AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Developing artificial solid-state interphase for Li metal electrodes: recent advances and perspective

Yanyan WangMingnan LiFuhua YangJianfeng MaoZaiping Guo( )
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
Show Author Information

Graphical Abstract

Abstract

The failure of Li metal anodes can be attributed to their unstable electrode/electrolyte interface, especially the continuous formation of solid electrolyte interphase (SEI) and dendrite growth. To address this challenge, scholars proposed the construction of artificial SEI (ASEI) as a promising strategy. The ASEI mainly homogenizes the distribution of Li+, mitigates dendrite growth, facilitates Li+ diffusion, and protects the Li metal anode from electrolyte erosion. This review comprehensively summarizes the recent progress in the construction of ASEI layers in terms of their chemical composition. Fundamental understanding of the mechanisms, design principles, and functions of the main components are analyzed. We also propose future research directions to facilitate the in-depth study of ASEI and its practical applications in Li metal batteries. This review offers perspectives that will greatly contribute to the design of practical Li metal electrodes.

References

[1]

Liu, Y. Y., Zhu, Y. Y., Cui, Y. (2019). Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550.

[2]

Albertus, P., Babinec, S., Litzelman, S., Newman, A. (2018). Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21.

[3]

Zhang, Y., Zuo, T. T., Popovic, J., Lim, K., Yin, Y. X., Maier, J., Guo, Y. G. (2020). Towards better Li metal anodes: challenges and strategies. Mater. Today 33, 56–74.

[4]

Wang, Z. J., Wang, Y. Y., Wu, C., Pang, W. K., Mao, J. F., Guo, Z. P. (2021). Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes. Chem. Sci 12, 8945–8966.

[5]

Liu, B., Zhang, J. G., Xu, W. (2018). Advancing lithium metal batteries. Joule 2, 833–845.

[6]

Zhang, W. C., Zhang, F. L., Liu, S. L., Pang, W. K., Lin, Z., Guo, Z. P., Chai, L. Y. (2023). Regulating the reduction reaction pathways via manipulating the solvation shell and donor number of the solvent in Li-CO2 chemistry. Proc. Natl. Acad. Sci. USA 120, e2219692120.

[7]

Liu, W., Oh, P., Liu, X. E., Lee, M. J., Cho, W., Chae, S., Kim, Y., Cho, J. (2015). Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed 54, 4440–4457.

[8]

Liu, J., Bao, Z. N., Cui, Y., Dufek, E. J., Goodenough, J. B., Khalifah, P., Li, Q. Y., Liaw, B. Y., Liu, P., Manthiram, A., et al. (2019). Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186.

[9]

Wang, Z. J., Wang, Y. Y., Li, B. H., Bouwer, J. C., Davey, K., Lu, J., Guo, Z. P. (2022). Non-flammable ester electrolyte with boosted stability against Li for high-performance Li metal batteries. Angew. Chem. Int. Ed 61, e202206682.

[10]

Suo, L. M., Xue, W. J., Gobet, M., Greenbaum, S. G., Wang, C., Chen, Y. M., Yang, W. L., Li, Y. X., Li, J. (2018). Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. USA 115, 1156–1161.

[11]

Xu, W., Wang, J. L., Ding, F., Chen, X. L., Nasybulin, E., Zhang, Y. H., Zhang, J. G. (2014). Lithium metal anodes for rechargeable batteries. Energy Environ. Sci 7, 513–537.

[12]

Cheng, X. B., Zhang, R., Zhao, C. Z., Wei, F., Zhang, J. G., Zhang, Q. (2016). A review of solid electrolyte interphases on lithium metal anode. Adv. Sci 3, 1500213.

[13]

Cheng, X. B., Zhang, R., Zhao, C. Z., Zhang, Q. (2017). Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev 117, 10403–10473.

[14]

Fang, C. C., Li, J. X., Zhang, M. H., Zhang, Y. H., Yang, F., Lee, J. Z., Lee, M. H., Alvarado, J., Schroeder, M. A., Yang, Y. Y. C., et al. (2019). Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515.

