Journal Home > Volume 1 , Issue 1

Composite solid-state electrolytes have received significant attention due to their combined advantages as inorganic and polymer electrolytes. However, conventional ceramic fillers offer limited ion conductivity enhancement for composite solid-state electrolytes due to the space-charge layer between the polymer matrix and ceramic phase. In this study, we develop a ferroelectric ceramic ion conductor (LiTaO3) as a functional filler to simultaneously alleviate the space-charge layer and provide an extra Li+ transport pathway. The obtained composite solid-state electrolyte comprising LiTaO3 filler and poly (vinylidene difluoride) matrix (P-LTO15) achieves an ionic conductivity of 4.90 × 10−4 S cm−1 and a Li+ transference number of 0.45. The polarized ferroelectric LiTaO3 creates a uniform electric field and promotes homogenous Li plating/stripping, providing the Li symmetrical batteries with an ultrastable cycle life for 4000 h at 0.1 mA cm−2 and a low polarization overpotential (~50 mV). Furthermore, the solid-state NCM811/P-LTO15/Li full batteries achieve an ultralong cycling performance (1400 cycles) at 1 C and a high discharge capacity of 102.1 mAh g−1 at 5 C. This work sheds light on the design of functional ceramic fillers for composite solid-state electrolytes to effectively enhance ion conductivity and battery performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Functional LiTaO3 filler with tandem conductivity and ferroelectricity for PVDF-based composite solid-state electrolyte

Show Author's information Yu Yuan1,2,Likun Chen1,2,Yuhang Li1,2Xufei An1,2Jianshuai Lv1,2Shaoke Guo1,2Xing Cheng1,2Yang Zhao1,2Ming Liu1( )Yan-Bing He1( )Feiyu Kang1,2
Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Yu Yuan and Likun Chen contributed equally to this work.

Abstract

Composite solid-state electrolytes have received significant attention due to their combined advantages as inorganic and polymer electrolytes. However, conventional ceramic fillers offer limited ion conductivity enhancement for composite solid-state electrolytes due to the space-charge layer between the polymer matrix and ceramic phase. In this study, we develop a ferroelectric ceramic ion conductor (LiTaO3) as a functional filler to simultaneously alleviate the space-charge layer and provide an extra Li+ transport pathway. The obtained composite solid-state electrolyte comprising LiTaO3 filler and poly (vinylidene difluoride) matrix (P-LTO15) achieves an ionic conductivity of 4.90 × 10−4 S cm−1 and a Li+ transference number of 0.45. The polarized ferroelectric LiTaO3 creates a uniform electric field and promotes homogenous Li plating/stripping, providing the Li symmetrical batteries with an ultrastable cycle life for 4000 h at 0.1 mA cm−2 and a low polarization overpotential (~50 mV). Furthermore, the solid-state NCM811/P-LTO15/Li full batteries achieve an ultralong cycling performance (1400 cycles) at 1 C and a high discharge capacity of 102.1 mAh g−1 at 5 C. This work sheds light on the design of functional ceramic fillers for composite solid-state electrolytes to effectively enhance ion conductivity and battery performance.

Keywords: ferroelectric ion conductor, composite solid-state electrolytes, space charge layer, Li deposition

References(40)

[1]
a) Zhao, Q., Stalin, S., Zhao, C. Z., Archer, L. A. (2020). Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252. b) Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S., Masquelier, C. (2019). Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291.
DOI
[2]

Tan, D. H. S., Banerjee, A., Chen, Z., Meng, Y. S. (2020). From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180.

[3]

Chen, Z., Kim, G. T., Kim, J. K., Zarrabeitia, M., Kuenzel, M., Liang, H. P., Geiger, D., Kaiser, U., Passerini, S. (2021). Highly stable quasi-solid-state lithium metal batteries: reinforced Li1.3Al0.3Ti1.7(PO4)3/Li interface by a protection interlayer. Adv. Energy. Mater. 11, 2101339.

[4]

Yu, C., Zhao, F. P., Luo, J., Zhang, L., Sun, X. L. (2021). Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: synthesis, structure, stability and dynamics. Nano Energy. 83, 105858.

