AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

ARNet: Attribute artifact reduction for G-PCC compressed point clouds

School of Information Science and Technology, Hangzhou Normal University, Hangzhou 310036, China
Zhejiang Provincial Key Laboratory of Information Processing, Communication, Hangzhou 310027, China
School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
Show Author Information

Graphical Abstract

Abstract

A learning-based adaptive loop filter is developed for the geometry-based point-cloud compression (G-PCC) standard to reduce attribute compression artifacts. The proposed method first generates multiple most probable sample offsets (MPSOs) as potential compression distortion approximations, and then linearly weights them for artifact mitigation. Therefore, we drive the filtered reconstruction as closely to the uncompressed PCA as possible. To this end, we devise an attribute artifact reduction network (ARNet) consisting of two consecutive processing phases: MPSOs derivation and MPSOs combination. The MPSOs derivation uses a two-stream network to model local neighborhood variations from direct spatial embedding and frequency-dependent embedding, where sparse convolutions are utilized to best aggregate information from sparsely and irregularly distributed points. The MPSOs combination is guided by the least-squares error metric to derive weighting coefficients on the fly to further capture the content dynamics of the input PCAs. ARNet is implemented as an in-loop filtering tool for G-PCC, where the linear weighting coefficients are encapsulated into the bitstream with negligible bitrate overhead. The experimental results demonstrate significant improvements over the latest G-PCC both subjectively and objectively. For example, our method offers a 22.12% YUV Bjøntegaard delta rate (BD-Rate) reduction compared to G-PCC across various commonly used test point clouds. Compared with a recent study showing state-of-the-art performance, our work not only gains 13.23% YUV BD-Rate but also provides a 30× processing speedup.

Electronic Supplementary Material

Download File(s)
cvm-11-2-327_ESM.zip (1,017 KB)

References

[1]

Lu, Y.; Lu, J.; Zhang, S.; Hall, P. Traffic signal detection and classification in street views using an attention model. Computational Visual Media Vol. 4, No. 3, 253–266, 2018.

[2]

Su, Z.; Huang, H.; Ma, C.; Huang, H.; Hu, R. Point cloud completion via structured feature maps using a feedback network. Computational Visual Media Vol. 9, No. 1, 71–85, 2023.

[3]

Han, W.; Wu, H.; Wen, C.; Wang, C.; Li, X. BLNet: Bidirectional learning network for point clouds. Computational Visual Media Vol. 8, No. 4, 585–596, 2022.

[4]

Guo, M. H.; Cai, J. X.; Liu, Z. N.; Mu, T. J.; Martin, R. R.; Hu, S. M. PCT: Point cloud transformer. Computational Visual Media Vol. 7, No. 2, 187–199, 2021.

[5]

Lan, Y.; Duan, Y.; Liu, C.; Zhu, C.; Xiong, Y.; Huang, H.; Xu, K. ARM3D: Attention-based relation module for indoor 3D object detection. Computational Visual Media Vol. 8, No. 3, 395–414, 2022.

[6]

Chen, S.; Wang, J.; Pan, W.; Gao, S.; Wang, M.; Lu, X. Towards uniform point distribution in feature-preserving point cloud filtering. Computational Visual Media Vol. 9, No. 2, 249–263, 2023.

[7]

Gong, J.; Ye, Z.; Ma, L. Neighborhood co-occurrence modeling in 3D point cloud segmentation. Computational Visual Media Vol. 8, No. 2, 303–315, 2022.

[8]

Liu, Q.; Yuan, H.; Hamzaoui, R.; Su, H.; Hou, J.; Yang, H. Reduced reference perceptual quality model with application to rate control for video-based point cloud compression. IEEE Transactions on Image Processing Vol. 30, 6623–6636, 2021.

[9]

Liu, H.; Yuan, H.; Hou, J.; Hamzaoui, R.; Gao, W. PUFA-GAN: A frequency-aware generative adversarial network for 3D point cloud upsampling. IEEE Transactions on Image Processing Vol. 31, 7389–7402, 2022.

[10]

Cao, C.; Preda, M.; Zakharchenko, V.; Jang, E. S.; Zaharia, T. Compression of sparse and dense dynamic point clouds: Methods and standards. Proceedings of the IEEE Vol. 109, No. 9, 1537–1558, 2021.

[11]
Cao, C.; Preda, M.; Zaharia, T. 3D point cloud compression: A survey. In: Proceedings of the 24th International Conference on 3D Web Technology, 1–9, 2019.
[12]

Graziosi, D.; Nakagami, O.; Kuma, S.; Zaghetto, A.; Suzuki, T.; Tabatabai, A. An overview of ongoing point cloud compression standardization activities: Video-based (V-PCC) and geometry-based (G-PCC). APSIPA Transactions on Signal and Information Processing Vol. 9, e13, 2020.

