J. H., Zhou, T. (2023). In-situ constructing pearl necklace-shaped heterostructure: Zn2+ substituted Na3V2(PO4)3 attached on carbon nano fibers with high performance for half and full Na ion cells. Chem. Eng. J. 472, 145041.

[39]

Lee, J., Park, S., Park, Y., Song, J. J., Sambandam, B., Mathew, V., Hwang, J. Y., Kim, J. (2021). Chromium doping into NASICON-structured Na3V2(PO4)3 cathode for high-power Na-ion batteries. Chem. Eng. J. 422, 130052.

[40]
Hao, Z. Q., Shi, X. Y., Yang, Z., Zhou, X. Z., Li, L., Ma, C. Q., Chou, S. L. (2023). The distance between phosphate-based polyanionic compounds and their practical application for sodium-ion batteries. Adv. Mater. in press. https://doi.org/10.1002/adma.202305135.
[41]

Xiao, L. F., Ji, F. J., Zhang, J. X., Chen, X. M., Fang, Y. J. (2023). Doping regulation in polyanionic compounds for advanced sodium-ion batteries. Small 19, 2205732.

[42]

Chen, Y. J., Xu, Y. L., Sun, X. F., Wang, C. (2018). Effect of Al substitution on the enhanced electrochemical performance and strong structure stability of Na3V2(PO4)3/C composite cathode for sodium-ion batteries. J. Power Sources 375, 82–92.

[43]

Sun, C., Zhao, Y. J., Ni, Q., Sun, Z., Yuan, X. Y., Li, J. B., Jin, H. B. (2022). Reversible multielectron redox in NASICON cathode with high energy density for low-temperature sodium-ion batteries. Energy Storage Mater. 49, 291–298.

[44]

Zhao, L. N., Zhao, H. L., Du, Z. H., Chen, N., Chang, X. W., Zhang, Z. J., Gao, F., Trenczek-Zajac, A., Świerczek, K. (2018). Computational and experimental understanding of Al-doped Na3V2−xAlx(PO4)3 cathode material for sodium ion batteries: electronic structure, ion dynamics and electrochemical properties. Electrochim. Acta 282, 510–519.

[45]

Liu, C., Wang, J., Wan, J. J., Cheng, Y., Huang, R., Zhang, C. Q., Hu, W. L., Wei, G. F., Yu, C. Z. (2020). Amorphous metal-organic framework-dominated nanocomposites with both compositional and structural heterogeneity for oxygen evolution. Angew. Chem. Int. Ed. 59, 3630–3637.

[46]

Joshi, B., Samuel, E., Kim, Y. I., Lee, H. S., Swihart, M. T., Yoon, S. S. (2023). Exploring the potential of MIL-derived nanocomposites to enhance performance of lithium-ion batteries. Chem. Eng. J. 461, 141961.

[47]

Li, H. M., Wang, T. L., Wang, X., Li, G. D., Shen, J. X., Chai, J. L. (2021). MOF-derived Al-doped Na2FePO4F/mesoporous carbon nanonetwork composites as high-performance cathode material for sodium-ion batteries. Electrochim. Acta 373, 137905.

[48]

Chang, H., Guo, Y. F., Liu, X., Wang, P. F., Xie, Y., Yi, T. F. (2023). Dual MOF-derived Fe/N/P-tridoped carbon nanotube as high-performance oxygen reduction catalysts for zinc-air batteries. Appl. Catal. B Environ. 327, 122469.

[49]

Su, M. F., Shi, J. W., Kang, Q. L., Lai, D. W., Lu, Q. Y., Gao, F. (2022). One-step multiple structure modulations on sodium vanadyl phosphate@carbon towards ultra-stable high rate sodium storage. Chem. Eng. J. 432, 134289.

[50]

Li, J. H., Chen, Y. J., Bai, Q., He, S. N., Yang, Y. X., Zheng, C., Wang, Y. Z., Guo, L. (2023). Synergistic modification of dandelion-shaped Na3V2(PO4)3 with triple superimposed conductive networks by dual-carbon sources for high performance sodium-ion batteries. ACS Sustain. Chem. Eng. 11, 12631–12645.

[51]

Liu, Y., Sun, C., Ni, Q., Sun, Z., Li, M., Ma, S., Jin, H. B., Zhao, Y. J. (2022). Enhanced electrochemical performance of NASICON-type sodium ion cathode based on charge balance theory. Energy Storage Mater. 53, 881–889.

[52]

Wang, H. B., Wang, Q. Z., Zhao, Z. Y., Jin, C. Y., Xu, C. S., Huang, W. S., Yuan, Z. C., Wang, S. Y., Li, Y., Zhao, Y., et al. (2023). Thermal runaway propagation behavior of the Cell-to-Pack battery system. J. Energy Chem. 84, 162–172.

