Journal Home > Volume 1 , Issue 1

With the continuous advancement in the dual-carbon strategy, the upswell in the demand for renewable energy sources has motivated extensive research on the development of novel energy storage technologies. As a new type of energy storage device, carbon-based redox-enhanced supercapacitors (RE-SCs) are designed by employing soluble redox electrolytes into the existing devices, exploiting the merits of the diffusion-controlled faradaic process of the redox electrolyte at the surface of carbon electrodes, thus leading to improved energy density without the cost of power density. During the past years, great progress has been made in the design of novel redox electrolytes and the configuration of new devices. However, the development of these systems is plagued by severe self-discharge. Herein, a comprehensive picture of the fundamentals, together with a discussion and outline of the challenges and future perspectives of RE-SCs, are provided. We highlight the impacts of redox electrolytes on capacitance, energy density, and power output. Notably, the self-discharge behavior owing to the introduction of redox electrolyte and its mechanism are also discussed, followed by a summary of the strategies from materials to system optimization. Furthermore, possible directions for future research are discussed.


menu
Abstract
Full text
Outline
About this article

Redox electrolyte-enhanced carbon-based supercapacitors: recent advances and future perspectives

Show Author's information Jiyong Shi1,2Xiaodong Tian1,3( )Yan Song1,3( )Tao Yang1Shengliang Hu2( )Zhanjun Liu1,3
CAS Key Laboratory for Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
North University of China, Taiyuan 030051, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

With the continuous advancement in the dual-carbon strategy, the upswell in the demand for renewable energy sources has motivated extensive research on the development of novel energy storage technologies. As a new type of energy storage device, carbon-based redox-enhanced supercapacitors (RE-SCs) are designed by employing soluble redox electrolytes into the existing devices, exploiting the merits of the diffusion-controlled faradaic process of the redox electrolyte at the surface of carbon electrodes, thus leading to improved energy density without the cost of power density. During the past years, great progress has been made in the design of novel redox electrolytes and the configuration of new devices. However, the development of these systems is plagued by severe self-discharge. Herein, a comprehensive picture of the fundamentals, together with a discussion and outline of the challenges and future perspectives of RE-SCs, are provided. We highlight the impacts of redox electrolytes on capacitance, energy density, and power output. Notably, the self-discharge behavior owing to the introduction of redox electrolyte and its mechanism are also discussed, followed by a summary of the strategies from materials to system optimization. Furthermore, possible directions for future research are discussed.

Keywords: supercapacitor, carbon materials, self-discharge, redox electrolyte

References(88)

[1]
Li, Q. Q., Jiang, Y. T., Jiang, Z. M., Zhu, J. Y., Gan, X. M., Qin, F. W., Tang, T. T., Luo, W. X., Guo, N. N., Liu, Z., et al. (2022). Ultrafast pore-tailoring of dense microporous carbon for high volumetric performance supercapacitors in organic electrolyte. Carbon 191, 19–27.
DOI
[2]
Lin, Q. W., Zhang, J., Lv, W., Ma, J. B., He, Y. B., Kang, F. Y., Yang, Q. H. (2020). A functionalized carbon surface for high-performance sodium-ion storage. Small 16, 1902603.
DOI
[3]

Zhao, L., He, Y. B., Li, C. F., Jiang, K. L., Wang, P., Ma, J. B., Xia, H. Y., Chen, F. Y., He, Y. B., Chen, Z., et al. (2019). Compact Si/C anodes fabricated by simultaneously regulating the size and oxidation degree of Si for Li-ion batteries. J. Mater. Chem. A. 7, 24356–24365.

[4]

Guo, X. Y., Zhang, X. S., Wang, Y. X., Tian, X. D., Qiao, Y. (2022). Converting furfural residue wastes to carbon materials for high performance supercapacitor. Green Energy Environ. 7, 1270–1280.