[15]

Lin, D. C., Liu, Y. Y., Cui, Y. (2017). Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol 12, 194–206.

[16]

Adenusi, H., Chass, G. A., Passerini, S., Tian, K. V., Chen, G. H. (2023). Lithium batteries and the solid electrolyte interphase (SEI)—progress and outlook. Adv. Energy Mater 13, 2203307.

[17]

Qutaish, H., Han, S. A., Rehman, Y., Konstantinov, K., Park, M. S., Ho Kim, J. (2022). Porous carbon architectures with different dimensionalities for lithium metal storage. Sci. Technol. Adv. Mater 23, 169–188.

[18]

Peled, E., Menkin, S. (2017). Review—SEI: past, present and future. J. Electrochem. Soc 164, A1703–A1719.

[19]

Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev 104, 4303–4418.

[20]

Wang, L. N., Menakath, A., Han, F. D., Wang, Y., Zavalij, P. Y., Gaskell, K. J., Borodin, O., Iuga, D., Brown, S. P., Wang, C. S., et al. (2019). Identifying the components of the solid–electrolyte interphase in Li-ion batteries. Nat. Chem 11, 789–796.

[21]

Yu, X. W., Manthiram, A. (2018). Electrode–electrolyte interfaces in lithium-based batteries. Energy Environ. Sci 11, 527–543.

[22]

Park, S., Chaudhary, R., Han, S. A., Qutaish, H., Moon, J., Park, M. S., Kim, J. H. (2023). Ionic conductivity and mechanical properties of the solid electrolyte interphase in lithium metal batteries. Energy Mater 3, 300005.

[23]

Han, B., Zhang, Z., Zou, Y. C., Xu, K., Xu, G. Y., Wang, H., Meng, H., Deng, Y. H., Li, J., Gu, M. (2021). Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy. Adv. Mater 33, 2100404.

[24]

Andersson, A. M., Abraham, D. P., Haasch, R., MacLaren, S., Liu, J., Amine, K. (2002). Surface characterization of electrodes from high power lithium-ion batteries. J. Electrochem. Soc 149, A1358.

[25]

Zhang, X., Yang, Y. A., Zhou, Z. (2020). Towards practical lithium-metal anodes. Chem. Soc. Rev 49, 3040–3071.

[26]

Zheng, X. Y., Cao, Z., Luo, W., Weng, S. T., Zhang, X. L., Wang, D. H., Zhu, Z. L., Du, H. R., Wang, X. F., Qie, L. et al. (2023). Solvation and interfacial engineering enable −40℃ operation of graphite/NCM batteries at energy density over 270 Wh kg−1. Adv. Mater 35, 2210115.

[27]

Fan, X. L., Wang, C. S. (2021). High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev 50, 10486–10566.

[28]

Wang, Z. J., Chen, C. S., Wang, D. N., Zhu, Y., Zhang, B. (2023). Stabilizing interfaces in high-temperature NCM811-Li batteries via tuning terminal alkyl chains of ether solvents. Angew. Chem. Int. Ed 62, e202303950.

[29]

Huang, Y., Duan, J., Zheng, X. Y., Wen, J. Y., Dai, Y. M., Wang, Z. F., Luo, W., Huang, Y. H. (2020). Lithium metal-based composite: an emerging material for next-generation batteries. Matter 3, 1009–1030.

[30]

Lyu, T. Y., Luo, F. Q., Wang, D. C., Bu, L. Z., Tao, L., Zheng, Z. F. (2022). Carbon/lithium composite anode for advanced lithium metal batteries: design, progress, in situ characterization, and perspectives. Adv. Energy Mater 12, 2201493.

[31]

Chen, H., Yang, Y. F., Boyle, D. T., Jeong, Y. K., Xu, R., de Vasconcelos, L. S., Huang, Z. J., Wang, H. S., Wang, H. X., Huang, W. X., et al. (2021). Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nat. Energy 6, 790–798.