[53]

Liu, X., Gong, J., Wei, X. J., Ni, L., Chen, H. Y., Zheng, Q. J., Xu, C. G., Lin, D. M. (2022). MoO42-mediated engineering of Na3V2(PO4)3 as advanced cathode materials for sodium-ion batteries. J. Colloid Interface Sci. 606, 1897–1905.

[54]

Wang, E. H., Chen, M. Z., Liu, X. H., Liu, Y. M., Guo, H. P., Wu, Z. G., Xiang, W., Zhong, B. H., Guo, X. D., Chou, S. L., et al. (2019). Organic cross-linker enabling a 3D porous skeleton–supported Na3V2(PO4)3/carbon composite for high power sodium-ion battery cathode. Small Methods 3, 1800169.

[55]

Chen, H. X., Zhou, M. C., Zhang, X. Y., Xu, S. W., Zhou, H. M. (2024). V-MOFs derived Na3V2(PO4)3/C core-shell spheres toward ultrastable sodium-ion batteries. J. Energy Storage 77, 109932.

[56]

Cao, Y. J., Liu, Y., Zhao, D. Q., Zhang, J. X., Xia, X. P., Chen, T., Zhang, L. C., Qin, P., Xia, Y. Y. (2019). K-doped Na3Fe2(PO4)3 cathode materials with high-stable structure for sodium-ion stored energy battery. J. Alloys Compd. 784, 939–946.

[57]

Tian, Z. Y., Chen, Y. J., Cheng, J., Sun, S. Q., Wang, C., He, Z. F., Shi, X. F., Wang, Y. Z., Guo, L. (2021). Boosting the rate capability and working lifespan of K/Co co-doped Na3V2(PO4)3/C for sodium ion batteries. Ceram. Int. 47, 22025–22034.

[58]

Hong, X. D., Liang, K., Huang, X. B., Ren, Y. R., Wang, H. Y. (2021). Improved Na storage performance of Na3V2(PO4)3 cathode material for sodium-ion batteries by K-Cl co-doping. J. Phys. D: Appl. Phys. 54, 104002.

[59]

Chen, P., Wu, C. Y., Wang, Z. Y., Li, S. G., Xu, X. W., Tu, J., Ding, Y. L. (2022). Synergistically boosting sodium-storage performance of Na3V2(PO4)3 by regulating Na sites and constructing 3D interconnected carbon nanosheet frameworks. ACS Appl. Energy Mater. 5, 2542–2552.

[60]

Criado, A., Lavela, P., Tirado, J. L., Pérez-Vicente, C. (2020). Increasing energy density with capacity preservation by aluminum substitution in sodium vanadium phosphate. ACS Appl. Mater. Interfaces 12, 21651–21660.

[61]

Guo, M., Zhang, Y. W., Qi, S. H., Liu, T. C., Ying, J. D., Wang, Y. Q., Chai, Y. F., Gao, G. H., Yu, Z. X. (2023). Enhanced Na-ion storage of the NASICON cathode through synergistic bulk lattice modulation and porous architecture. Energy Fuels 37, 17575–17584.

[62]

Wei, T. T., Li, Y., Chen, Y. H., Wang, P. F., Xie, Y., Yi, T. F. (2023). Synergistic activation of anionic redox through substitution strategy to design low-cost Co/Ni-free layered oxide cathode materials for high-performance Na-ion batteries. Chem. Eng. J. 474, 145844.

[63]

Chen, Y. J., Cheng, J., Wang, C., He, Z. F., Wang, Y. Z., Li, D., Guo, L. (2021). Simultaneous modified Na2.9V1.9Zr0.1(PO4)3/C@rGO as a superior high rate and ultralong lifespan cathode for symmetric sodium ion batteries. Chem. Eng. J. 413, 127451.

[64]

Zhou, T., Chen, Y. J. (2024). Heterojunction of Y3+-substituted Na3V2(PO4)3-NaYO2 accelerating kinetics with superior performance for full sodium-ion batteries. J. Colloid Interface Sci. 654, 1163–1176.

Energy Materials and Devices
Article number: 9370021
Cite this article:
Zhao Y, Lai X, Wang P, et al. Construction of metal–organic framework-derived Al-doped Na3V2(PO4)3 cathode materials for high-performance rechargeable Na-ion batteries. Energy Materials and Devices, 2023, 1(2): 9370021. https://doi.org/10.26599/EMD.2023.9370021

2562

Views

246

Downloads

3

Crossref

Altmetrics

Received: 03 January 2024
Revised: 16 January 2024
Accepted: 16 January 2024
Published: 26 January 2024
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return