[5]

Zhou, H. J., Zhu, G. Y., Dong, S. Y., Liu, P., Lu, Y. Y., Zhou, Z., Cao, S., Zhang, Y. Z., Pang, H. (2023). Ethanol-induced Ni2+-intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors. Adv. Mater. 35, 2211523.

[6]
Chen, X. D., Wang, C. L., Wang, Y. H., Ma, J., Dong, Y. J., Gao, S., Jing, Q. L., Li, W. T., Pang, H. (2022). In-situ immobilization cobalt-based metal-organic frameworks nanosheets on carbon composites for supercapacitors. J. Energy Storage 55, 105319.
DOI
[7]
Lu, J. D., Duan, H. Y., Zhang, Y., Zhang, G. X., Chen, Z. X., Song, Y. Z., Zhu, R. M., Pang, H. (2022). Directional growth of conductive metal–organic framework nanoarrays along [001] on metal hydroxides for aqueous asymmetric supercapacitors. ACS Appl. Mater. Interfaces 14, 25878–25885.
DOI
[8]

Shao, Y. L., El-Kady, M. F., Sun, J. Y., Li, Y. G., Zhang, Q. H., Zhu, M. F., Wang, H. Z., Dunn, B., Kaner, R. B. (2018). Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233–9280.

[9]

Liu, Y. F., Du, X. M., Li, Y., Bao, E. H., Ren, X. L., Chen, H. Y., Tian, X. D., Xu, C. J. (2022). Nanosheet-assembled porous MnCo2O4.5 microflowers as electrode material for hybrid supercapacitors and lithium-ion batteries. J. Colloid Interface Sci. 627, 815–826.

[10]
Hu, L. T., Zhai, T. Y., Li, H. Q., Wang, Y. G. (2019). Redox-mediator-enhanced electrochemical capacitors: recent advances and future perspectives. ChemSusChem 12, 1118–1132.
DOI
[11]

Mourad, E., Coustan, L., Lannelongue, P., Zigah, D., Mehdi, A., Vioux, A., Freunberger, S. A., Favier, F., Fontaine, O. (2017). Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat. Mater. 16, 446–453.

[12]
Tian, X. D., Yang, T., Song, Y., Li, Y., Peng, H. W., Xue, R. R., Ren, X. Y., Liu, Z. J. (2022). Symmetric supercapacitor operating at 1.5 V with combination of nanosheet-based NiMoO4 microspheres and redox additive electrolyte. J. Energy Storage 47, 103960.
DOI
[13]

Evanko, B., Boettcher, S. W., Yoo, S. J., Stucky, G. D. (2017). Redox-enhanced electrochemical capacitors: status, opportunity, and best practices for performance evaluation. ACS Energy Lett. 2, 2581–2590.

[14]

Akinwolemiwa, B., Peng, C., Chen, G. Z. (2015). Redox electrolytes in supercapacitors. J. Electrochem. Soc. 162, A5054–A5059.

[15]

Li, Y. Y., Cao, R. Y., Song, J. Y., Liang, L., Zhai, T., Xia, H. (2021). Recent advances in coupling carbon-based electrode-redox electrolyte system. Mater. Res. Bull. 139, 111249.

[16]

Gorska, B., Frackowiak, E., Beguin, F. (2018). Redox active electrolytes in carbon/carbon electrochemical capacitors. Curr. Opin. Electrochem. 9, 95–105.

[17]

Sun, L., Zhuo, K. L., Chen, Y. J., Du, Q. Z., Zhang, S. J., Wang, J. J. (2022). Ionic liquid-based redox active electrolytes for supercapacitors. Adv. Funct. Mater. 32, 2203611.

[18]

Yang, N. J., Yu, S. Y., Zhang, W. J., Cheng, H. M., Simon, P., Jiang, X. (2022). Electrochemical capacitors with confined redox electrolytes and porous electrodes. Adv. Mater. 34, 2202380.

[19]

Shabangoli, Y., Rahmanifar, M. S., El-Kady, M. F., Noori, A., Mousavi, M. F., Kaner, R. B. (2018). Thionine functionalized 3D graphene aerogel: Combining simplicity and efficiency in fabrication of a metal-free redox supercapacitor. Adv. Energy Mater. 8, 1802869.