[32]

Zheng, Z. J., Ye, H., Guo, Z. P. (2020). Recent progress in designing stable composite lithium anodes with improved wettability. Adv. Sci 7, 2002212.

[33]

Meyerson, M. L., Papa, P. E., Heller, A., Mullins, C. B. (2021). Recent developments in dendrite-free lithium-metal deposition through tailoring of micro- and nanoscale artificial coatings. ACS Nano 15, 29–46.

[34]

Xu, R., Cheng, X. B., Yan, C., Zhang, X. Q., Xiao, Y., Zhao, C. Z., Huang, J. Q., Zhang, Q. (2019). Artificial interphases for highly stable lithium metal anode. Matter 1, 317–344.

[35]

Jiang, C., Ma, C., Yang, F., Cai, X. H., Liu, Y. J., Tao, X. Y. (2021). Materials chemistry among the artificial solid electrolyte interphases of metallic lithium anodes. Mater. Chem. Front 5, 5194–5210.

[36]

Gao, R. M., Yang, H., Wang, C. Y., Ye, H., Cao, F. F., Guo, Z. P. (2021). Fatigue-resistant interfacial layer for safe lithium metal batteries. Angew. Chem. Int. Ed 60, 25508–25513.

[37]

Lu, G. X., Nai, J. W., Luan, D. Y., Tao, X. Y., Lou, X. W. (2023). Surface engineering toward stable lithium metal anodes. Sci. Adv 9, eadf1550.

[38]

Kang, D. M., Xiao, M. Y., Lemmon, J. P. (2021). Artificial solid-electrolyte interphase for lithium metal batteries. Batteries Supercaps 4, 445–455.

[39]

Monroe, C., Newman, J. (2003). Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions. J. Electrochem. Soc 150, A1377–A1384.

[40]

Li, N. W., Yin, Y. X., Yang, C. P., Guo, Y. G. (2016). An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater 28, 1853–1858.

[41]

Kozen, A. C., Lin, C. F., Pearse, A. J., Schroeder, M. A., Han, X. G., Hu, L. B., Lee, S. B., Rubloff, G. W., Noked, M. (2015). Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892.

[42]

Cui, C., Zhang, R. P., Fu, C. K., Xiao, R., Li, R. L., Ma, Y. L., Wang, J. J., Gao, Y. Z., Yin, G. P., Zuo, P. J. (2022). Stable lithium anode enabled by biphasic hybrid SEI layer toward high-performance lithium metal batteries. Chem. Eng. J 433, 133570.

[43]

Liang, X., Pang, Q., Kochetkov, I. R., Sempere, M. S., Huang, H., Sun, X. Q., Nazar, L. F. (2017). A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2, 17119.

[44]

Chen, T., Meng, F. B., Zhang, Z. W., Liang, J. C., Hu, Y., Kong, W. H., Zhang, X. L., Jin, Z. (2020). Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film. Nano Energy 76, 105068.

[45]

Park, K., Goodenough, J. B. (2017). Dendrite-suppressed lithium plating from a liquid electrolyte via wetting of Li3N. Adv. Energy Mater 7, 1700732.

[46]

Wu, N., Li, Y. T., Dolocan, A., Li, W., Xu, H. H., Xu, B. Y., Grundish, N. S., Cui, Z. M., Jin, H. B., Goodenough, J. B. (2020). In situ formation of Li3P layer enables fast Li+ conduction across li/solid polymer electrolyte interface. Adv. Funct. Mater 30, 2000831.

[47]

Di, J., Yang, J. L., Tian, H., Ren, P. F., Deng, Y. R., Tang, W. H., Yan, W. Q., Liu, R. P., Ma, J. M. (2022). Dendrites-free lithium metal anode enabled by synergistic surface structural engineering. Adv. Funct. Mater 32, 2200474.

