AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (592.3 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Endogenous technological change in IAMs: Takeaways in the E3METL model

Yixin SunHongbo Duan( )
School of Economics and Management, University of the Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Abstract

Due to the critical role of technical innovation in transitioning from fossil fuel energy to carbon-free alternatives, there is a widespread consensus among IAM teams regarding the necessity of modeling endogenous technical change (ETC). This paper systematically demonstrates current techniques and theoretical foundations for handling ETC in both demand-side and supply-side, using the E3METL model as an example. Modeling technological progress and innovation in IAMs is essential for understanding technology competition and evolution, leading to more reasonable and insightful results. However, IAMs still lack a systematic framework for the development of ETC, requiring sectoral innovation mechanisms to develop endogenous technology modules and support the economic and social changes of technological innovation. Meanwhile, emerging techniques such as the socio-technical approach, innovation diffusion, and agent-based interactions show promise for ETC when integrated with IAMs. Furthermore, it is important to recognize that ETC interacts more extensively with non-energy systems, such as land, biological systems, and human health, than commonly assumed. This underscores the need for assessments within a more realistic framework and redesigning in conjunction with international cooperation.

References

[1]

Duan, H. B., Zhu, L., Fan, Y. (2014). Optimal carbon taxes in carbon-constrained China: A logistic-induced energy economic hybrid model. Energy, 69: 345–356.

[2]

Hsu, C. C., Quang-Thanh, N., Chien, F., Li, L., Mohsin, M. (2021). Evaluating green innovation and performance of financial development: Mediating concerns of environmental regulation. Environmental Science and Pollution Research, 28: 57386–57397.

[3]
Popp, D., Newell, R. G., Jaffe, A. B. (2010). Energy, the environment, and technological change. In: Handbook of the Economics of Innovation, Volume 2. Amsterdam: Elsevier: 873–937.
[4]
Messner, S., Strubegger, M. (1995). User’s Guide for MESSAGE III.
[5]
Bosetti, V., Carraro, C., Galeotti, M., Massetti, E., Tavoni, M. (2006). WITCH—A world induced technical change hybrid model. SSRN Electronic Journal: 13–37.
[6]

Duan, H. B., Fan, Y., Zhu, L. (2013). What’s the most cost-effective policy of CO2 targeted reduction: An application of aggregated economic technological model with CCS. Applied Energy, 112: 866–875.

[7]

Duan, H., Zhang, G., Fan, Y., Wang, S. (2017). Role of endogenous energy efficiency improvement in global climate change mitigation. Energy Efficiency, 10: 459–473.

[8]
Emmerling, J., Reis, L. A., Bevione, M., Berger, L., Bosetti, V., Carrara, S., Marangoni, G., Sferra, F., Tavoni, M., Witajewski-Baltvilks, J., et al. (2016). The WITCH 2016 model—Documentation and implementation of the shared socioeconomic pathways. SSRN Electronic Journal: https://doi.org/10.2139/ssrn.2800970.
[9]

Nordhaus, W. D., Yang, Z. (1996). A regional dynamic general-equilibrium model of alternative climate-change strategies. The American Economic Review, 86: 741–765.

[10]

Popp, D. (2004). ENTICE: Endogenous technological change in the DICE model of global warming. Journal of Environmental Economics and Management, 48: 742–768.

[11]
Stehfest E., van Vuuren, D., Kram, T., Bouwman, L., Alkemade, R., Bakkenes, M., Bouwman, A., den Elzen, M., Janse, J., Lucas, P., et al. (2014). Integrated assessment of global environmental change with IMAGE 3.0: Model description and policy applications. Report. PBL Netherlands Environmental Assessment Agency.
[12]

Farmer, J. D., Hepburn, C., Mealy, P., Teytelboym, A. (2015). A third wave in the economics of climate change. Environmental and Resource Economics, 62: 329–357.