[20]

Chung, J., Park, H., Jung, C. (2021). Electropolymerizable isocyanate-based electrolytic additive to mitigate diffusion-controlled self-discharge for highly stable and capacitive activated carbon supercapacitors. Electrochim. Acta. 369, 137698.

[21]

Tanahashi, I. (2005). Capacitance enhancement of activated carbon fiber cloth electrodes in electrochemical capacitors with a mixed aqueous solution of H2SO4 and AgNO3. Electrochem. Solid-State Lett. 8, A627–A629.

[22]

Sun, X. N., Hu, W., Xu, D., Chen, X. Y., Cui, P. (2017). Integration of redox additive in H2SO4 solution and the adjustment of potential windows for improving the capacitive performances of supercapacitors. Ind. Eng. Chem. Res. 56, 2433–2443.

[23]

Sun, S., Rao, D. W., Zhai, T., Liu, Q., Huang, H., Liu, B., Zhang, H. S., Xue, L., Xia, H. (2020). Synergistic interface-assisted electrode–electrolyte coupling toward advanced charge storage. Adv. Mater. 32, 2005344.

[24]

Byeon, J., Ko, J., Lee, S., Kim, D. H., Kim, S. W., Kim, D., Oh, W., Hong, S., Yoo, S. J. (2023). Solubility-enhancing hydrotrope electrolyte with tailor-made organic redox-active species for redox-enhanced electrochemical capacitors. ACS Energy Lett. 8, 2345–2355.

[25]

Kasturi, P. R., Harivignesh, R., Lee, Y. S., Selvan, R. K. (2020). Hydrothermally derived porous carbon and its improved electrochemical performance for supercapacitors using redox additive electrolytes. J. Phys. Chem. Solids. 143, 109447.

[26]

Zhang, R., He, X. R. (2015). Crystallization and molecular dynamics of ethylene-vinyl acetate copolymer/butyl rubber blends. RSC Adv. 5, 130–135.

[27]

Sun, S., Liu, B., Zhang, H. S., Guo, Q. B., Xia, Q. Y., Zhai, T., Xia, H. (2021). Boosting energy storage via confining soluble redox species onto solid–liquid interface. Adv. Energy Mater. 11, 2003599.

[28]

Park, Y., Choi, H., Lee, D. G., Kim, M. C., Tran, N. A. T., Cho, Y., Lee, Y. W., Sohn, J. I. (2020). Rational design of electrochemical iodine-based redox mediators for water-proofed flexible fiber supercapacitors. ACS Sustainable Chem. Eng. 8, 2409–2415.

[29]
Tang, X. H., Lui, Y. H., Chen, B. L., Hu, S. (2017). Functionalized carbon nanotube based hybrid electrochemical capacitors using neutral bromide redox-active electrolyte for enhancing energy density. J. Power Sources 352, 118–126.
DOI
[30]

Wang, G. X., Zhang, M. Y., Xu, H. F., Lu, L., Xiao, Z. Y., Liu, S. (2018). Synergistic interaction between redox-active electrolytes and functionalized carbon in increasing the performance of electric double-layer capacitors. J. Energy Chem. 27, 1219–1224.

[31]
Xu, D., Hu, W., Sun, X. N., Cui, P., Chen, X. Y. (2017). Redox additives of Na2MoO4 and ki: synergistic effect and the improved capacitive performances for carbon-based supercapacitors. J. Power Sources 341, 448–456.
DOI
[32]

Sandhiya, M., Vivekanand, Balaji, S. S., Sathish, M. (2021). Unrevealed performance of NH4VO3 as a redox-additive for augmenting the energy density of a supercapacitor. J. Phys. Chem. C. 125, 8068–8079.

