Journal Home > Volume 1 , Issue 2

Polymer matrices have limited abilities to dissociate lithium salts and transport ions, thus making most solid-state polymer electrolytes (SPEs) have extremely low ionic conductivities (10−7–10−5 S/cm) at 25 ℃. In this work, a high-energy electron-beam (e-beam) irradiation is applied to a poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] SPE to improve the ionic conductivity. P(VDF-TrFE) easily shows pure all-trans (TTTT) conformation with all fluorine atoms located on one side of the carbon chain to provide an ion transport highway. E-beam irradiation keeps large amounts of TTTT conformation of P(VDF-TrFE) and produces –CF3 side groups, where the latter expands the interchain distance to split the large ferroelectric domains into nanosize to induce a unique relaxor ferroelectric behavior. This enhances the dielectric constant of the irradiated P(VDF-TrFE) from 15 to 20 and thus facilitates lithium salt dissociation. As a consequence, the ionic conductivity of the irradiated P(VDF-TrFE) SPE is increased from 5.8 × 10−5 to 1.6 × 10−4 S cm−1 at 25 ℃. The solid-state Li//Li symmetrical cell cycles for more than 3000 h at 25 ℃ without a short circuit. Furthermore, the solid-state LFP//Li cell cycles stably for more than 350 cycles with a capacity retention of around 91.3% at 1 C and 25 ℃. This study paves a new way to prepare high-performance SPEs by inducing high dielectric constants and abundant TTTT conformations through e-beam irradiation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

E-beam irradiation of poly(vinylidene fluoride-trifluoroethylene) induces high dielectric constant and all-trans conformation for highly ionic conductive solid-state electrolytes

Show Author's information Chen Dai1Florian J. Stadler1Zhong-Ming Li2Yan-Fei Huang1( )
College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China

Abstract

Polymer matrices have limited abilities to dissociate lithium salts and transport ions, thus making most solid-state polymer electrolytes (SPEs) have extremely low ionic conductivities (10−7–10−5 S/cm) at 25 ℃. In this work, a high-energy electron-beam (e-beam) irradiation is applied to a poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] SPE to improve the ionic conductivity. P(VDF-TrFE) easily shows pure all-trans (TTTT) conformation with all fluorine atoms located on one side of the carbon chain to provide an ion transport highway. E-beam irradiation keeps large amounts of TTTT conformation of P(VDF-TrFE) and produces –CF3 side groups, where the latter expands the interchain distance to split the large ferroelectric domains into nanosize to induce a unique relaxor ferroelectric behavior. This enhances the dielectric constant of the irradiated P(VDF-TrFE) from 15 to 20 and thus facilitates lithium salt dissociation. As a consequence, the ionic conductivity of the irradiated P(VDF-TrFE) SPE is increased from 5.8 × 10−5 to 1.6 × 10−4 S cm−1 at 25 ℃. The solid-state Li//Li symmetrical cell cycles for more than 3000 h at 25 ℃ without a short circuit. Furthermore, the solid-state LFP//Li cell cycles stably for more than 350 cycles with a capacity retention of around 91.3% at 1 C and 25 ℃. This study paves a new way to prepare high-performance SPEs by inducing high dielectric constants and abundant TTTT conformations through e-beam irradiation.

Keywords: dielectric constant, PVDF, solid-state polymer electrolytes, electron-beam irradiation, all-trans conformation

References(45)

[1]

Wang, Z. J., Zhang, B. (2023). Weakly solvating electrolytes for next-generation lithium batteries: design principles and recent advances. Energy Mater. Devices 1, 9370003.

[2]

Wan, Z. P., Shi, K., Huang, Y. F., Yang, L., Yun, Q. B., Chen, L. K., Ren, F. Z., Kang, F. Y., He, Y. B. (2021). Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O12 and Li metal to achieve excellent cycling stability of all-solid-state battery. J. Power Sources 505, 230062.

[3]

Wang, Y. Y., Li, M. N., Yang, F. H., Mao, J. F., Guo, Z. P. (2023). Developing artificial solid-state interphase for Li metal electrodes: recent advances and perspective. Energy Mater. Devices 1, 9370005.

[4]

Croce, F., Appetecchi, G. B., Persi, L., Scrosati, B. (1998). Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458.

[5]

Shi, K., Wan, Z. P., Yang, L., Zhang, Y. W., Huang, Y. F., Su, S. M., Xia, H. Y., Jiang, K. L., Shen, L., Hu, Y., et al. (2020). In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 59, 11784–11788.

[6]

Zhang, J. J., Zhao, J. H., Yue, L. P., Wang, Q. F., Chai, J. C., Liu, Z. H., Zhou, X. H., Li, H., Guo, Y. G., Cui, G. L., et al. (2015). Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv. Energy Mater. 5, 1501082.

[7]

Yang, K., Chen, L. K., Ma, J. B., Lai, C., Huang, Y. F., Mi, J. S., Biao, J., Zhang, D. F., Shi, P. R., Xia, H. Y., et al. (2021). Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Angew. Chem. Int. Ed. 60, 24668–24675.