[13]
Mathias, J. D., Debeljak, M., Deffuant, G., Diemer, A., Dierickx, F., Donges, J. F., Gladkykh, G., Heitzig, J., Holtz, G., Obergassel, W., et al. (2020). Grounding social foundations for integrated assessment models of climate change. Earth’s Future: https://doi.org/10.1029/2020EF001573.
[14]
Hémous, D. (2012). Environmental policy and directed technical change in a global economy: Is there a case for carbon tariffs? Harvard University. http://cowles.econ.yale.edu/conferences/2012/sum12/ma_hemous.pdf.
[15]

Hémous, D., Olsen, M. (2021). Directed technical change in labor and environmental economics. Annual Review of Economics, 13: 571–597.

[16]

Acemoglu, D., Aghion, P., Bursztyn, L., Hemous, D. (2012). The environment and directed technical change. American Economic Review, 102: 131–166.

[17]

Mercure, J. F., Salas, P., Vercoulen, P., Semieniuk, G., Lam, A., Pollitt, H., Holden, P. B., Vakilifard, N, Chewpreecha, U., Edwards, N. R., et al. (2021). Reframing incentives for climate policy action. Nature Energy, 6: 1133–1143.

[18]

Edelenbosch, O. Y., McCollum, D. L., Pettifor, H., Wilson, C., van Vuuren, D. P. (2018). Interactions between social learning and technological learning in electric vehicle futures. Environmental Research Letters, 13: 124004.

[19]
Bazzana, D., Rizzati, M., Ciola, E., Turco, E. M., Vergalli, S. (2023). Warming the MATRIX: A climate assessment under uncertainty and heterogeneity. SSRN Electronic Journal: https://doi.org/10.2139/ssrn.4445332.
[20]

Odenweller, A. (2022). Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models. Technological Forecasting and Social Change, 178: 121568.

[21]
Koch, J., Leimbach, M., Marcolino, M. (2023). A structural transformation integrated assessment model of climate change.
[22]

Gillingham, K., Newell, R. G., Pizer, W. A. (2008). Modeling endogenous technological change for climate policy analysis. Energy Economics, 30: 2734–2753.

[23]
Skea, J., Shukla, P., Al Khourdajie, A., McCollum, D. (2021). Intergovernmental panel on climate change: Transparency and integrated assessment modeling. WIREs Climate Change, 12: https://doi.org/10.1002/wcc.727.
[24]
Acemoglu, D., Aghion, P., Barrage, L., Hemous, D. (2023). Climate change, directed innovation, and energy transition: The long-run consequences of the shale gas revolution. SSRN Electronic Journal: https://doi.org/10.2139/ssrn.4567661.
[25]

Nijsse, F. J. M. M., Mercure, J. F., Ameli, N., Larosa, F., Kothari, S., Rickman, J., Vercoulen, P., Pollitt, H. (2023). The momentum of the solar energy transition. Nature Communications, 14: 6542.

[26]

Waisman, H., Guivarch, C., Grazi, F., Hourcade, J. C. (2012). The Imaclim-R model: Infrastructures, technical inertia and the costs of low carbon futures under imperfect foresight. Climatic Change, 114: 101–120.

[27]

Arrow, K. J. (1962). The economic implications of learning by doing. The Review of Economic Studies, 29: 155–173.

[28]

Anderson, D., Bird, C. D. (1992). Carbon accumulations and technical progress—A simulation study of costs. Oxford Bulletin of Economics and Statistics, 54: 1–30.

[29]

Arnulf, G., Sabine, M. (1998). Technological change and the timing of mitigation measures. Energy Economics, 20: 495–512.

[30]

Acemoglu, D. (2002). Directed technical change. Review of Economic Studies, 69: 781–809.

[31]

Aghion, P., Howitt, P. (1992). A model of growth through creative destruction. Econometrica, 60: 323.

[32]

Romer, P. M. (1990). Endogenous technological change. Journal of Political Economy, 98: S71–S102.

[33]

Romer, P. M. (1986). Increasing returns and long-Run growth. Journal of Political Economy, 94: 1002–1037.

