Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Magnetic resonance imaging (MRI) is one of the most prevalent imaging modalities used for diagnosis, treatment planning, and outcome control in various medical conditions. MRI sequences provide physicians with the ability to view and monitor tissues at multiple contrasts within a single scan and serve as input for automated systems to perform downstream tasks. However, in clinical practice, there is usually no concise set of identically acquired sequences for a whole group of patients. As a consequence, medical professionals and automated systems both face difficulties due to the lack of complementary information from such missing sequences. This problem is well known in computer vision, particularly in medical image processing tasks such as tumor segmentation, tissue classification, and image generation. With the aim of helping researchers, this literature review examines a significant number of recent approaches that attempt to mitigate these problems. Basic techniques such as early synthesis methods, as well as later approaches that deploy deep learning, such as common latent space models, knowledge distillation networks, mutual information maximization, and generative adversarial networks (GANs) are examined in detail. We investigate the novelty, strengths, and weaknesses of the aforementioned strategies. Moreover, using a case study on the segmentation task, our survey offers quantitative benchmarks to further analyze the effectiveness of these methods for addressing the missing modalities challenge. Furthermore, a discussion offers possible future research directions.
Dinsdale, N. K.; Bluemke, E.; Smith, S. M.; Arya, Z.; Vidaurre, D.; Jenkinson, M.; Namburete, A. Learning patterns of the ageing brain in MRI using deep convolutional networks. NeuroImage Vol. 224, 117401, 2021.
Feng, C. M.; Wang, K.; Lu, S.; Xu, Y.; Li, X. Brain MRI super-resolution using coupled-projection residual network. Neurocomputing Vol. 456, 190–199, 2021.
Biondetti, P.; Vangel, M. G.; Lahoud, R. M.; Furtado, F. S.; Rosen, B. R.; Groshar, D.; Canamaque, L G.; Umutlu, L.; Zhang, E. W.; Mahmood, U.; et al. PET/MRI assessment of lung nodules in primary abdominal malignancies: sensitivity and outcome analysis. European Journal of Nuclear Medicine and Molecular Imaging Vol. 48, No. 6, 1976–1986, 2021.
Reyngoudt, H.; Marty, B.; Boisserie, J. M.; Le Louër, J.; Koumako, C.; Baudin, P. Y.; Wong, B.; Stojkovic, T.; Béhin, A.; Gidaro, T.; et al. Global versus individual muscle segmentation to assess quantitative MRI-based fat fraction changes in neuromuscular diseases. European Radiology Vol. 31, No. 6, 4264–4276, 2021.
Lee, Y. H. Efficiency improvement in a busy radiology practice: determination of musculoskeletal magnetic resonance imaging protocol using deep-learning convolutional neural networks. Journal of Digital Imaging Vol. 31, No. 5, 604–610, 2018.
Brady, A. P. Error and discrepancy in radiology: Inevitable or avoidable? Insights into Imaging Vol. 8, No. 1, 171–182, 2017.
Yao, W.; Liu, C.; Wang, N.; Zhou, H.; Chen, H.; Qiao, W. An MRI-guided targeting dual-responsive drug delivery system for liver cancer therapy. Journal of Colloid and Interface Science Vol. 603, 783–798, 2021.
Delli Pizzi, A.; Chiarelli, A. M.; Chiacchiaretta, P.; D'Annibale, M.; Croce, P.; Rosa, C.; Mastrodicasa, D.; Trebeschi, S.; Lambregts, D. M. J.; Caposiena, D.; et al. MRI-based clinical-radiomics model predicts tumor response before treatment in locally advanced rectal cancer. Scientific Reports Vol. 11, No. 1, Article No. 5379, 2021.
Yao, W.; Liu, C.; Wang, N.; Zhou, H.; Chen, H.; Qiao, W. Anisamide-modified dual-responsive drug delivery system with MRI capacity for cancer targeting therapy. Journal of Molecular Liquids Vol. 340, Article No. 116889, 2021.
Bleker, J.; Yakar, D.; van Noort, B.; Rouw, D.; de Jong, I. D.; Dierckx, R.; Kwee, T.; Huisman, H. Single-center versus multi-center biparametric MRI radiomics approach for clinically significant peripheral zone prostate cancer. Insights into Imaging Vol. 12, Article No. 150, 2021.
Park, Y. M.; Lim, J. Y.; Koh, Y. W.; Kim, S. H.; Choi, E. C. Prediction of treatment outcome using MRI radiomics and machine learning in oropharyngeal cancer patients after surgical treatment. Oral Oncology Vol. 122, Article No. 105559, 2021.