[33]
Chen, K. F., Liu, F., Xue, D. F., Komarneni, S. (2015). Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6. Nanoscale 7, 432–439.
DOI
[34]

He, Z. Q., Chen, D. D., Wang, M., Li, C. X., Chen, X. Y., Zhang, Z. J. (2020). Sulfur modification of carbon materials as well as the redox additive of Na2S for largely improving capacitive performance of supercapacitors. J. Electroanal. Chem. 856, 113678.

[35]
Wang, X. F., Chandrabose, R. S., Chun, S. E., Zhang, T. Q., Evanko, B., Jian, Z. L., Boettcher, S. W., Stucky, G. D., Ji, X. L. (2015). High energy density aqueous electrochemical capacitors with a KI-KOH electrolyte. ACS Appl. Mater. Interfaces 7, 19978–19985.
DOI
[36]

Singh, C., Paul, A. (2018). Immense microporous carbon@hydroquinone metamorphosed from nonporous carbon as a supercapacitor with remarkable energy density and cyclic stability. ACS Sustainable Chem. Eng. 6, 11367–11379.

[37]
Xu, D., Sun, X. N., Hu, W., Chen, X. Y. (2017). Carbon nanosheets-based supercapacitors: design of dual redox additives of 1, 4-dihydroxyanthraquinone and hydroquinone for improved performance. J. Power Sources 357, 107–116.
DOI
[38]
Calcagno, G., Evanko, B., Stucky, G. D., Ahlberg, E., Yoo, S. J., Palmqvist, A. E. C. (2022). Understanding the operating mechanism of aqueous pentyl viologen/bromide redox-enhanced electrochemical capacitors with ordered mesoporous carbon electrodes. ACS Appl. Mater. Interfaces 14, 20349–20357.
DOI
[39]

Hu, L. T., Shi, C., Guo, K., Zhai, T. Y., Li, H. Q., Wang, Y. G. (2018). Electrochemical double-layer capacitor energized by adding an ambipolar organic redox radical into the electrolyte. Angew. Chem. Int. Ed. 57, 8214–8218.

[40]
Zhang, Y., Zeng, T., Yan, W., Huang, D. X., Zhang, Y. Y., Wan, Q. J., Yang, N. J. (2022). A high-performance flexible supercapacitor using dual alkaline redox electrolytes. Carbon 188, 315–324.
DOI
[41]

Zhai, D. D., Liu, H., Wang, M., Wu, D., Chen, X. Y., Zhang, Z. J. (2019). Integrating surface functionalization and redox additives to improve surface reactivity for high performance supercapacitors. Electrochim. Acta. 323, 134810.

[42]
Zhang, X., Gao, L. L., Guo, R. H., Hu, T. P., Ma, M. M. (2021). Using thiourea as a catalytic redox-active additive to enhance the performance of pseudocapacitive supercapacitors. Sustainable Energy Fuels 5, 5733–5740.
DOI
[43]

Yoon, H., Kim, H. J., Yoo, J. J., Yoo, C. Y., Park, J. H., Lee, Y. A., Cho, W. K., Han, Y. K., Kim, D. H. (2015). Pseudocapacitive slurry electrodes using redox-active quinone for high-performance flow capacitors: an atomic-level understanding of pore texture and capacitance enhancement. J. Mater. Chem. A. 3, 23323–23332.

[44]

Xiong, T., Lee, W. S. V., Chen, L., Tan, T. L., Huang, X. L., Xue, J. M. (2017). Indole-based conjugated macromolecules as a redox-mediated electrolyte for an ultrahigh power supercapacitor. Energy Environ. Sci. 10, 2441–2449.

[45]
Park, J., Kim, B., Yoo, Y. E., Chung, H., Kim, W. (2014). Energy-density enhancement of carbon-nanotube-based supercapacitors with redox couple in organic electrolyte. ACS Appl. Mater. Interfaces 6, 19499–19503.
DOI
[46]
Wang, Z. F., Yi, Z. L., Yu, S. C., Fan, Y. F., Li, J. X., Xie, L. J., Zhang, S. C., Su, F. Y., Chen, C. M. (2022). High-voltage redox mediator of an organic electrolyte for supercapacitors by lewis base electrocatalysis. ACS Appl. Mater. Interfaces 14, 24497–24508.
DOI
[47]

Shakil, R., Shaikh, M. N., Shah, S. S., Reaz, A. H., Roy, C. K., Chowdhury, A. N., Aziz, M. A. (2021). Development of a novel bio-based redox electrolyte using pivalic acid and ascorbic acid for the activated carbon-based supercapacitor fabrication. Asian J. Org. Chem. 10, 2220–2230.

