AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (12.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Short Communication | Open Access

IIDM: Image-to-image diffusion model for semantic image synthesis

School of Artificial Intelligence, Sun Yat-sen University, Zhuhai 519082, China
Key Laboratory of Intelligent Assessment Technology for Sustainable Tourism, Ministry of Culture and Tourism, Sun Yat-sen University, Zhuhai, China
Show Author Information

Graphical Abstract

References

[1]

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Communications of the ACM Vol. 63, No. 11, 139–144, 2020.

[2]
Park, T.; Liu, M. Y.; Wang, T. C.; Zhu, J. Y. Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2337–2346, 2019.
[3]

Tan, Z.; Chen, D.; Chu, Q.; Chai, M.; Liao, J.; He, M.; Yuan, L.; Hua, G.; Yu, N. Efficient semantic image synthesis via class-adaptive normalization. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 44, No. 9, 4852–4866, 2022.

[4]
Zhu, P.; Abdal, R.; Qin, Y.; Wonka, P. SEAN: Image synthesis with semantic region-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5104–5113, 2020.
[5]
Wang, Y.; Qi, L.; Chen, Y. C.; Zhang, X.; Jia, J. Image synthesis via semantic composition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 13729–13738, 2021.
[6]
Dhariwal, P.; Nichol, A. Diffusion models beat GANs on image synthesis. arXiv preprint arXiv: 2105.05233, 2021.
[7]
Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. arXiv preprint arXiv: 2006.11239, 2020.
[8]

Hu, S. M.; Liang, D.; Yang, G. Y.; Yang, G. W.; Zhou, W. Y. Jittor: A novel deep learning framework with meta-operators and unified graph execution. Science China Information Sciences Vol. 63, No. 12, Article No. 222103, 2020.

[9]

Zhou, W. Y.; Yang, G. W.; Hu, S. M. Jittor-GAN: A fast-training generative adversarial network model zoo based on Jittor. Computational Visual Media Vol. 7, No. 1, 153–157, 2021.

[10]
Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10684–10695, 2022.
[11]

Reinhard, E.; Adhikhmin, M.; Gooch, B.; Shirley, P. Color transfer between images. IEEE Computer Graphics and Applications Vol. 21, No. 5, 34–41, 2001.

[12]
Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J. M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. arXiv preprint arXiv: 2105.15203, 2021.
[13]

Talebi, H.; Milanfar, P. NIMA: Neural image assessment. IEEE Transactions on Image Processing Vol. 27, No. 8, 3998–4011, 2018.

[14]
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. arXiv preprint arXiv: 1706.08500, 2017.
Computational Visual Media
Pages 423-429
Cite this article:
Liu F, Chang X. IIDM: Image-to-image diffusion model for semantic image synthesis. Computational Visual Media, 2025, 11(2): 423-429. https://doi.org/10.26599/CVM.2025.9450419

31

Views

1

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 November 2023
Accepted: 26 February 2024
Published: 08 May 2025
© The Author(s) 2025.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

To submit a manuscript, please go to https://jcvm.org.

Return