[48]

Ma, Y., Wei, L., Gu, Y. T., Zhao, L., Jing, Y. X., Mu, Q. Q., Su, Y. H., Yuan, X. Z., Peng, Y., Deng, Z. (2021). Insulative ion-conducting lithium selenide as the artificial solid–electrolyte interface enabling heavy-duty lithium metal operations. Nano Lett 21, 7354–7362.

[49]

Li, Y. B., Sun, Y. M., Pei, A., Chen, K. F., Vailionis, A., Li, Y. Z., Zheng, G. Y., Sun, J., Cui, Y. (2018). Robust pinhole-free Li3N solid electrolyte grown from molten lithium. ACS Cent. Sci 4, 97–104.

[50]

Chen, H., Pei, A., Lin, D. C., Xie, J., Yang, A. K., Xu, J. W., Lin, K. X., Wang, J. Y., Wang, H. S., Shi, F. F., et al. (2019). Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv. Energy Mater 9, 1900858.

[51]

Fan, X. L., Chen, L., Borodin, O., Ji, X., Chen, J., Hou, S., Deng, T., Zheng, J., Yang, C. Y., Liou, S. C., et al. (2018). Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol 13, 715–722.

[52]

Lu, Y. Y., Tu, Z. Y., Archer, L. A. (2014). Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater 13, 961–969.

[53]

Liu, P., Su, H., Liu, Y., Zhong, Y., Xian, C. X., Zhang, Y. Q., Wang, X. L., Xia, X. H., Tu, J. P. (2022). LiBr–LiF-rich solid–electrolyte interface layer on lithiophilic 3D framework for enhanced lithium metal anode. Small Structures 3, 2200010.

[54]

Ma, Y., Wu, F., Chen, N., Yang, T., Liang, Y., Sun, Z., Luo, G., Du, J., Shang, Y., Feng, M., et al. (2022). A dual functional artificial SEI layer based on a facile surface chemistry for stable lithium metal anode. Molecules 27, 5199.

[55]

Chen, C., Liang, Q. W., Wang, G., Liu, D. D., Xiong, X. H. (2022). Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv. Funct. Mater 32, 2107249.

[56]

Yang, Z., Liu, W., Chen, Q., Wang, X., Zhang, W., Zhang, Q., Zuo, J., Yao, Y., Gu, X., Si, K., et al. (2023). Ultrasmooth and dense lithium deposition toward high-performance lithium-metal batteries. Adv. Mater 35, 2210130.

[57]

Ding, D., Zhang, B., Wang, L., Dou, J. M., Zhai, Y. J., Xu, L. Q. (2022). Flexible Mg3N2 layer regulates lithium plating-striping for stable and high capacity lithium metal anodes. Nano Res 15, 8128–8135.

[58]

Zhang, Y., Liu, Y., Tan, L. G., Zhou, J. J., Ding, F., Wang, S. Y., Li, M. H., Li, H., Yi, C. Y. (2022). Collaborative assembly of a fluorine-enriched heterostructured solid electrolyte interphase for ultralong-life lithium metal batteries. ACS Appl. Mater. Interfaces 14, 43917–43925.

[59]

Liu, H. J., Yang, C. Y., Han, M. C., Yu, C. Y., Li, X. F., Yu, Z. Z., Qu, J. (2023). In-situ constructing a heterogeneous layer on lithium metal anodes for dendrite-free lithium deposition and high Li-ion flux. Angew. Chem. Int. Ed 62, e202217458.

[60]

Ha, S., Kim, D., Lim, H. K., Koo, C. M., Kim, S. J., Yun, Y. S. (2021). Lithiophilic MXene-guided lithium metal nucleation and growth behavior. Adv. Funct. Mater 31, 2101261.

[61]

Yao, W., He, S. J., Xue, Y. C., Zhang, Q. F., Wang, J. S., He, M., Xu, J. G., Chen, C., Xiao, X. (2021). V2CTx MXene artificial solid electrolyte interphases toward dendrite-free lithium metal anodes. ACS Sustain. Chem. Eng 9, 9961–9969.