[48]
Navalpotro, P., Palma, J., Anderson, M., Marcilla, R. (2016). High performance hybrid supercapacitors by using para-benzoquinone ionic liquid redox electrolyte. J. Power Sources 306, 711–717.
DOI
[49]

Xie, H. J., Gélinas, B., Rochefort, D. (2016). Redox-active electrolyte supercapacitors using electroactive ionic liquids. Electrochem. Commun. 66, 42–45.

[50]

Shang, W. X., Yu, W. T., Xiao, X., Ma, Y. Y., He, Y., Zhao, Z. X., Tan, P. (2023). Insight into the self-discharge suppression of electrochemical capacitors: Progress and challenges. Adv. Powder Mater. 2, 100075.

[51]
Jamieson, L., Roy, T., Wang, H. Z. (2021). Postulation of optimal charging protocols for minimal charge redistribution in supercapacitors based on the modelling of solid phase charge density. J. Energy Storage 40, 102716.
DOI
[52]
Shen, J. F., He, Y. J., Ma, Z. F. (2016). A systematical evaluation of polynomial based equivalent circuit model for charge redistribution dominated self-discharge process in supercapacitors. J. Power Sources 303, 294–304.
DOI
[53]

Lewandowski, A., Jakobczyk, P., Galinski, M., Biegun, M. (2013). Self-discharge of electrochemical double layer capacitors. Phys. Chem. Chem. Phys. 15, 8692–8699.

[54]

Andreas, H. A. (2015). Self-discharge in electrochemical capacitors: a perspective article. J. Electrochem. Soc. 162, A5047–A5053.

[55]
Xia, M. Y., Nie, J. H., Zhang, Z. L., Lu, X. M., Wang, Z. L. (2018). Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals. Nano Energy 47, 43–50.
DOI
[56]

Wang, K. P., Yao, L. L., Jahon, M., Liu, J. X., Gonzalez, M., Liu, P., Leung, V., Zhang, X. Y., Ng, T. N. (2020). Ion-exchange separators suppressing self-discharge in polymeric supercapacitors. ACS Energy Lett. 5, 3276–3284.

[57]
Lee, J., Choudhury, S., Weingarth, D., Kim, D., Presser, V. (2016). High performance hybrid energy storage with potassium ferricyanide redox electrolyte. ACS Appl. Mater. Interfaces 8, 23676–23687.
DOI
[58]
Peng, H., Xiao, L. L., Sun, K. J., Ma, G. F., Wei, G. G., Lei, Z. Q. (2019). Preparation of a cheap and environmentally friendly separator by coaxial electrospinning toward suppressing self-discharge of supercapacitors. J. Power Sources 435, 226800.
DOI
[59]

Buxton, W. G., King, S. G., Stolojan, V. (2023). Suppression of self-discharge in aqueous supercapacitor devices incorporating highly polar nanofiber separators. Energy Environ. Mater. 6, e12363.

[60]

Yu, X. W., Wu, H., Koo, J. H., Manthiram, A. (2020). Tailoring the pore size of a polypropylene separator with a polymer having intrinsic nanoporosity for suppressing the polysulfide shuttle in lithium–sulfur batteries. Adv. Energy Mater. 10, 1902872.

[61]

Liang, N., Wu, X. Y., Lv, Y., Guo, J. X., Zhang, X. L., Zhu, Y. F., Liu, H. B., Jia, D. Z. (2022). A graphdiyne oxide composite membrane for active electrolyte enhanced supercapacitors with super long self-discharge time. J. Mater. Chem. C. 10, 2821–2827.