[5]

Wan, H. L., Liu, S. F., Deng, T., Xu, J. J., Zhang, J. X., He, X. Z., Ji, X., Yao, X. Y., Wang, C. S. (2021). Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery. ACS Energy Lett. 6, 862–868.

[6]

Xu, L. Q., Li, J. Y., Deng, W. T., Shuai, H. L., Li, S., Xu, Z. F., Li, J. H., Hou, H. S., Peng, H. J., Zou, G. Q., et al. (2021). Garnet solid electrolyte for advanced all-solid-state Li batteries. Adv. Energy Mater. 11, 2000648.

[7]

Liu, H., Cheng, X. B., Huang, J. Q., Yuan, H., Lu, Y., Yan, C., Zhu, G. L., Xu, R., Zhao, C. Z., Hou, L. P., et al. (2020). Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett. 5, 833–843.

[8]

Nie, K. H., Wang, X. L., Qiu, J. L., Wang, Y., Yang, Q., Xu, J. J., Yu, X. Q., Li, H., Huang, X. J., Chen, L. Q. (2020). Increasing poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode. ACS Energy Lett. 5, 826–832.

[9]

Mi, J. S., Ma, J. B., Chen, L. K., Lai, C., Yang, K., Biao, J., Xia, H. Y., Song, X., Lv, W., Zhong, G. M., et al. (2022). Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Mater. 48, 375–383.

[10]

Zhou, D., He, Y. B., Liu, R. L., Liu, M., Du, H. D., Li, B. H., Cai, Q., Yang, Q. H., Kang, F. Y. (2015). In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries. Adv. Energy Mater. 5, 1500353.

[11]

Yang, K., Chen, L. K., Ma, J. B., Lai, C., Huang, Y. F., Mi, J. S., Biao, J., Zhang, D. F., Shi, P. R., Xia, H. Y., et al. (2021). Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Angew. Chem. Int. Ed. 60, 24668–24675.

[12]

Xin, S., You, Y., Wang, S. F., Gao, H. C., Yin, Y. X., Guo, Y. G. (2017). Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects. ACS Energy Lett. 2, 1385–1394.

[13]

Yu, Q. J., Jiang, K. C., Yu, C. L., Chen, X. J., Zhang, C. J., Yao, Y., Jiang, B., Long, H. J. (2021). Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. Chin. Chem. Lett. 32, 2659–2678.

[14]

Na, Y., Chen, Z., Xu, Z. K., An, Q., Zhang, X., Sun, X. H., Cai, S., Zheng, C. M. (2022). Novel fast lithium-ion conductor LiTa2PO8 enhances the performance of poly(ethylene oxide)-based polymer electrolytes in all-solid-state lithium metal batteries. Chin. Chem. Lett. 33, 4037–4042.

[15]

Liu, L., Zhang, D. C., Zhao, J. W., Shen, J. D., Li, F. K., Yang, Y., Liu, Z. B., He, W. X., Zhao, W. M., Liu, J. (2022). Synergistic effect of lithium salts with fillers and solvents in composite electrolytes for superior room-temperature solid-state lithium batteries. ACS Appl. Energy Mater. 5, 2484–2494.

[16]

Popovic, J., Hasegawa, G., Moudrakovski, I., Maier, J. (2016). Infiltrated porous oxide monoliths as high lithium transference number electrolytes. J. Mater. Chem. A. 4, 7135–7140.

[17]

Zhou, D., Liu, R. L., He, Y. B., Li, F. Y., Liu, M., Li, B. H., Yang, Q. H., Cai, Q., Kang, F. Y. (2016). SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Adv. Energy Mater. 6, 1502214.

[18]
a) Lin, Z. X., Sheng, O. W., Cai, X. H., Duan, D., Yue, K., Nai, J. W., Wang, Y., Liu, T. F., Tao, X. Y., Liu, Y. J. (2023). Solid polymer electrolytes in all-solid-state lithium metal batteries: from microstructures to properties. J. Energy Chem. 81, 358–378. b) Zheng, J. F., Elgin, J., Shao, J. R., Wu, Y. Y. (2022). Differentiating grain and grain boundary ionic conductivities of Li-ion antiperovskite electrolytes. eScience 2, 639–645.
DOI
[19]

Zou, Z. Y., Li, Y. J., Lu, Z. H., Wang, D., Cui, Y. H., Guo, B. K., Li, Y. J., Liang, X. M., Feng, J. W., Li, H., et al. (2020). Mobile ions in composite solids. Chem. Rev. 120, 4169–4221.