[8]

Huo, H. Y., Chen, Y., Li, R. Y., Zhao, N., Luo, J., da Silva, J. G. P., Mücke, R., Kaghazchi, P., Guo, X. X., Sun, X. L. (2020). Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ. Sci. 13, 127–134.

[9]

Zeng, J. P., Liu, J. F., Huang, H. D., Shi, S. C., Kang, B. H., Dai, C., Zhang, L. W., Yan, Z. C., Stadler, F. J., He, Y. B., et al. (2022). A high polarity poly(vinylidene fluoride-co-trifluoroethylene) random copolymer with an all-trans conformation for solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. J. Mater. Chem. A 10, 18061–18069.

[10]

Mi, J. S., Ma, J. B., Chen, L. K., Lai, C., Yang, K., Biao, J., Xia, H. Y., Song, X., Lv, W., Zhong, G. M., et al. (2022). Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Mater. 48, 375–383.

[11]

Liu, W. Y., Yi, C. J., Li, L. P., Liu, S. L., Gui, Q. Y., Ba, D. L., Li, Y. Y., Peng, D. L., Liu, J. P. (2021). Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. 60, 12931–12940.

[12]

Huang, Y. F., Zeng, J. P., Li, S. F., Dai, C., Liu, J. F., Liu, C., He, Y. B. (2023). Conformational regulation of dielectric poly(vinylidene fluoride)-based solid-state electrolytes for efficient lithium salt dissociation and lithium-ion transportation. Adv. Energy Mater. 13, 2203888.

[13]

Zhou, Q., Ma, J., Dong, S. M., Li, X. F., Cui, G. L. (2019). Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31, 1902029.

[14]

Kim, J. H., Kang, M. S., Kim, Y. J., Won, J., Park, N. G., Kang, Y. S. (2004). Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silicananoparticles. Chem. Commun 14, 1662–1663.

[15]

Ushakova, E. E., Sergeev, A. V., Morzhukhin, A., Napolskiy, F. S., Kristavchuk, O., Chertovich, A. V., Yashina, L. V., Itkis, D. M. (2020). Free-standing Li+-conductive films based on PEO-PVDF blends. RSC Adv. 10, 16118–16124.

[16]

Deng, C. L., Chen, N., Hou, C. Y., Liu, H. X., Zhou, Z. M., Chen, R. J. (2021). Enhancing interfacial contact in solid-state batteries with a gradient composite solid electrolyte. Small 17, 2006578.

[17]

Zheng, J., Tang, M. X., Hu, Y. Y. (2016). Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542.

[18]

Shen, C., Huang, Y. B., Yang, J. R., Chen, M. J., Liu, Z. P. (2021). Unraveling the mechanism of ion and electron migration in composite solid-state electrolyte using conductive atomic force microscopy. Energy Storage Mater. 39, 271–277.

[19]

Chen, F., Jing, M. X., Yang, H., Yuan, W. Y., Liu, M. Q., Ji, Y. S., Hussain, S., Shen, X. Q. (2021). Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement. Ionics 27, 1101–1111.

[20]

Liu, Q., Yu, Q. P., Li, S., Wang, S. W., Zhang, L. H., Cai, B. Y., Zhou, D., Li, B. H. (2020). Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in-situ solidification. Energy Storage Mater. 25, 613–620.

[21]

Stegmaier, S., Schierholz, R., Povstugar, I., Barthel, J., Rittmeyer, S. P., Yu, S. C., Wengert, S., Rostami, S., Kungl, H., Reuter, K., et al. (2021). Nano-scale complexions facilitate Li dendrite-free operation in LATP solid-state electrolyte. Adv. Energy Mater. 11, 2100707.

[22]

Jiang, Z. Y., Wang, S. Q., Chen, X. Z., Yang, W. L., Yao, X., Hu, X. C., Han, Q. Y., Wang, H. H. (2020). Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv. Mater. 32, 1906221.

[23]

Shi, P. R., Ma, J. B., Liu, M., Guo, S. K., Huang, Y. F., Wang, S. W., Zhang, L. H., Chen, L. K., Yang, K., Liu, X. T., et al. (2023). A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18, 602–610.

[24]

Yuan, Y., Chen, L. K., Li, Y. H., An, X. F., Lv, J. S., Guo, S. K., Cheng, X., Zhao, Y., Liu, M., He, Y. B. et al. (2023). Functional LiTaO3 filler with tandem conductivity and ferroelectricity for PVDF-based composite solid-state electrolyte. Energy Mater. Devices 1, 9370004.

[25]

Wang, H. M., Wang, Z. Y., Zhou, C., Li, G. R., Liu, S., Gao, X. P. (2023). A gel polymer electrolyte with Al2O3 nanofibers skeleton for lithium-sulfur batteries. Sci. China Mater. 66, 913–922.