[62]

Chen, L. B., Bai, H., Huang, Z. F., Li, L. (2014). Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors. Energy Environ. Sci. 7, 1750–1759.

[63]

Chun, S. E., Evanko, B., Wang, X. F., Vonlanthen, D., Ji, X. L., Stucky, G. D., Boettcher, S. W. (2015). Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat. Commun. 6, 7818.

[64]

Evanko, B., Yoo, S. J., Chun, S. E., Wang, X. F., Ji, X. L., Boettcher, S. W., Stucky, G. D. (2016). Efficient charge storage in dual-redox electrochemical capacitors through reversible counterion-induced solid complexation. J. Am. Chem. Soc. 138, 9373–9376.

[65]

Yoo, S. J., Evanko, B., Wang, X. F., Romelczyk, M., Taylor, A., Ji, X. L., Boettcher, S. W., Stucky, G. D. (2017). Fundamentally addressing bromine storage through reversible solid-state confinement in porous carbon electrodes: design of a high-performance dual-redox electrochemical capacitor. J. Am. Chem. Soc. 139, 9985–9993.

[66]
Haque, M., Li, Q., Smith, A. D., Kuzmenko, V., Rudquist, P., Lundgren, P., Enoksson, P. (2020). Self-discharge and leakage current mitigation of neutral aqueous-based supercapacitor by means of liquid crystal additive. J. Power Sources 453, 227897.
DOI
[67]
Su, X. L., Jia, W. S., Ji, H. X., Zhu, Y. W. (2021). Mitigating self-discharge of activated carbon-based supercapacitors with hybrid liquid crystal as an electrolyte additive. J. Energy Storage 41, 102830.
DOI
[68]

Shi, M. W., Zhang, Z. L., Zhao, M., Lu, X. M., Wang, Z. L. (2021). Reducing the self-discharge rate of supercapacitors by suppressing electron transfer in the electric double layer. J. Electrochem. Soc. 168, 120548.

[69]
Wang, H. Y., Chen, J. Y., Fan, R. X., Wang, Y. (2018). A flexible dual solid-stateelectrolyte supercapacitor with suppressed self-discharge and enhanced stability. Sustainable Energy Fuels 2, 2727–2732.
DOI
[70]
Hor, A. A., Yadav, N., Hashmi, S. A. (2022). High energy density carbon supercapacitor with ionic liquid-based gel polymer electrolyte: role of redox-additive potassium iodide. J. Energy Storage 47, 103608.
DOI
[71]

Wang, Z. X., Chu, X., Xu, Z., Su, H., Yan, C., Liu, F. Y., Gu, B. N., Huang, H. C., Xiong, D., Zhang, H. P., et al. (2019). Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer. J. Mater. Chem. A. 7, 8633–8640.

[72]
Wang, B., Wang, C. H., Hu, Q., Zhang, L., Wang, Z. Y. (2020). Modeling the dynamic self-discharge effects of supercapacitors using a controlled current source based ladder equivalent circuit. J. Energy Storage 30, 101473.
DOI
[73]

Zhao, M., Shi, M. W., Zhou, H. H., Zhang, Z. L., Yang, W., Ma, Q., Lu, X. M. (2021). Self-discharge of supercapacitors based on carbon nanosheets with different pore structures. Electrochim. Acta. 390, 138783.

[74]

Zhang, W., Yang, W., Zhou, H. H., Zhang, Z. L., Zhao, M., Liu, Q., Yang, J., Lu, X. M. (2020). Self-discharge of supercapacitors based on carbon nanotubes with different diameters. Electrochim. Acta. 357, 136855.

[75]

Lee, J., Srimuk, P., Fleischmann, S., Ridder, A., Zeiger, M., Presser, V. (2017). Nanoconfinement of redox reactions enables rapid zinc iodide energy storage with high efficiency. J. Mater. Chem. A. 5, 12520–12527.

