Journal Home > Volume 1 , Issue 1

Bulk nanoporous platinum (np-Pt) samples with a remarkably fine ligament size down to 2 nm and good mechanical robustness were fabricated for the first time by electrochemically dealloying Pt15Cu85 master alloy in 1 mol L−1 H2SO4 at 60 ℃. The as-prepared np-Pt shows an electrochemically active specific surface area as high as 25 m2/g due to the ultrafine nanostructure. The active surface area remains almost invariable even after 15% macroscopic compressive strain. Furthermore, np-Pt shows considerably high thermal stability due to the low surface diffusivity of Pt. Np-Pt is a promising surface- or interface-controlled functional material, particularly when excellent electrochemical and mechanical performance are necessary due to its high surface-to-volume ratio and mechanical robustness. This work demonstrated the potential application of np-Pt as an electrochemical actuation material. In-situ dilatometry experiments revealed that the surface adsorption–desorption of OH species on np-Pt causes significant strain variations. The proposed np-Pt electrochemical actuator shows an operating voltage down to 1.0 V, a large reversible strain amplitude of 0.37%, and a strain energy density of 1.64 MJ/m³.


menu
Abstract
Full text
Outline
About this article

Bulk nanoporous platinum for electrochemical actuation

Show Author's information Haonan Sun1Yizhou Huang1Shan Shi1,2( )
Research Group of Integrated Metallic Nanomaterials Systems, Hamburg University of Technology, Hamburg, Germany
Institute of Materials Mechanics, Helmholtz-Zentrum Hereon, Geesthacht, Germany

Abstract

Bulk nanoporous platinum (np-Pt) samples with a remarkably fine ligament size down to 2 nm and good mechanical robustness were fabricated for the first time by electrochemically dealloying Pt15Cu85 master alloy in 1 mol L−1 H2SO4 at 60 ℃. The as-prepared np-Pt shows an electrochemically active specific surface area as high as 25 m2/g due to the ultrafine nanostructure. The active surface area remains almost invariable even after 15% macroscopic compressive strain. Furthermore, np-Pt shows considerably high thermal stability due to the low surface diffusivity of Pt. Np-Pt is a promising surface- or interface-controlled functional material, particularly when excellent electrochemical and mechanical performance are necessary due to its high surface-to-volume ratio and mechanical robustness. This work demonstrated the potential application of np-Pt as an electrochemical actuation material. In-situ dilatometry experiments revealed that the surface adsorption–desorption of OH species on np-Pt causes significant strain variations. The proposed np-Pt electrochemical actuator shows an operating voltage down to 1.0 V, a large reversible strain amplitude of 0.37%, and a strain energy density of 1.64 MJ/m³.

Keywords: dealloying, actuators, nanoporous platinum, electrochemical active surface area

References(41)

[1]

Germain, J., Hradil, J., Fréchet, J. M. J., Svec, F. (2006). High surface area nanoporous polymers for reversible hydrogen storage. Chem. Mater. 18, 4430–4435.

[2]

Jiang, H. L., Liu, B., Lan, Y. Q., Kuratani, K., Akita, T., Shioyama, H., Zong, F. Q., Xu, Q. (2011). From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133, 11854–11857.

[3]

Rouya, E., Cattarin, S., Reed, M. L., Kelly, R. G., Zangari, G. (2012). Electrochemical characterization of the surface area of nanoporous gold films. J. Electrochem. Soc. 159, K97–K102.

[4]

Zhang, J. T., Li, C. M. (2012). Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem. Soc. Rev. 41, 7016–7031.

[5]

Bansal, V., Jani, H., Du Plessis, J., Coloe, P. J., Bhargava, S. K. (2008). Galvanic replacement reaction on metal films: a one‐step approach to create nanoporous surfaces for catalysis. Adv. Mater. 20, 717–723.

[6]
Lu, G. M., Zhao, X. S. (2004). Nanoporous Materials: Science and Engineering. London: Imperial College Press.
DOI
[7]

Yuan, H. C., Yost, V. E., Page, M. R., Stradins, P., Meier, D. L., Branz, H. M. (2009). Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules. Appl. Phys. Lett. 95, 123501.

[8]

Gan, L., Heggen, M., O’Malley, R., Theobald, B., Strasser, P. (2013). Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett. 13, 1131–1138.

[9]

Gan, L., Cui, C. H., Rudi, S., Strasser, P. (2014). Core–shell and nanoporous particle architectures and their effect on the activity and stability of Pt ORR electrocatalysts. Top. Catal. 57, 236–244.

[10]

Jin, H. J., Weissmüller, J. (2010). Bulk nanoporous metal for actuation. Adv. Eng. Mater. 12, 714–723.

[11]
Weissmüller, J., Viswanath, R. N., Kramer, D., Zimmer, P., Würschum, R., Gleiter, H. (2003). Charge-induced reversible strain in a metal. Science 300, 312–315.
DOI
[12]

King, T. G., Preston, M. E., Murphy, B. J. M., Cannell, D. S. (1990). Piezoelectric ceramic actuators: a review of machinery applications. Precis. Eng. 12, 131–136.

[13]

Newcomb, C. V., Flinn, I. (1982). Improving the linearity of piezoelectric ceramic actuators. Electron. Lett. 18, 442–444.

[14]

Lendlein, A., Gould, O. E. C. (2019). Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat. Rev. Mater. 4, 116–133.

[15]

Hu, L., Zhang, Q., Li, X., Serpe, M. J. (2019). Stimuli-responsive polymers for sensing and actuation. Mater. Horiz. 6, 1774–1793.