[62]

Wang, S. Z., Chen, J. H., Lu, H. C., Zhang, Y., Yang, J., Nuli, Y. N., Wang, J. L. (2021). Artificial alloy/Li3N double-layer enabling stable high-capacity lithium metal anodes. ACS Appl. Energy Mater 4, 13132–13139.

[63]

Du, P. Y., Nan, Y., Zhao, H. T., Guo, D. L., Li, B., Wu, S. J. (2021). Harnessing stiffness and anticorrosion of chromium in an artificial SEI to achieve a longevous lithium-metal anode. ACS Appl. Energy Mater 4, 5043–5049.

[64]

Cao, S. L., He, X., Nie, L. L., Hu, J. W., Chen, M. L., Han, Y., Wang, K. L., Jiang, K., Zhou, M. (2022). CF4 plasma-generated LiF-Li2C2 artificial layers for dendrite-free lithium-metal anodes. Adv. Sci 9, 2201147.

[65]

Yang, J., Hou, J. M., Fang, Z. X., Kashif, K., Chen, C., Li, X. R., Zhou, H. P., Zhang, S., Feng, T. T., Xu, Z. Q., et al. (2022). Simultaneously in-situ fabrication of lithium fluoride and sulfide enriched artificial solid electrolyte interface facilitates high stable lithium metal anode. Chem. Eng. J 433, 133193.

[66]

Lee, D., Sun, S., Park, H., Kim, J., Park, K., Hwang, I., Jung, Y., Song, T., Paik, U. (2021). Stable artificial solid electrolyte interphase with lithium selenide and lithium chloride for dendrite-free lithium metal anodes. J. Power Sources 506, 230158.

[67]

Cheng, Z. Z., Chen, Y., Shi, L., Wu, M. F., Wen, Z. Y. (2023). Long-lifespan lithium metal batteries enabled by a hybrid artificial solid electrolyte interface layer. ACS Appl. Mater. Interfaces 15, 10585–10592.

[68]

Hu, A. J., Chen, W., Du, X. C., Hu, Y., Lei, T. Y., Wang, H. B., Xue, L. X., Li, Y. Y., Sun, H., Yan, Y. C., et al. (2021). An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci 14, 4115–4124.

[69]

Liu, H. W., Zhang, J. F., Liu, Y., Wei, Y., Ren, S. Y., Pan, L. D., Su, Y., Xiao, J. H., Fan, H. Y., Lin, Y. T., et al. (2022). A flexible artificial solid-electrolyte interlayer supported by compactness-tailored carbon nanotube network for dendrite-free lithium metal anode. J. Energy Chem 69, 421–427.

[70]

Zhao, F. F., Zhai, P. B., Wei, Y., Yang, Z. L., Chen, Q., Zuo, J. H., Gu, X. K., Gong, Y. J. (2022). Constructing artificial SEI layer on lithiophilic MXene surface for high-performance lithium metal anodes. Adv. Sci 9, 2103930.

[71]

Zhai, P. B., Wang, T. S., Jiang, H. N., Wan, J. Y., Wei, Y., Wang, L., Liu, W., Chen, Q., Yang, W. W., Cui, Y., et al. (2021). 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator–metal–insulator layered heterostructures. Adv. Mater 33, 2006247.

[72]

Wang, Z. J., Wang, Y. Y., Zhang, Z. H., Chen, X. W., Lie, W., He, Y. B., Zhou, Z., Xia, G. L., Guo, Z. P. (2020). Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes. Adv. Funct. Mater 30, 2002414.

[73]

Zhong, Y., Huang, P., Yan, W., Su, Z., Sun, C., Xing, Y. M., Lai, C. (2022). Ion-conductive polytitanosiloxane networks enable a robust solid-electrolyte interface for long-cycling lithium metal anodes. Adv. Funct. Mater 32, 2110347.