[20]

Wang, L. L., Xie, R. C., Chen, B. B., Yu, X. R., Ma, J., Li, C., Hu, Z. W., Sun, X. W., Xu, C. J., Dong, S. M., et al. (2020). In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 11, 5889.

[21]
a) Jiang, B. B., Iocozzia, J., Zhao, L., Zhang, H. F., Harn, Y. W., Chen, Y. H., Lin, Z. Q. (2019). Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev. 48, 1194–1228. b) Guo, Y. P., Wang, R. Y., Cui, C., Xiong, R. D., Wei, Y. Q., Zhai, T. Y., Li, H. Q. (2020). Shaping Li deposits from wild dendrites to regular crystals via the ferroelectric effect. Nano Lett. 20, 7680–7687.
DOI
[22]
a) Gu, T., Chen, L. K., Huang, Y. F., Ma, J. B., Shi, P. R., Biao, J., Liu, M., Lv, W., He, Y. B. (2022). Engineering ferroelectric interlayer between Li1.3Al0.3Ti1.7(PO4)3 and lithium metal for stable solid-state batteries operating at room temperature. Energy Environ. Mater. in press. https://doi.org/10.1002/eem2.12531. b) Shi, P. R., Ma, J. B., Liu, M., Guo, S. K., Huang, Y. F., Wang, S. W., Zhang, L. H., Chen, L. K., Yang, K., Liu, X. T., et al. (2023). A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18, 602–610. https://doi.org/10.1038/s41565-023-01341-2.
DOI
[23]

Dai, Z. S., Wang, J. H., Zhao, H. L., Bai, Y. (2022). Surface coupling between mechanical and electric fields empowering Ni-rich cathodes with superior cyclabilities for lithium-ion batteries. Adv. Sci. 9, 2200622.

[24]

Glass, A. M., Lines, M. E., Nassau, K., Shiever, J. W. (1977). Anomalous dielectric behavior and reversible pyroelectricity in roller-quenched LiNbO3 and LiTaO3 glass. Appl. Phys. Lett. 31, 249–251.

[25]

Xue, D. F., Zhang, S. Y. (1998). Bond-charge calculation of nonlinear optical susceptibilities of LiXO3 type complex crystals. Chem. Phys. 226, 307–318.

[26]

Wang, W. M., Yi, E. Y., Fici, A. J., Laine, R. M., Kieffer, J. (2017). Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. J. Phys. Chem. C. 121, 2563–2573.

[27]

Huo, H. Y., Chen, Y., Luo, J., Yang, X. F., Guo, X. X., Sun, X. L. (2019). Rational design of hierarchical "ceramic-in-polymer" and "polymer-in-ceramic" electrolytes for dendrite-free solid-state batteries. Adv. Energy Mater. 9, 1804004.

[28]

Zhang, Y., Wang, X. H., Feng, W., Zhen, Y. C., Zhao, P. Y., Li, L. T., Cai, Z. M. (2019). The effects of the size and content of BaTiO3 nanoparticles on solid polymer electrolytes for all-solid-state lithium-ion batteries. J. Solid State Electrochem. 23, 749–758.

[29]

Zhang, X., Liu, T., Zhang, S. F., Huang, X., Xu, B. Q., Lin, Y. H., Xu, B., Li, L. L., Nan, C. W., Shen, Y. (2017). Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785.

[30]

Chen, L. K., Gu, T., Ma, J. B., Yang, K., Shi, P. R., Biao, J., Mi, J. S., Liu, M., Lv, W., He, Y. B. (2022). In situ construction of Li3N-enriched interface enabling ultra-stable solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Nano Energy. 100, 107470.

[31]

Martins, P., Lopes, A. C., Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706.