[16]

Sun, H. N., Wang, X. J., Sun, Q. Z., Zhang, X. X., Ma, Z., Guo, M. Y., Sun, B. W., Zhu, X. P., Liu, Q. D., Lou, X. J. (2020). Large energy storage density in BiFeO3-BaTiO3-AgNbO3 lead-free relaxor ceramics. J. Eur. Ceram. Soc. 40, 2929–2935.

[17]
Choi, S. B., Han, Y. M. (2016). Piezoelectric Actuators: Control Applications of Smart Materials. USA: CRC Press.
DOI
[18]
Pelrine, R., Kornbluh, R., Pei, Q. B., Joseph, J. (2000). High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839.
DOI
[19]

Haiss, W. (2001). Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 64, 591–648.

[20]
Shi, S., Li, Y., Ngo-Dinh, B. N., Markmann, J., Weissmüller, J. (2021). Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science 371, 1026–1033.
DOI
[21]

Weissmüller, J., Cahn, J. W. (1997). Mean stresses in microstructures due to interface stresses: a generalization of a capillary equation for solids. Acta Mater. 45, 1899–1906.

[22]

Viswanath, R. N., Kramer, D., Weissmüller, J. (2008). Adsorbate effects on the surface stress–charge response of platinum electrodes. Electrochim. Acta. 53, 2757–2767.

[23]

Shi, S., Markmann, J., Weissmüller, J. (2017). Actuation by hydrogen electrosorption in hierarchical nanoporous palladium. Philos. Mag. 97, 1571–1587.

[24]

Hakamada, M., Nakano, H., Furukawa, T., Takahashi, M., Mabuchi, M. (2010). Hydrogen storage properties of nanoporous palladium fabricated by dealloying. J. Phys. Chem. C. 114, 868–873.

[25]

Biener, J., Wittstock, A., Zepeda-Ruiz, L. A., Biener, M. M., Zielasek, V., Kramer, D., Viswanath, R. N., Weissmüller, J., Bäumer, M., Hamza, A. V. (2009). Surface-chemistry-driven actuation in nanoporous gold. Nat. Mater. 8, 47–51.

[26]

Jin, H. J., Parida, S., Kramer, D., Weissmüller, J. (2008). Sign-inverted surface stress-charge response in nanoporous gold. Surf. Sci. 602, 3588–3594.

[27]

Mathur, A., Erlebacher, J. (2007). Size dependence of effective Young’s modulus of nanoporous gold. Appl. Phys. Lett. 90, 061910.

[28]

Jin, H. J., Wang, X. L., Parida, S., Wang, K., Seo, M., Weissmüller, J. (2010). Nanoporous Au− Pt alloys as large strain electrochemical actuators. Nano Lett. 10, 187–194.

[29]
Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N., Sieradzki, K. (2001). Evolution of nanoporosity in dealloying. Nature 410, 450–453.
DOI
[30]
Mani, P., Srivastava, R., Strasser, P. (2011). Dealloyed binary PtM3 (M= Cu, Co, Ni) and ternary PtNi3M (M= Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: performance in polymer electrolyte membrane fuel cells. J. Power Sources 196, 666–673.
DOI
[31]

McCue, I., Benn, E., Gaskey, B., Erlebacher, J. (2016). Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46, 263–286.

[32]

Binninger, T., Fabbri, E., Kötz, R., Schmidt, T. J. (2014). Determination of the electrochemically active surface area of metal-oxide supported platinum catalyst. J. Electrochem. Soc. 161, H121–H128.

[33]

Watt-Smith, M. J., Friedrich, J. M., Rigby, S. P., Ralph, T. R., Walsh, F. C. (2008). Determination of the electrochemically active surface area of Pt/C PEM fuel cell electrodes using different adsorbates. J. Phys. D: Appl. Phys. 41, 174004.

[34]

Gasteiger, H. A., Kocha, S. S., Sompalli, B., Wagner, F. T. (2005). Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 56, 9–35.

[35]
Fujigaya, T., Okamoto, M., Nakashima, N. (2009). Design of an assembly of pyridine-containing polybenzimidazole, carbon nanotubes and Pt nanoparticles for a fuel cell electrocatalyst with a high electrochemically active surface area. Carbon 47, 3227–3232.
DOI
[36]

Seo, M., Makino, T., Sato, N. (1986). Piezoelectric response to surface stress change of platinum electrode. J. Electrochem. Soc. 133, 1138–1142.

[37]

Jia, Y. Y., Su, J. Y., Chen, Z. B., Tan, K., Chen, Q. L., Cao, Z. M., Jiang, Y. Q., Xie, Z. X., Zheng, L. S. (2015). Composition-tunable synthesis of Pt–Cu octahedral alloy nanocrystals from PtCu to PtCu3 via underpotential-deposition-like process and their electro-catalytic properties. RSC Adv. 5, 18153–18158.

[38]
Uchino, K. (1996). Piezoelectric Actuators and Ultrasonic Motors. New York: Springer.
DOI
[39]

Gibson, L. J. (2003). Cellular solids. MRS Bull. 28, 270–274.

[40]
Lüth, H. (1995). Surfaces and Interfaces of Solid Materials. 3rd ed. Berlin: Springer.
DOI
[41]

Madden, J. D. W., Vandesteeg, N. A., Anquetil, P. A., Madden, P. G. A., Takshi, A., Pytel, R. Z., Lafontaine, S. R., Wieringa, P. A., Hunter, I. W. (2004). Artificial muscle technology: physical principles and naval prospects. IEEE J. Oceanic Eng. 29, 706–728.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 August 2023
Revised: 25 September 2023
Accepted: 26 September 2023
Published: 17 October 2023
Issue date: October 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

We thank Prof. Jiuhui Han from Tianjin University of Technology for his assistance with TEM measurements.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return