[34]

Romer, P. M. (1987). Growth based on increasing returns due to specialization. The American Economic Review, 77: 56–62.

[35]

Grossman, G. M., Helpman, E. (1991). Trade, knowledge spillovers, and growth. European Economic Review, 35: 517–526.

[36]

Grossman, G. M., Helpman, E. (1994). Endogenous innovation in the theory of growth. Journal of Economic Perspectives, 8: 23–44.

[37]

Acemoglu, D., Aghion, P., Hémous, D. (2014). The environment and directed technical change in a North–South model. Oxford Review of Economic Policy, 30: 513–530.

[38]

Van der Zwaan, B. C. C., Gerlagh, R., G, Klaassen, Schrattenholzer, L. (2002). Endogenous technological change in climate change modelling. Energy Economics, 24: 1–19.

[39]

Barker, T., Ekins, P., Foxon, T. (2007). The macro-economic rebound effect and the UK economy. Energy Policy, 35: 4935–4946.

[40]

Kennedy, C. (1964). Induced bias in innovation and the theory of distribution. The Economic Journal, 74: 541–547.

[41]

Kamien, M. I., Schwartz, N. L. (1968). Optimal “induced” technical change. Econometrica, 36: 1.

[42]

Buonanno, P., Carraro, C., Galeotti, M. (2003). Endogenous induced technical change and the costs of Kyoto. Resource and Energy Economics, 25: 11–34.

[43]

Grubb, M., Köhler, J., Anderson, D. (2002). Induced technical change in energy and environmental modeling: Analytic approaches and policy implications. Annual Review of Energy and the Environment, 27: 271–308.

[44]

Popp, D. C. (2001). The effect of new technology on energy consumption. Resource and Energy Economics, 23: 215–239.

[45]
Hordijk, L., Arnell, N., Gerten, D., van Ittersum, M., Klaassen, G., Riahi, K., Scharlemann, J., Janssen, P. (2014). International Review of IMAGE 3.0. 45. http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2015-international-review-of-image-3.0_01799.pdf.
[46]

Jacoby, H. D., Reilly, J. M., McFarland, J. R., Paltsev, S. (2006). Technology and technical change in the MIT EPPA model. Energy Economics, 28: 610–631.

[47]

Smulders, S., de Nooij, M. (2003). The impact of energy conservation on technology and economic growth. Resource and Energy Economics, 25: 59–79.

[48]
Creutzig, F., Agoston, P., Goldschmidt, J. C., Luderer, G., Nemet, G., Pietzcker, R. C. (2017). The underestimated potential of solar energy to mitigate climate change. Nature Energy, 2(9): 17140. https://doi.org/10.1038/nenergy.2017.140.
[49]

Savona, M., Ciarli, T. (2019). Structural changes and sustainability. A selected review of the empirical evidence. Ecological Economics, 159: 244–260.

[50]

Bauer, N., Baumstark, L., Leimbach, M. (2012). The REMIND-R model: The role of renewables in the low-carbon transformation—First-best vs. second-best worlds. Climatic Change, 114: 145–168.

[51]

Kypreos, S. (2005). Modeling experience curves in MERGE (model for evaluating regional and global effects). Energy, 30: 2721–2737.

[52]
De Vries, B., van Vuuren, D., den Elzen, M., Janssen, M. (2001). Targets IMage energy regional (TIMER) model. Technical Documentation. RIVM. http://rivm.openrepository.com/rivm/handle/10029/9512.
[53]
Manne, A. S., Richels, R. G. (1992). Buying greenhouse insurance: The economic costs of CO2 emission limits. https://api.semanticscholar.org/CorpusID:152554443.
[54]

Criqui, P., Mima, S., Menanteau, P., Kitous, A. (2015). Mitigation strategies and energy technology learning: An assessment with the POLES model. Technological Forecasting and Social Change, 90: 119–136.

[55]

Keppo, I., Butnar, I., Bauer, N., Caspani, M., Edelenbosch, O., Emmerling, J., Fragkos, P., Guivarch, C., Harmsen, M., Lefèvre, J., et al. (2021). Exploring the possibility space: Taking stock of the diverse capabilities and gaps in integrated assessment models. Environmental Research Letters, 16: 053006.