[74]

Beichel, W., Skrotzki, J., Klose, P., Njel, C., Butschke, B., Burger, S., Liu, L. L., Thomann, R., Thomann, Y., Biro, D., et al. (2022). An artificial SEI layer based on an inorganic coordination polymer with self-healing ability for long-lived rechargeable lithium-metal batteries. Batteries Supercaps 5, e202100347.

[75]

Wang, Y. Y., Wang, Z. J., Zhao, L., Fan, Q. N., Zeng, X. H., Liu, S. L., Pang, W. K., He, Y. B., Guo, Z. P. (2021). Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv. Mater 33, 2008133.

[76]

Sun, Y. P., Zhao, Y., Wang, J. W., Liang, J. N., Wang, C. H., Sun, Q., Lin, X. T., Adair, K. R., Luo, J., Wang, D. W., et al. (2019). A novel organic “polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition. Adv. Mater 31, 1806541.

[77]

Li, X., Yuan, L. X., Liu, D. Z., Liao, M. Y., Chen, J., Yuan, K., Xiang, J. W., Li, Z., Huang, Y. H. (2021). Elevated lithium ion regulation by a “natural silk” modified separator for high-performance lithium metal anode. Adv. Funct. Mater 31, 2100537.

[78]

Yang, Q. L., Li, W. L., Dong, C., Ma, Y. Y., Yin, Y. X., Wu, Q. B., Xu, Z. T., Ma, W., Fan, C., Sun, K. N. (2020). PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries. J. Energy Chem 42, 83–90.

[79]

Zhang, C. H., Yang, Y. X., Sun, Y. J., Duan, L. L., Mei, Z. Y., An, Q., Jing, Q., Zhao, G. F., Guo, H. (2023). 2D sp2-carbon-linked covalent organic frameworks as artificial SEI film for dendrite-free lithium metal batteries. Sci. China Mater 66, 2591–2600.

[80]

Chen, T., Wu, H. P., Wan, J., Li, M. X., Zhang, Y. C., Sun, L., Liu, Y. C., Chen, L. L., Wen, R., Wang, C. (2021). Synthetic poly-dioxolane as universal solid electrolyte interphase for stable lithium metal anodes. J. Energy Chem 62, 172–178.

[81]

Yu, Q. P., Mai, W. C., Xue, W. J., Xu, G. Y., Liu, Q., Zeng, K., Liu, Y. M., Kang, F. Y., Li, B. H., Li, J. (2020). Sacrificial poly(propylene carbonate) membrane for dispersing nanoparticles and preparing artificial solid electrolyte interphase on Li metal anode. ACS Appl. Mater. Interfaces 12, 27087–27094.

[82]

Gao, Y., Zhao, Y. M., Li, Y. C., Huang, Q. Q., Mallouk, T. E., Wang, D. H. (2017). Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J. Am. Chem. Soc 139, 15288–15291.

[83]

Cui, X. M., Chu, Y., Wang, X. H., Zhang, X. Z., Li, Y. X., Pan, Q. M. (2021). Stabilizing lithium metal anodes by a self-healable and Li-regulating interlayer. ACS Appl. Mater. Interfaces 13, 44983–44990.

[84]

Wang, D. D., Liu, H. X., Liu, F., Ma, G. R., Yang, J., Gu, X. D., Zhou, M., Chen, Z. (2021). Phase-separation-induced porous lithiophilic polymer coating for high-efficiency lithium metal batteries. Nano Lett 21, 4757–4764.

[85]

Jin, T., Liu, M., Su, K., Lu, Y., Cheng, G., Liu, Y., Li, N. W., Yu, L. (2021). Polymer zwitterion-based artificial interphase layers for stable lithium metal anodes. ACS Appl. Mater. Interfaces 13, 57489–57496.

