AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Theoretical investigation of the doping effect on interface storage in the graphene/silicene heterostructure as the anode for lithium-ion batteries

Fen Yao1Junling Meng1Xuxu Wang1Jinxian Wang3Limin Chang1( )Gang Huang2( )
Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education & College of Chemistry, Jilin Normal University, Changchun 130103, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
Show Author Information

Graphical Abstract

Abstract

Van der Waals heterostructures made up of different two-dimensional (2D) materials have garnered considerable attention as anodes for lithium-ion batteries (LIBs), and doping can significantly influence their electronic structures and lithium diffusion barriers. In this work, the effects of heteroatom (X = N, O, P, and S) doping in the graphene of the graphene/silicene (G/Si) heterostructure are comprehensively examined by using first-principles calculations. The stacking stability and mechanical stiffness of G/Si and doped G/Si (XG/Si) exhibit that N-doping can improve the structural stability of G/Si, thereby ensuring good cycling performance. The densities of states reveal that the dopants (N, O, and S) can greatly increase the electronic conductivity of G/Si. Importantly, the adsorption and diffusion behaviors of Li are primarily affected by the dopant and the doping site, resulting in ultrafast Li diffusivity. Therefore, N-doped G/Si at doping site 1 (S1) shows a good and balanced property, which exhibits high potential to enhance the electrical performance of G/Si materials and offers a reference for selecting dopants in other 2D anode materials for LIBs.

References

[1]

Huang, G., Han, J. H., Lu, Z., Wei, D. X., Kashani, H., Watanabe, K., Chen, M. W. (2020). Ultrastable silicon anode by three-dimensional nanoarchitecture design. ACS Nano 14, 4374–4382.

[2]

Feng, Y. S., Li, Y. N., Wang, P., Guo, Z. P., Cao, F. F., Ye, H. (2023). Work-function-induced interfacial electron/ion transport in carbon hosts toward dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 62, e202310132.

[3]

Yuan, G. B., Ge, H. Y., Shi, W. X., Liu, J. L., Zhang, Y., Wang, X. (2023). Hybrid sub-1 nm nanosheets of Co-assembled MnZnCuOx and polyoxometalate clusters as anodes for Li-ion batteries. Angew. Chem. Int. Ed. 62, e202309934.

[4]

Zhou, S. Y., Sun, Y. X., Gao, T., Liao, J. H., Zhao, S. X., Cao, G. Z. (2023). Enhanced Li+ diffusion and lattice oxygen stability by the high entropy effect in disordered-rocksalt cathodes. Angew. Chem. Int. Ed. 62, e202311930.

[5]

Jo, C., Groombridge, A. S., De La Verpilliere, J., Lee, J. T., Son, Y., Liang, H. L., Boies, A. M., De Volder, M. (2020). Continuous-flow synthesis of carbon-coated silicon/iron silicide secondary particles for Li-ion batteries. ACS Nano 14, 698–707.

[6]

Jung, S. K., Hwang, I., Chang, D., Park, K. Y., Kim, S. J., Seong, W. M., Eum, D., Park, J., Kim, B., Kim, J. et al. (2020). Nanoscale phenomena in lithium-ion batteries. Chem. Rev. 120, 6684–6737.

[7]

LeGe, N., He, X. X., Wang, Y. X., Lei, Y. J., Yang, Y. X., Xu, J. T., Liu, M., Wu, X. Q., Lai, W. H., Chou, S. L. (2023). Reappraisal of hard carbon anodes for practical lithium/sodium-ion batteries from the perspective of full-cell matters. Energy Environ. Sci. 16, 5688–5720.

[8]

Muhammad, I., Ahmed, S., Cao, H., Mahmood, A., Wang, Y. G. (2023). Three-dimensional silicene-based materials: a universal anode for monovalent and divalent ion batteries. J. Phys. Chem. C 127, 1198–1208.

[9]

Song, J., Jiang, M. J., Yuwono, J. A., Liu, S. L., Wang, J. X., Zhang, Q., Chen, Y. H., Zhang, J., Wu, X. H., Liu, J. F. (2023). The effect of Ge doping concentration on the electrochemical performance of silicene anode for lithium-ion batteries: a first-principles study. Phys. Chem. Chem. Phys. 25, 30716–30726.