Graves, M. J.; Mitchell, D. G. Body MRI artifacts in clinical practice: A physicist's and radiologist's perspective. Journal of Magnetic Resonance Imaging Vol. 38, No. 2, 269–287, 2013.
Bekiesińska-Figatowska, M. Artifacts in magnetic resonance imaging. Polish Journal of Radiology Vol. 80, 93–106, 2015.
Dalmaz, O.; Yurt, M.; Çukur, T. ResViT: Residual vision transformers for multimodal medical image synthesis. IEEE Transactions on Medical Imaging Vol. 41, No. 10, 2598–2614, 2022.
Zhou, T.; Canu, S.; Vera, P.; Ruan, S. Feature-enhanced generation and multi-modality fusion based deep neural network for brain tumor segmentation with missing MR modalities. Neurocomputing Vol. 466, 102–112, 2021.
Jog, A.; Carass, A.; Roy, S.; Pham, D. L.; Prince, J. L. Random forest regression for magnetic resonance image synthesis. Medical Image Analysis Vol. 35, 475–488, 2017.
Choi, Y.; Al-masni, M. A.; Jung, K. J.; Yoo, R. E.; Lee, S. Y.; Kim, D. H. A single stage knowledge distillation network for brain tumor segmentation on limited MR image modalities. Computer Methods and Programs in Biomedicine Vol. 240, Article No. 107644, 2023.
Zhou, T.; Canu, S.; Vera, P.; Ruan, S. Latent correlation representation learning for brain tumor segmentation with missing MRI modalities. IEEE Transactions on Image Processing Vol. 30, 4263–4274, 2021.
Sharma, A.; Hamarneh, G. Missing MRI pulse sequence synthesis using multi-modal generative adversarial network. IEEE Transactions on Medical Imaging Vol. 39, No. 4, 1170–1183, 2020.
Zhan, B.; Li, D.; Wang, Y.; Ma, Z.; Wu, X.; Zhou, J.; Zhou, L. LR-cGAN: Latent representation based conditional generative adversarial network for multi-modality MRI synthesis. Biomedical Signal Processing and Control Vol. 66, Article No. 102457, 2021.
Hofmann, M.; Steinke, F.; Scheel, V.; Charpiat, G.; Farquhar, J.; Aschoff, P.; Brady, M.; Schölkopf, B.; Pichler, B. J. MRI-based attenuation correction for PET/MRI: A novel approach combining pattern recognition and atlas registration. Journal of Nuclear Medicine Vol. 49, No. 11, 1875–1883, 2008.
Zhou, T. Feature fusion and latent feature learning guided brain tumor segmentation and missing modality recovery network. Pattern Recognition Vol. 141, Article No. 109665, 2023.
Cao, B.; Zhang, H.; Wang, N.; Gao, X.; Shen, D. Auto-GAN: Self-supervised collaborative learning for medical image synthesis. Proceedings of the AAAI Conference on Artificial Intelligence Vol. 34, No. 7, 10486–10493, 2020.
Qian, S.; Wang, C. COM: Contrastive Masked-attention model for incomplete multimodal learning. Neural Networks Vol. 162, 443–455, 2023.
Webb, G. A. Introduction to Biomedical Imaging. John Wiley & Sons, 2017.
Tanner, M.; Gambarota, G.; Kober, T.; Krueger, G.; Erritzoe, D.; Marques, J. P.; Newbould, R. Fluid and white matter suppression with the MP2RAGE sequence. Journal of Magnetic Resonance Imaging Vol. 35, No. 5, 1063–1070, 2012.
Yu, H.; Buch, K.; Li, B.; O'Brien, M.; Soto, J.; Jara, H.; Anderson, S. W. Utility of texture analysis for quantifying hepatic fibrosis on proton density MRI. Journal of Magnetic Resonance Imaging Vol. 42, No. 5, 1259–1265, 2015.
Carass, A.; Roy, S.; Jog, A.; Cuzzocreo, J. L.; Magrath, E.; Gherman, A.; Button, J.; Nguyen, J.; Bazin, P. L.; Calabresi, P. A.; et al. Longitudinal multiple sclerosis lesion segmentation data resource. Data in Brief Vol. 12, 346–350, 2017.
Menze, B. H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Transactions on Medical Imaging Vol. 34, No. 10, 1993–2024, 2015.
Brown, M. A.; Semelka, R. C. MRI: Basic Principles and Applications. John Wiley & Sons, 2015.
Rauf, N.; Alam, D. Y.; Jamaluddin, M.; Samad, B. A. Improve image quality of transversal relaxation time PROPELLER and FLAIR on magnetic resonance imaging. Journal of Physics: Conference Series Vol. 979, Article No. 012079, 2018.