[56]

Geels, F. W., Kern, F., Fuchs, G., Hinderer, N., Kungl, G., Mylan, J., Neukirch, M., Wassermann, S. (2016). The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014). Research Policy, 45: 896–913.

[57]

Hirt, L. F., Schell, G., Sahakian, M., Trutnevyte, E. (2020). A review of linking models and socio-technical transitions theories for energy and climate solutions. Environmental Innovation and Societal Transitions, 35: 162–179.

[58]

Mercure, J. F., Lam, A., Billington, S., Pollitt, H. (2018). Integrated assessment modelling as a positive science: Private passenger road transport policies to meet a climate target well below 2 ℃. Climatic Change, 151: 109–129.

[59]

Duan, H. B., Zhu, L., Fan, Y. (2015). Modelling the evolutionary paths of multiple carbon-free energy technologies with policy incentives. Environmental Modeling & Assessment, 20: 55–69.

[60]
Mercure, J., Mercure, J., Pollitt, H., Bassi, A., Viñuales, J., Edwards, N. (2016). Modelling complex systems of heterogeneous agents to better design sustainability transitions policy. https://api.semanticscholar.org/CorpusID:1114137.
[61]

Popp, D. (2006). ENTICE-BR: The effects of backstop technology R&D on climate policy models. Energy Economics, 28: 188–222.

[62]

Duan, H. B., Zhu, L., Fan, Y. (2014). A cross-country study on the relationship between diffusion of wind and photovoltaic solar technology. Technological Forecasting and Social Change, 83: 156–169.

[63]
Bosetti, V., Eni, F., Mattei, E., et al. (2007). CIP—Climate impacts and policy division the WITCH model. Structure, 10.
[64]
Baumstark, L., Bauer, N., Benke, F., Bertram, C., Bi, S., Gong, C. C., Dietrich, J. P., Dirnaichner, A., Giannousakis, A., Hilaire, J., et al. (2021). REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits. Geoscientific Model Development, 14(10): 6571–6603. https://doi.org/10.5194/gmd-14-6571-2021.
[65]
Wing, I. S. (2004). Computable general equilibrium models and their use in economy-wide policy analysis. Working Paper, 33(SUPPL.): 17–20.
[66]
Van Regemorter, D., Perry, M., Capros, P., Ciscar J., Paroussos, L., Pycroft, J., Karkatsoulis, P., Abrell, J., Saveyn, B. GEM-E3 model documentation. JRC Scientific and Policy Reports (Vol. 26034). https://doi.org/10.2788/47872.
[67]
Loulou, R., Goldstein, G., Noble, K. Documentation for the MARKAL family of models. Energy Technology Systems Analysis Programme: 65–73.
[68]

Gerst, M. D., Wang, P., Roventini, A., Fagiolo, G., Dosi, G., Howarth, R. B., Borsuk, M. E. (2013). Agent-based modeling of climate policy: An introduction to the ENGAGE multi-level model framework. Environmental Modelling & Software, 44: 62–75.

[69]

Bauer, N., Hilaire, J., Brecha, R. J., Edmonds, J., Jiang, K., Kriegler, E., Rogner, H. H., Sferra, F. (2016). Assessing global fossil fuel availability in a scenario framework. Energy, 111: 580–592.

[70]

Leimbach, M., Baumstark, L. (2010). The impact of capital trade and technological spillovers on climate policies. Ecological Economics, 69: 2341–2355.

[71]

Leimbach, M., Bauer, N. (2022). Capital markets and the costs of climate policies. Environmental Economics and Policy Studies, 24: 397–420.

[72]

Dowlatabadi, H., Oravetz, M. A. (2006). US long-term energy intensity: Backcast and projection. Energy Policy, 34: 3245–3256.