[10]

Man, Q. Y., An, Y. L., Shen, H. T., Wei, C. L., Xiong, S. L., Feng, J. K. (2023). Two-dimensional silicene/silicon and its derivatives: Properties, synthesis and frontier applications. Mater. Today 67, 566–591.

[11]

Han, G. Y., Shan, H., Zhang, L. Z., Xu, W. P., Gao, Z. Y., Guo, H., Li, G., Gao, H. J. (2023). Construction of twisted graphene-silicene heterostructures. Nano Res. 16, 7926–7930.

[12]

Liu, M., Cheng, Z. S., Zhang, X. M., Li, Y. F., Jin, L., Liu, C., Dai, X. F., Liu, Y., Wang, X. T., Liu, G. D. (2023). Two-dimensional dumbbell silicene as a promising anode material for (Li/Na/K)-ion batteries. Chin. Phys. B 32, 096303.

[13]

Zhang, X. H., Qiu, X. Y., Kong, D. B., Zhou, L., Li, Z. H., Li, X. L., Zhi, L. J. (2017). Silicene flowers: a dual stabilized silicon building block for high-performance lithium battery anodes. ACS Nano 11, 7476–7484.

[14]

Chen, Y. L., Zhu, Y. L., Zuo, W. H., Kuai, X. X., Yao, J. Y., Zhang, B. D., Sun, Z. F., Yin, J. H., Wu, X. H., Zhang, H. T. et al. (2024). Implanting transition metal into Li2O-based cathode prelithiation agent for high-energy-density and long-life Li-ion batteries. Angew. Chem. Int. Ed. 63, e202316112.

[15]
Zhu, Y. L., Chen, Y. L., Chen, J. K., Yin, J. H., Sun, Z. F., Zeng, G. F., Wu, X. H., Chen, L. Y., Yu, X. Y., Luo, H. Y. et al. (2023). Lattice engineering on Li2CO3-based sacrificial cathode prelithiation agent for improving the energy density of Li-Ion battery full-cell. Adv. Mater. in press. https://doi.org/10.1002/adma.202312159
[16]

Vargas, D. D., Cardoso, G. L., Piquini, P. C., Ahuja, R., Baierle, R. J. (2022). 2D dumbbell silicene as a high storage capacity and fast ion diffusion anode for Li-ion batteries. ACS Appl. Mater. Interfaces 14, 47262–47271.

[17]

Li, G., Zhang, L. Z., Xu, W. Y., Pan, J. B., Song, S. R., Zhang, Y., Zhou, H. T., Wang, Y. L., Bao, L. H., Zhang, Y. Y. et al. (2018). Stable silicene in graphene/silicene van der Waals heterostructures. Adv. Mater. 30, 1804650.

[18]

Wang, Y. R., Jiao, Z. Y., Ma, S. H., Guo, Y. L. (2019). Probing C3N/graphene heterostructures as anode materials for Li-ion batteries. J. Power Sources 413, 117–124.

[19]

Zhu, J. J., Chroneos, A., Schwingenschlogl, U. (2016). Silicene/germanene on MgX2 (X = Cl, Br, and I) for Li-ion battery applications. Nanoscale 8, 7272–7277.

[20]

Samad, A., Shin, Y. H. (2017). MoS2@VS2 nanocomposite as a superior hybrid anode material. ACS Appl. Mater. Interfaces 9, 29942–29949.

[21]

Ma, J. C., Fu, J., Niu, M. Q., Quhe, R. (2019). MoO2 and graphene heterostructure as promising flexible anodes for lithium-ion batteries. Carbon 147, 357–363.

[22]

Lin, H., Jin, R. C., Zhu, S. G., Huang, Y. (2020). C3N/blue phosphorene heterostructure as a high rate-capacity and stable anode material for lithium ion batteries: insight from first principles calculations. Appl. Surf. Sci. 505, 144518.

[23]

Shi, L., Zhao, T. S., Xu, A., Xu, J. B. (2016). Ab initio prediction of a silicene and graphene heterostructure as an anode material for Li- and Na-ion batteries. J. Mater. Chem. A 4, 16377–16382.

[24]

Chen, H., Zhang, W., Tang, X. Q., Ding, Y. H., Yin, J. R., Jiang, Y., Zhang, P., Jin, H. B. (2018). First principles study of P-doped borophene as anode materials for lithium ion batteries. Appl. Surf. Sci. 427, 198–205.