[13]

Liu, H.; Yuan, H.; Liu, Q.; Hou, J.; Liu, J. A comprehensive study and comparison of core technologies for MPEG 3-D point cloud compression. IEEE Transactions on Broadcasting Vol. 66, No. 3, 701–717, 2020.

[14]

Sullivan, G. J.; Ohm, J. R.; Han, W. J.; Wiegand, T. Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and Systems for Video Technology Vol. 22, No. 12, 1649–1668, 2012.

[15]

Bross, B.; Chen, J.; Ohm, J. R.; Sullivan, G. J.; Wang, Y. K. Developments in international video coding standardization after AVC, with an overview of versatile video coding (VVC). Proceedings of the IEEE Vol. 109, No. 9, 1463–1493, 2021.

[16]

De Queiroz, R. L.; Chou, P. A. Compression of 3D point clouds using a region-adaptive hierarchical transform. IEEE Transactions on Image Processing Vol. 25, No. 8, 3947–3956, 2016.

[17]

Karczewicz, M.; Hu, N.; Taquet, J.; Chen, C. Y.; Misra, K.; Andersson, K.; Yin, P.; Lu, T.; François, E.; Chen, J. VVC in-loop filters. IEEE Transactions on Circuits and Systems for Video Technology Vol. 31, No. 10, 3907–3925, 2021.

[18]

Ma, D.; Zhang, F.; Bull, D. R. MFRNet: A new CNN architecture for post-processing and in-loop filtering. IEEE Journal of Selected Topics in Signal Processing Vol. 15, No. 2, 378–387, 2021.

[19]

Ding, D.; Gao, X.; Tang, C.; Ma, Z. Neural reference synthesis for inter frame coding. IEEE Transactions on Image Processing Vol. 31, 773–787, 2021.

[20]

Nasiri, F.; Hamidouche, W.; Morin, L.; Dhollande, N.; Cocherel, G. A CNN-based prediction-aware quality enhancement framework for VVC. IEEE Open Journal of Signal Processing Vol. 2, 466–483, 2021.

[21]
Zhang, C.; Florêncio, D.; Loop, C. Point cloud attribute compression with graph transform. In: Proceedings of the IEEE International Conference on Image Processing, 2066–2070, 2014.
[22]

Sheng, X.; Li, L.; Liu, D.; Xiong, Z. Attribute artifacts removal for geometry-based point cloud compression. IEEE Transactions on Image Processing Vol. 31, 3399–3413, 2022.

[23]

Schwarz, S.; Preda, M.; Baroncini, V.; Budagavi, M.; Cesar, P.; Chou, P. A.; Cohen, R. A.; Krivokuća, M.; Lasserre, S.; Li, Z.; et al. Emerging MPEG standards for point cloud compression. IEEE Journal on Emerging and Selected Topics in Circuits and Systems Vol. 9, No. 1, 133–148, 2019.

[24]

Tsai, C. Y.; Chen, C. Y.; Yamakage, T.; Chong, I. S.; Huang, Y. W.; Fu, C. M.; Itoh, T.; Watanabe, T.; Chujoh, T.; Karczewicz, M.; et al. Adaptive loop filtering for video coding. IEEE Journal of Selected Topics in Signal Processing Vol. 7, No. 6, 934–945, 2013.

[25]

Fu, C. M.; Alshina, E.; Alshin, A.; Huang, Y. W.; Chen, C. Y.; Tsai, C. Y.; Hsu, C. W.; Lei, S. M.; Park, J. H.; Han, W. J. Sample adaptive offset in the HEVC standard. IEEE Transactions on Circuits and Systems for Video Technology Vol. 22, No. 12, 1755–1764, 2012.

[26]
Wang, J.; Ding, D.; Li, Z.; Ma, Z. Multiscale point cloud geometry compression. In: Proceedings of the Data Compression Conference, 73–82, 2021.
[27]

Wang, J.; Ding, D.; Li, Z.; Feng, X.; Cao, C.; Ma, Z. Sparse tensor-based multiscale representation for point cloud geometry compression. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 45, No. 7, 9055–9071, 2023.

[28]

Nguyen, D. T.; Kaup, A. Lossless point cloud geometry and attribute compression using a learned conditional probability model. IEEE Transactions on Circuits and Systems for Video Technology Vol. 33, No. 8, 4337–4348, 2023.