[86]

Song, G., Hwang, C., Song, W. J., Lee, J. H., Lee, S., Han, D. Y., Kim, J., Park, H., Song, H. K., Park, S. (2022). Breathable artificial interphase for dendrite-free and chemo-resistive lithium metal anode. Small 18, 2105724.

[87]

Li, S. M., Huang, J. L., Cui, Y., Liu, S. H., Chen, Z. R., Huang, W., Li, C. F., Liu, R. L., Fu, R. W., Wu, D. C. (2022). A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol 17, 613–621.

[88]

Chen, C., Zhang, J. M., Hu, B. R., Liang, Q. W., Xiong, X. H. (2023). Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode. Nat. Commun 14, 4018.

[89]

Hu, P., Chen, W., Wang, Y., Chen, T., Qian, X. H., Li, W. Q., Chen, J. Y., Fu, J. J. (2023). Fatigue-free and skin-like supramolecular ion-conductive elastomeric interphases for stable lithium metal batteries. ACS Nano 17, 16239–16251.

[90]

Jiang, Z. P., Jin, L., Han, Z. L., Hu, W., Zeng, Z. Q., Sun, Y. L., Xie, J. (2019). Facile generation of polymer–alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability. Angew. Chem. Int. Ed 58, 11374–11378.

[91]

Hu, Y. F., Li, Z. C., Wang, Z. P., Wang, X. L., Chen, W., Wang, J. C., Zhong, W. W., Ma, R. G. (2023). Suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode. Adv. Sci 10, 2206995.

[92]

Ma, W. C., Shi, Y. R., Jiang, J. L., Xu, Y., Liu, X. Y., Shen, C., Jiang, Y., Zhao, B., Zhang, J. J. (2022). Regulated lithium deposition behavior by chlorinated hybrid solid-electrolyte-interphase for stable lithium metal anode. Chem. Eng. J 442, 136297.

[93]

Guan, M. R., Huang, Y. X., Meng, Q. Q., Zhang, B. T., Chen, N., Li, L., Wu, F., Chen, R. J. (2022). Stabilization of lithium metal interfaces by constructing composite artificial solid electrolyte interface with mesoporous TiO2 and perfluoropolymers. Small 18, 2202981.

[94]

Sun, X. R., Yang, S. H., Zhang, T., Shi, Y. B., Dong, L., Ai, G., Li, D. J., Mao, W. F. (2022). Regulating Li-ion flux with a high-dielectric hybrid artificial SEI for stable Li metal anodes. Nanoscale 14, 5033–5043.

[95]

Dong, C., Lin, Z. K., Yin, Y. X., Qiao, Y. X., Wang, W., Wu, Q. B., Yang, C. X., Rooney, D., Fan, C., Sun, K. N. (2021). A robust interface enabled by electrospun membrane with optimal resistance in lithium metal batteries. J. Energy Chem 55, 1–9.

[96]

Chen, A. L., Qian, Y. S., Zheng, S. J., Chen, Y. Y., Ouyang, Y., Mo, L. L., Xu, Z. L., Miao, Y. E., Liu, T. X. (2023). In-situ constructed polymer/alloy composite with high ionic conductivity as an artificial solid electrolyte interphase to stabilize lithium metal anode. Nano Res 16, 3888–3894.

[97]

Wu, C., Guo, F. H., Zhuang, L., Ai, X. P., Zhong, F. P., Yang, H. X., Qian, J. F. (2020). Mesoporous silica reinforced hybrid polymer artificial layer for high-energy and long-cycling lithium metal batteries. ACS Energy Lett 5, 1644–1652.

[98]

Ye, S. F., Wang, L. F., Liu, F. F., Shi, P. C., Wang, H. Y., Wu, X. J., Yu, Y. (2020). g-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode. Adv. Energy Mater 10, 2002647.

[99]

Wei, L., Jin, Z. Q., Lu, J. H., Guo, Y., Wang, Z. L., Cao, G. P., Qiu, J. Y., Wang, A. B., Wang, W. K. (2023). In-situ construction of hybrid artificial SEI with fluorinated siloxane to enable dendrite-free Li metal anodes. J. Materiomics 9, 318–327.