[26]

Balazs, A. C., Emrick, T., Russell, T. P. (2006). Nanoparticle polymer composites: where two small worlds meet. Science 314, 1107–1110.

[27]

Li, S. M., Huang, J. L., Cui, Y., Liu, S. H., Chen, Z. R., Huang, W., Li, C. F., Liu, R. L., Fu, R. W., Wu, D. C. (2022). A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol. 17, 613–621.

[28]

Huang, Y. F., Gu, T., Rui, G. C., Shi, P. R., Fu, W. B., Chen, L., Liu, X. T., Zeng, J. P., Kang, B. H., Yan, Z. C., et al. (2021). A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ. Sci. 14, 6021–6029.

[29]

Koga, K., Ohigashi, H. (1986). Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers. J. Appl. Phys. 59, 2142–2150.

[30]

Lovinger, A. J., Davis, D. D., Cais, R. E., Kometani, J. M. (1986). On the Curie temperature of poly(vinylidene fluoride). Macromolecules 19, 1491–1494.

[31]

Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418.

[32]

Marcinek, M., Syzdek, J., Marczewski, M., Piszcz, M., Niedzicki, L., Kalita, M., Plewa-Marczewska, A., Bitner, A., Wieczorek, P., Trzeciak, T., et al. (2015). Electrolytes for Li-ion transport-Review. Solid State Ion. 276, 107–126.

[33]

Borodin, O., Olguin, M., Ganesh, P., Kent, P. R. C., Allen, J. L., Henderson, W. A. (2016). Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry. Phys. Chem. Chem. Phys. 18, 164–175.

[34]

Xu, K. (2014). Electrolytes and Interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618.

[35]

Furukawa, T. (1989). Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. 18, 143–211.

[36]

Daudin, B., Dubus, M., Legrand, J. F. (1987). Effects of electron irradiation and annealing on ferroelectric vinylidene fluoride‐trifluoroethylene copolymers. J. Appl. Phys. 62, 994–997.

[37]

Odajima, A., Takasa, Y., Isfiibashi, T., Yuasa, K. (1985). Irradiation effects on the ferroelectric phase transition of vinylidene fluoride and trifluoroethylene copolymers. J. Appl. Phys 24, 642–647.

[38]

Zhu, L. (2014). Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett. 5, 3677–3687.

[39]

Yang, L. Y., Tyburski. B. A., Dos Santos, F. D., Endoh, M. K., Koga, T., Huang, D., Wang, Y. J., Zhu, L. (2014). Relaxor ferroelectric behavior from strong physical pinning in a poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene) random terpolymer. Macromolecules 47, 8119–8125.

[40]

Gao, D. C., Thangavel, G., Lee, J., Lv, J., Li, Y., Ciou, J. H., Xiong, J. Q., Park, T., Lee, P. S. (2023). A supramolecular gel-elastomer system for soft iontronic adhesives. Nat. Commun. 14, 1990.

[41]

Allen, M. J., Lien, H. M., Prine, N., Burns, C., Rylski, A. K., Gu, X. D., Cox, L. M., Mangolini, F., Freeman, B. D., Page, Z. A. (2023). Multimorphic materials: spatially tailoring mechanical properties via selective initiation of interpenetrating polymer networks. Adv. Mater. 35, 2210208.

[42]

Mabboux, P. Y., Gleason, K. K. (2002). 19F NMR characterization of electron beam irradiated vinylidene fluoride–trifluoroethylene copolymers. J. Fluorine Chem. 113, 27–35.

[43]

Wang, L. Y., Zhao, X. Z., Feng, J. W. (2006). Effects of electron irradiation on poly(vinylidene fluoride–trifluoroethylene) copolymers studied by solid-state nuclear magnetic resonance spectroscopy. J. Polym. Sci. Part B: Polym. Phys. 44, 1714–1724.

[44]

Zhang, X., Han, J., Niu, X. F., Xin, C. Z., Xue, C. J., Wang, S., Shen, Y., Zhang, L., Li, L. L., Nan, C. W. (2020). High cycling stability for solid-state Li metal batteries via regulating solvation effect in poly(vinylidene fluoride)-based electrolytes. Batt. Supercaps 3, 876–883.

[45]

Zheng, Y., Yao, Y. Z., Ou, J. H., Li, M., Luo, D., Dou, H. Z., Li, Z. Q., Amine, K., Yu, A. P., Chen, Z. W. (2020). A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49, 8790–8839.

File
EMD-2023-0016_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 November 2023
Revised: 18 January 2024
Accepted: 19 January 2024
Published: 29 January 2024
Issue date: December 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Shenzhen Science and Technology Research and Development Fund (JCYJ20220531102013031), the National Natural Science and Foundation of China (52373040, 52103037, and U21A2090), the Shenzhen University 2035 Program for Excellent Research (2023C005), and the Natural Science Foundation of Guangdong Province (2023A1515030247). The authors also thank the Instrumental Analysis Center of Shenzhen University (Lihu Campus) for the assistance of characterizations.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return