[73]

Wang, R., Saunders, H., Moreno-Cruz, J., Caldeira, K. (2019). Induced energy-saving efficiency improvements amplify effectiveness of climate change mitigation. Joule, 3: 2103–2119.

[74]

Hassler, J., Krusell, P., Olovsson, C. (2021). Directed technical change as a response to natural resource scarcity. Journal of Political Economy, 129: 3039–3072.

[75]
Waldhoff, S., Anthoff, D., Rose, S., Tol, R. S. J. (2014). The marginal damage costs of different greenhouse gases: An application of FUND. Economics, 8: https://doi.org/10.5018/economics-ejournal.ja.2014-31.
[76]
Hübler, M., Baumstark, L., Leimbach, M., Edenhofer, O., Bauer, N. (2012). An integrated assessment model with endogenous growth. Discussion Paper No. 12-054. https://ftp.zew.de/pub/zew-docs/dp/dp12054.pdf.
[77]
Fujimori, S., Hasegawa, T., Masui, T. (2017). AIM/CGE V2.0: Basic feature of the model. In: Post-2020 Climate Action: Global and Asian Perspectives. Fujimori, S., Hasegawa, T., Masui, T. Eds. Springer Singapore: 305–328. https://doi.org/10.1007/978-981-10-3869-3_13.
[78]

Castrejon-Campos, O., Lu, A., Hui, F. K. P. (2022). Effects of learning curve models on onshore wind and solar PV cost developments in the USA. Renewable and Sustainable Energy Reviews, 160: 112278.

[79]

Klaassen, G., Miketa, A., Larsen, K., Sundqvist, T. (2005). The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom. Ecological Economics, 54: 227–240.

[80]

Zhang, S., Bauer, N., Yin, G., Xie, X. (2020). Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model. Technological Forecasting and Social Change, 151: 119765.

[81]

Duan, H. B., Zhang, G. P., Zhu, L., Fan, Y., Wang, S. Y. (2016). How will diffusion of PV solar contribute to China’s emissions-peaking and climate responses. Renewable and Sustainable Energy Reviews, 53: 1076–1085.

[82]
Donald, E. (2023). Spillovers and the direction of innovation: An application to the clean energy transition.
[83]
Liu, E., Ma, S. (2021). Innovation networks and R&D allocation. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3994285.
[84]

Leimbach, M., Edenhofer, O. (2007). Technological spillovers within multi-region models: Intertemporal optimization beyond the Negishi approach. Economic Modelling, 24: 272–294.

[85]

Aleluia Reis, L., Vrontisi, Z., Verdolini, E., Fragkiadakis, K., Tavoni, M. (2023). A research and development investment strategy to achieve the Paris climate agreement. Nature Communications, 14: 3581.

[86]

Achakulwisut, P., Erickson, P., Guivarch, C., Schaeffer, R., Brutschin, E., Pye, S. (2023). Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions. Nature Communications, 14: 5425.

[87]

Uidhir, T. M., Gallachóir, B. Ó., Curtis, J., Rogan, F. (2022). Achieving the unprecedented: Modelling diffusion pathways for ambitious climate policy targets. Energy and Climate Change, 3: 100073.

[88]

Duan, H., Zhang, G., Wang, S., Fan, Y. (2018). Peer interaction and learning: Cross-country diffusion of solar photovoltaic technology. Journal of Business Research, 89: 57–66.

[89]

Köhler, J., Geels, F. W., Kern, F., F., Markard, J., Onsongo, E., Wieczorek, A., Alkemade, F., Avelino, F., Bergek, A., Boons, F., et al. (2019). An agenda for sustainability transitions research: State of the art and future directions. Environmental Innovation and Societal Transitions, 31: 1–32.

[90]

Pindyck, R. S. (2017). The use and misuse of models for climate policy. Review of Environmental Economics and Policy, 11: 100–114.

[91]

Girod, B., van Vuuren, D. P., Deetman, S. (2012). Global travel within the 2 ℃ climate target. Energy Policy, 45: 152–166.