[76]

Zhao, Y., Taylor, E. E., Hu, X. D., Evanko, B., Zeng, X. J., Wang, H. B., Ohnishi, R., Tsukazaki, T., Li, J. F., Stadie, N. P., et al. (2021). What structural features make porous carbons work for redox-enhanced electrochemical capacitors? A fundamental investigation. ACS Energy Lett. 6, 854–861.

[77]

Schweizer, S., Landwehr, J., Etzold, B. J. M., Meißner, R. H., Amkreutz, M., Schiffels, P., Hill, J. R. (2019). Combined computational and experimental study on the influence of surface chemistry of carbon-based electrodes on electrode–electrolyte interactions in supercapacitors. J. Phys. Chem. C. 123, 2716–2727.

[78]

Ike, I. S., Sigalas, I., Iyuke, S. (2016). Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review. Phys. Chem. Chem. Phys. 18, 661–680.

[79]
Yan, L. J., Li, D., Yan, T. T., Chen, G. R., Shi, L. Y., An, Z. X., Zhang, D. S. (2018). Confining redox electrolytes in functionalized porous carbon with improved energy density for supercapacitors. ACS Appl. Mater. Interfaces 10, 42494–42502.
DOI
[80]

Shul, G., Bélanger, D. (2016). Self-discharge of electrochemical capacitors based on soluble or grafted quinone. Phys. Chem. Chem. Phys. 18, 19137–19145.

[81]

Cao, R. Y., Zhang, Y., Du, Y. N., Zeng, Y. Y., Yu, M. H., Zhai, T., Xia, H. (2021). Coupling electrode-redox electrolyte within carbon nanotube arrays for supercapacitors with suppressed self-discharge. Sustainable Mater. Technol. 28, e00284.

[82]

Mai, L. Q., Minhas-Khan, A., Tian, X. C., Hercule, K. M., Zhao, Y. L., Lin, X., Xu, X. (2013). Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat. Commun. 4, 2923.

[83]
Isikli, S., Lecea, M., Ribagorda, M., Carreño, M. C., Díaz, R. (2014). Influence of quinone grafting via friedel–crafts reaction on carbon porous structure and supercapacitor performance. Carbon 66, 654–661.
DOI
[84]

Sheng, L. Z., Jiang, L. L., Wei, T., Liu, Z., Fan, Z. J. (2017). Spatial charge storage within honeycomb-carbon frameworks for ultrafast supercapacitors with high energy and power densities. Adv. Energy Mater. 7, 1700668.

[85]
Tevi, T., Yaghoubi, H., Wang, J., Takshi, A. (2013). Application of poly (p-phenylene oxide) as blocking layer to reduce self-discharge in supercapacitors. J. Power Sources 241, 589–596.
DOI
[86]
Hamedi, S., Ghanbari, T., Moshksar, E., Hosseini, Z. (2021). Time-varying model of self-discharge in a double layer supercapacitor with blocking layer. J. Energy Storage 40, 102730.
DOI
[87]

Frackowiak, E., Fic, K., Meller, M., Lota, G. (2012). Electrochemistry serving people and nature: High-energy ecocapacitors based on redox-active electrolytes. ChemSusChem. 5, 1181–1185.

[88]

Lee, J., Krüner, B., Tolosa, A., Sathyamoorthi, S., Kim, D., Choudhury, S., Seo, K. H., Presser, V. (2016). Tin/vanadium redox electrolyte for battery-like energy storage capacity combined with supercapacitor-like power handling. Energy Environ. Sci. 9, 3392–3398.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 September 2023
Revised: 15 October 2023
Accepted: 16 October 2023
Published: 26 October 2023
Issue date: October 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgment

The financial support for this work was provided by National Natural Science Foundation of China (52072383, U21A2061, 22209197), Youth Innovation Promotion Association of the Chinese Academy of Sciences (20233432), Natural Science Foundation of Shanxi Province (202203021211002, 202203021222399), and Innovation Fund of Shanxi Institute of Coal Chemistry (SCJC-XCL-2022-08).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return