[100]

Zhao, F., Deng, W., Dong, D. J., Zhou, X. F., Liu, Z. P. (2022). Seamlessly integrated alloy-polymer interphase for high-rate and long-life lithium metal anodes. Mater. Today Energy 26, 100988.

[101]

Cai, Q. C., Qin, X. Y., Lin, K., Yang, Z. J., Hu, X., Li, T., Kang, F. Y., Li, B. H. (2021). Gradient structure design of a floatable host for preferential lithium deposition. Nano Lett 21, 10252–10259.

[102]

Li, S., Wang, X. S., Li, Q. D., Liu, Q., Shi, P. R., Yu, J., Lv, W., Kang, F. Y., He, Y. B., Yang, Q. H. (2021). A multifunctional artificial protective layer for producing an ultra-stable lithium metal anode in a commercial carbonate electrolyte. J. Mater. Chem. A 9, 7667–7674.

[103]

Zhang, K., Wu, F., Zhang, K., Weng, S. T., Wang, X. R., Gao, M. D., Sun, Y. H., Cao, D., Bai, Y., Xu, H. J., et al. (2021). Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode. Energy Storage Mater 41, 485–494.

[104]

Zeng, J. K., Liu, Q. T., Jia, D. Y., Liu, R. L., Liu, S. H., Zheng, B. N., Zhu, Y. L., Fu, R. W., Wu, D. C. (2021). A polymer brush-based robust and flexible single-ion conducting artificial SEI film for fast charging lithium metal batteries. Energy Storage Mater 41, 697–702.

[105]

Jiang, G. Y., Li, K. Y., Yu, F., Li, X. L., Mao, J. Y., Jiang, W. W., Sun, F. G., Dai, B., Li, Y. S. (2021). Robust artificial solid-electrolyte interfaces with biomimetic ionic channels for dendrite-free Li metal anodes. Adv. Energy Mater 11, 2003496.

[106]

Yu, Z. A., Seo, S., Song, J., Zhang, Z. W., Oyakhire, S. T., Wang, Y., Xu, R., Gong, H. X., Zhang, S., Zheng, Y., et al. (2022). A solution-processable high-modulus crystalline artificial solid electrolyte interphase for practical lithium metal batteries. Adv. Energy Mater 12, 2201025.

[107]

Ha, S., Yoon, H. J., Jung, J. I., Kim, H., Won, S., Kwak, J. H., Lim, H. D., Jin, H. J., Wie, J. J., Yun, Y. S. (2021). 3D-structured organic-inorganic hybrid solid-electrolyte-interface layers for Lithium metal anode. Energy Storage Mater 37, 567–575.

[108]

Shang, M. W., Shovon, O. G., Wong, F. E. Y., Niu, J. J. (2023). A BF3-doped mxene dual-layer interphase for a reliable lithium-metal anode. Adv. Mater 35, 2210111.

[109]

Cheng, Y. F., Wang, Z. J., Chen, J. B., Chen, Y. M., Ke, X., Wu, D. J., Zhang, Q., Zhu, Y. M., Yang, X. M., Gu, M., et al. (2023). Catalytic chemistry derived artificial solid electrolyte interphase for stable lithium metal anodes working at 20 mA cm−2 and 20 mAh cm−2. Angew. Chem. Int. Ed 62, e202305723.

Energy Materials and Devices
Article number: 9370005
Cite this article:
Wang Y, Li M, Yang F, et al. Developing artificial solid-state interphase for Li metal electrodes: recent advances and perspective. Energy Materials and Devices, 2023, 1(1): 9370005. https://doi.org/10.26599/EMD.2023.9370005

8945

Views

1872

Downloads

14

Crossref

Altmetrics

Received: 23 August 2023
Revised: 09 September 2023
Accepted: 10 September 2023
Published: 25 September 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return