[92]

Pettifor, H., Wilson, C., McCollum, D., Edelenbosch, O. Y. (2017). Modelling social influence and cultural variation in global low-carbon vehicle transitions. Global Environmental Change, 47: 76–87.

[93]
Rogers, E. M., Singhal, A., Quinlan, M. M. (2019). Diffusion of innovations 1. In: An Integrated Approach to Communication Theory and Research. Routledge, 415–434.
[94]

Lamperti, F., Mandel, A., Napoletano, M., Sapio, A., Roventini, A., Balint, T., Khorenzhenko, I. (2019). Towards agent-based integrated assessment models: Examples, challenges, and future developments. Regional Environmental Change, 19: 747–762.

[95]

Safarzyńska, K., van den Bergh, J. C. J. M. (2022). ABM-IAM: Optimal climate policy under bounded rationality and multiple inequalities. Environmental Research Letters, 17: 094022.

[96]

Nogueira, L., Dalla Longa, F., Reis, L. A., Drouet, L., Vrontisi, Z., Fragkiadakis, K., Panos, E., van der Zwaan, B. (2023). A multi-model framework to assess the role of R&D towards a decarbonized energy system. Climatic Change, 176: 82.

[97]

Duan, H., Zhang, G., Wang, S., Fan, Y. (2019). Robust climate change research: a review on multi-model analysis. Environmental Research Letters, 14(3): 033001.

[98]

Duan, H., Zhou, S., Jiang, K., Bertram, C., Harmsen, M., Kriegler, E., van Vuuren, D. P., Wang, S., Fujimori, S., Tavoni, M., et al. (2021). Assessing China’s efforts to pursue the 1.5 ℃ warming limit. Science, 372: 378–385.

[99]

Cointe, B. (2024). The AR6 scenario explorer and the history of IPCC scenarios databases: Evolutions and challenges for transparency, pluralism and policy-relevance. NPJ Climate Action, 3: 3.

[100]

Dekker, M. M., Daioglou, V., Pietzcker, R., Rodrigues, R., de Boer, H. S., Dalla Longa, F., Drouet, L., Emmerling, J., Fattahi, A., Fotiou, T., et al. (2023). Identifying energy model fingerprints in mitigation scenarios. Nature Energy, 8: 1395–1404.

[101]

Luderer, G., Pehl, M., Arvesen, A., Gibon, T., Bodirsky, B. L., de Boer, H. S., Fricko, O., Hejazi, M., Humpenöder, F., Iyer, G., et al. (2019). Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nature Communications, 10: 5229.

[102]

Bauer, N., Rose, S. K., Fujimori, S., van Vuuren, D. P., Weyant, J., Wise, M., Cui, Y., Daioglou, V., Gidden, M. J., Kato, E., et al. (2020). Global energy sector emission reductions and bioenergy use: Overview of the bioenergy demand phase of the EMF-33 model comparison. Climatic Change, 163: 1553–1568.

[103]

Soergel, B., Kriegler, E., Weindl, I., Rauner, S., Dirnaichner, A., Ruhe, C., Hofmann, M., Bauer, N., Bertram, C., Bodirsky, B. L, et al. (2021). A sustainable development pathway for climate action within the UN 2030 Agenda. Nature Climate Change, 11: 656–664.

[104]

Kozicka, M., Havlík, P., Valin, H., Wollenberg, E., Deppermann, A., Leclère, D., Lauri, P., Moses, R., Boere, E., Frank, S, et al. (2023). Feeding climate and biodiversity goals with novel plant-based meat and milk alternatives. Nature Communications, 14: 5316.

Energy and Climate Management
Article number: 9400003
Cite this article:
Sun Y, Duan H. Endogenous technological change in IAMs: Takeaways in the E3METL model. Energy and Climate Management, 2025, 1(1): 9400003. https://doi.org/10.26599/ECM.2024.9400003

1126

Views

287

Downloads

0

Crossref

Altmetrics

Received: 15 December 2023
Revised: 27 February 2024
Accepted: 20 March 2024
Published: 12 June 2024
© The author(s) 2025.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return