[25]

Huo, L., Su, F. Y., Yi, Z. L., Cui, G. Y., Zhang, C. L., Dong, N., Chen, C. M., Han, P. D. (2019). The inhibition mechanism of lithium dendrite on nitrogen-doped defective graphite: the first principles studies. J. Electrochem. Soc. 166, A1603–A1610.

[26]

Wang, T. S., Zhai, P. B., Legut, D., Wang, L., Liu, X. P., Li, B. X., Dong, C. X., Fan, Y. C., Gong, Y. J., Zhang, Q. F. (2019). S-doped graphene-regional nucleation mechanism for dendrite-free lithium metal anodes. Adv. Energy Mater. 9, 1804000.

[27]

Wang, T. S., Qu, J. L., Legut, D., Qin, J., Li, X. F., Zhang, Q. F. (2019). Unique double-interstitialcy mechanism and interfacial storage mechanism in the graphene/metal oxide as the anode for sodium-ion batteries. Nano Lett. 19, 3122–3130.

[28]

Shao, R., Zhu, F., Cao, Z. J., Zhang, Z. P., Dou, M. L., Niu, J., Zhu, B. N., Wang, F. (2020). Heteroatom-doped carbon networks enabling robust and flexible silicon anodes for high energy Li-ion batteries. J. Mater. Chem. A 8, 18338–18347.

[29]

Kresse, G., Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50.

[30]

Kresse, G., Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186.

[31]

Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868.

[32]

Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X. L., Burke, K. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406.

[33]

Klimeš, J., Bowler, D. R., Michaelides, A. (2011). Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131.

[34]

Smidstrup, S., Pedersen, A., Stokbro, K., Jónsson, H. (2014). Improved initial guess for minimum energy path calculations. J. Chem. Phys. 140, 214106.

[35]

Henkelman, G., Uberuaga, B. P., Jónsson, H. (2000). A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904.

[36]

Henkelman, G., Arnaldsson, A., Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360.

[37]

Tang, W., Sanville, E., Henkelman, G. (2009). A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 21, 084204.

[38]

Yang, W. X., Zhou, J. H., Wang, S., Wang, Z. C., Lv, F., Zhang, W. S., Zhang, W. Y., Sun, Q., Guo, S. J. (2020). A three-dimensional carbon framework constructed by N/S co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage. ACS Energy Lett. 5, 1653–1661.

[39]

Ullah, S., Denis, P. A., Sato, F. (2017). Beryllium doped graphene as an efficient anode material for lithium-ion batteries with significantly huge capacity: a DFT study. Appl. Mater. Today 9, 333–340.

[40]

Momeni, M. J., Mousavi-Khoshdel, M., Targholi, E. (2017). First-principles investigation of adsorption and diffusion of Li on doped silicenes: prospective materials for lithium-ion batteries. Mater. Chem. Phys. 192, 125–130.

[41]

Zhang, C. Z., Mahmood, N., Yin, H., Liu, F., Hou, Y. L. (2013). Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 25, 4932–4937.

[42]

Guo, G. C., Wang, D., Wei, X. L., Zhang, Q., Liu, H., Lau, W. M., Liu, L. M. (2015). First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. J. Phys. Chem. Lett. 6, 5002–5008.

[43]

Aierken, Y., Sevik, C., Gülseren, O., Peeters, F. M., Çakır, D. (2018). MXenes/graphene heterostructures for Li battery applications: a first principles study. J. Mater. Chem. A 6, 2337–2345.

[44]

Zhang, Q. X., Ma, J. C., Lei, M., Quhe, R. (2018). Metallic MoN layer and its application as anode for lithium-ion batteries. Nanotechnology 29, 165402.

Energy Materials and Devices
Article number: 9370020
Cite this article:
Yao F, Meng J, Wang X, et al. Theoretical investigation of the doping effect on interface storage in the graphene/silicene heterostructure as the anode for lithium-ion batteries. Energy Materials and Devices, 2023, 1(2): 9370020. https://doi.org/10.26599/EMD.2023.9370020

2019

Views

183

Downloads

1

Crossref

Altmetrics

Received: 29 December 2023
Revised: 19 January 2024
Accepted: 19 January 2024
Published: 29 January 2024
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return