Wang, Y.; Hu, H.; Yu, S.; Yang, Y.; Guo, Y.; Song, X.; Chen, F.; Liu, Q. A unified hybrid transformer for joint MRI sequences super-resolution and missing data imputation. Physics in Medicine & Biology Vol. 68, No. 13, Article No. 135006, 2023.
Liu, J.; Pasumarthi, S.; Duffy, B.; Gong, E.; Datta, K.; Zaharchuk, G. One model to synthesize them all: Multi-contrast multi-scale transformer for missing data imputation. IEEE Transactions on Medical Imaging Vol. 42, No. 9, 2577–2591, 2023.
Chen, X.; Lian, C.; Wang, L.; Deng, H.; Kuang, T.; Fung, S.; Gateno, J.; Yap, P. T.; Xia, J. J.; Shen, D. Anatomy-regularized representation learning for cross-modality medical image segmentation. IEEE Transactions on Medical Imaging Vol. 40, No. 1, 274–285, 2021.
Mirzadeh, S. I.; Farajtabar, M.; Li A.; Levine, N.; Matsukawa, A.; Ghasemzadeh, H. Improved knowledge distillation via teacher assistant. Proceedings of the AAAI Conference on Artificial Intelligence Vol. 34, No. 4, 5191–5198, 2020.
Tillin, T.; Forouhi, N. G.; McKeigue, P. M.; Chaturvedi, N. Southall and Brent REvisited: Cohort profile of SABRE, a UK population-based comparison of cardiovascular disease and diabetes in people of European, Indian Asian and African Caribbean origins. International Journal of Epidemiology Vol. 41, No. 1, 33–42, 2012.
Maier, O.; Menze, B. H.; von der Gablentz, J.; Häni, L.; Heinrich, M. P.; Liebrand, M.; Winzeck, S.; Basit, A.; Bentley, P.; Chen, L.; et al. A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Medical Image Analysis Vol. 35, 250–269, 2017.
Kavur, A. E.; Gezer, N. S.; Barıç, M.; Aslan, S.; Conze, P. H.; Groza, V.; Pham, D. D.; Chatterjee, S.; Ernst, P.; Özkan, S.; et al. CHAOS Challenge-combined (CT-MR) healthy abdominal organ segmentation. Medical Image Analysis Vol. 69, Article No. 101950, 2021.
Commowick, O.; Kain, M.; Casey, R.; Ameli, R.; Ferré, J. C.; Kerbrat, A.; Tourdias, T.; Cervenansky, F.; Camarasu-Pop, S.; Glatard, T.; et al. Multiple sclerosis lesions segmentation from multiple experts: The MICCAI 2016 challenge dataset. NeuroImage Vol. 244, Article No. 118589, 2021.
MacDonald, J. A.; Zhu Z.; Konkel, B.; Mazurowski, M. A.; Wiggins, W. F.; Bashir, M. R. Duke liver dataset: A publicly available liver MRI dataset with liver segmentation masks and series labels. Radiology: Artificial Intelligence Vol. 5, No. 5, Article No. e220275, 2023.
Islam, M.; Wijethilake, N.; Ren, H. Glioblastoma multiforme prognosis: MRI missing modality generation, segmentation and radiogenomic survival prediction. Computerized Medical Imaging and Graphics Vol. 91, Article No. 101906, 2021.
Zhou, T.; Fu, H.; Chen, G.; Shen, J.; Shao, L. Hi-net: Hybrid-fusion network for multi-modal MR image synthesis. IEEE Transactions on Medical Imaging Vol. 39, No. 9, 2772–2781, 2020.
Jack Jr, C. R.; Bernstein, M. A.; Fox, N. C.; Thompson, P.; Alexander, G.; Harvey, D.; Borowski, B.; Britson, P. R.; Whitwell, J. L.; Ward, C.; et al. The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging Vol. 27, No. 4, 685–691, 2008.
Yuan, W.; Wei, J.; Wang, J.; Ma, Q.; Tasdizen, T. Unified generative adversarial networks for multimodal segmentation from unpaired 3D medical images. Medical Image Analysis Vol. 64, Article No. 101731, 2020.
Zhu, Z.; Mittendorf, A.; Shropshire, E.; Allen, B.; Miller, C.; Bashir, M. R.; Mazurowski, M. A. 3D pyramid pooling network for abdominal MRI series classification. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 44, No. 4, 1688–1698, 2022.
Matsuo, K.; Tanaka, Y.; Sarmenta, L. F. G.; Nakai, T.; Bagarinao, E. Enabling on-demand real-time functional MRI analysis using grid technology. Methods of Information in Medicine Vol. 44, No. 5, 665–673, 2005.
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
To submit a manuscript, please go to https://jcvm.org.