[32]

Zhang, X., Han, J., Niu, X. F., Xin, C. Z., Xue, C. J., Wang, S., Shen, Y., Zhang, L., Li, L. L., Nan, C. W. (2020). High cycling stability for solid-state li metal batteries via regulating solvation effect in poly(vinylidene fluoride)-based electrolytes. Batteries Supercaps. 3, 876–883.

[33]

Quartarone, E., Mustarelli, P. (2011). Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525–2540.

[34]
a) Dong, G. H., Li, S. Z., Li, T., Wu, H. J., Nan, T. X., Wang, X. H., Liu, H. X., Cheng, Y. X., Zhou, Y. Q., Qu, W. B., et al. (2020). Periodic wrinkle-patterned single-crystalline ferroelectric oxide membranes with enhanced piezoelectricity. Adv. Mater. 32, 2004477. b) Feng, W. H., Yuan, J., Gao, F., Weng, B., Hu, W. T., Lei, Y. H., Huang, X. Y., Yang, L., Shen, J., Xu, D. F., et al. (2020). Piezopotential-driven simulated electrocatalytic nanosystem of ultrasmall MoC quantum dots encapsulated in ultrathin N-doped graphene vesicles for superhigh H2 production from pure water. Nano Energy 75, 104990. c) Zhang, H. Y., Chen, X. G., Tang, Y. Y., Liao, W. Q., Di, F. F., Mu, X., Peng, H., Xiong, R. G. (2021). PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics. Chem. Soc. Rev. 50, 8248–8278.
DOI
[35]

Liang, J. Y., Zeng, X. X., Zhang, X. D., Zuo, T. T., Yan, M., Yin, Y. X., Shi, J. L., Wu, X. W., Guo, Y. G., Wan, L. J. (2019). Engineering janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage li-metal batteries. J. Am. Chem. Soc. 141, 9165–9169.

[36]
a) Zhang, X., Wang, S., Xue, C. J., Xin, C. Z., Lin, Y. H., Shen, Y., Li, L. L., Nan, C. W. (2019). Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, 1806082. b) Chen, J. H., Zhang, Y., Lu, H. C., Ding, J., Wang, X. C., Huang, Y. D., Ma, H. Y., Wang, J. L. (2023). Electrolyte solvation chemistry to construct an anion-tuned interphase for stable high-temperature lithium metal batteries. eScience 3, 100135.
DOI
[37]

Xia, S. H., Zhao, Y., Yan, J. H., Yu, J. Y., Ding, B. (2021). Dynamic regulation of lithium dendrite growth with electromechanical coupling effect of soft BaTiO3 ceramic nanofiber films. ACS Nano. 15, 3161–3170.

[38]

Liu, Y. Y., Xu, X. Y., Kapitanova, O. O., Evdokimov, P. V., Song, Z. X., Matic, A., Xiong, S. Z. (2022). Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater. 12, 2103589.

[39]

Manjunatha, H., Venkatesha, T. V., Suresh, G. S. (2012). Electrochemical studies of LiMnPO4 as aqueous rechargeable lithium-ion battery electrode. J. Solid State Electrochem. 16, 1941–1952.

[40]

Xu, F. L., Deng, S. G., Guo, Q. Y., Zhou, D., Yao, X. Y. (2021). Quasi-ionic liquid enabling single-phase poly(vinylidene fluoride)-based polymer electrolytes for solid-state LiNi0.6Co0.2Mn0.2O2 || Li batteries with rigid-flexible coupling interphase. Small Methods. 5, 2100262.

File
EMD-2023-0004-supplement-final.pdf (7.2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 August 2023
Revised: 26 August 2023
Accepted: 31 August 2023
Published: 21 September 2023
Issue date: September 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52325206, U2001220 and 52203298), Key-Area Research and Development Program of Guangdong Province (No. 2020B090919001), Shenzhen. Shenzhen Outstanding Talents Training Fund. All-Solid-State Lithium Battery Electrolyte Engineering Research Center (XMHT20200203006), and Shenzhen Technical Plan Project (Nos. RCJC20200714114436091, YJ20220530143012027, JCYJ20220818101003007; JCYJ20220818101003008).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return