[29]

Akhtar, A.; Li, Z.; Van der Auwera, G.; Li, L.; Chen, J. PU-dense: Sparse tensor-based point cloud geometry upsampling. IEEE Transactions on Image Processing Vol. 31, 4133–4148, 2022.

[30]

Goyal, V. K. Theoretical foundations of transform coding. IEEE Signal Processing Magazine Vol. 18, No. 5, 9–21, 2001.

[31]

Gu, S.; Hou, J.; Zeng, H.; Yuan, H.; Ma, K. K. 3D point cloud attribute compression using geometry-guided sparse representation. IEEE Transactions on Image Processing Vol. 29, 796–808, 2019.

[32]

De Queiroz, R. L.; Chou, P. A. Transform coding for point clouds using a Gaussian process model. IEEE Transactions on Image Processing Vol. 26, No. 7, 3507–3517, 2017.

[33]
Souto, A. L.; de Queiroz, R. L. On predictive RAHT for dynamic point cloud coding. In: Proceedings of the IEEE International Conference on Image Processing, 2701–2705, 2020.
[34]

Quach, M.; Pang, J.; Tian, D.; Valenzise, G.; Dufaux, F. Survey on deep learning-based point cloud compression. Frontiers in Signal Processing Vol. 2, 846972, 2022.

[35]

Sheng, X.; Li, L.; Liu, D.; Xiong, Z.; Li, Z.; Wu, F. Deep-PCAC: An end-to-end deep lossy compression framework for point cloud attributes. IEEE Transactions on Multimedia Vol. 24, 2617–2632, 2021.

[36]
He, Y.; Ren, X.; Tang, D.; Zhang, Y.; Xue, X.; Fu, Y. Density-preserving deep point cloud compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2333–2342, 2022.
[37]
Wang, J.; Ma, Z. Sparse tensor-based point cloud attribute compression. In: Proceedings of the IEEE 5th International Conference on Multimedia Information Processing and Retrieval, 59–64, 2022.
[38]
Fang, G.; Hu, Q.; Wang, H.; Xu, Y.; Guo, Y. 3DAC: Learning attribute compression for point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 14819–14828, 2022.
[39]
Wang, Z.; Ma, C.; Liao, R. L.; Ye, Y. Multi-density convolutional neural network for in-loop filter in video coding. In: Proceedings of the Data Compression Conference, 23–32, 2021.
[40]

Lin, K.; Jia, C.; Zhang, X.; Wang, S.; Ma, S.; Gao, W. NR-CNN: Nested-residual guided CNN in-loop filtering for video coding. ACM Transactions on Multimedia Computing, Communications, and Applications Vol. 18, No. 4, Article No. 102, 2022.

[41]

Pan, Z.; Yi, X.; Zhang, Y.; Jeon, B.; Kwong, S. Efficient in-loop filtering based on enhanced deep convolutional neural networks for HEVC. IEEE Transactions on Image Processing Vol. 29, 5352–5366, 2020.

[42]

Jia, W.; Li, L.; Li, Z.; Zhang, X.; Liu, S. Residual-guided in-loop filter using convolution neural network. ACM Transactions on Multimedia Computing, Communications, and Applications Vol. 17, No. 4, Article No. 139, 2021.

[43]

Zhang, Y.; Shen, T.; Ji, X.; Zhang, Y.; Xiong, R.; Dai, Q. Residual highway convolutional neural networks for in-loop filtering in HEVC. IEEE Transactions on Image Processing Vol. 27, No. 8, 3827–3841, 2018.

[44]

Wang, D.; Xia, S.; Yang, W.; Liu, J. Combining progressive rethinking and collaborative learning: A deep framework for in-loop filtering. IEEE Transactions on Image Processing Vol. 30, 4198–4211, 2021.

[45]

Huang, Z.; Sun, J.; Guo, X.; Shang, M. One-for-all: An efficient variable convolution neural network for in-loop filter of VVC. IEEE Transactions on Circuits and Systems for Video Technology Vol. 32, No. 4, 2342–2355, 2022.

[46]

Peng, B.; Chang, R.; Pan, Z.; Li, G.; Ling, N.; Lei, J. Deep in-loop filtering via multi-domain correlation learning and partition constraint for multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology Vol. 33, No. 4, 1911–1921, 2023.

[47]

Guan, Z.; Xing, Q.; Xu, M.; Yang, R.; Liu, T.; Wang, Z. MFQE 2.0: A new approach for multi-frame quality enhancement on compressed video. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 43, No. 3, 949–963, 2021.

[48]

Kim, W. S.; Pu, W.; Khairat, A.; Siekmann, M.; Sole, J.; Chen, J.; Karczewicz, M.; Nguyen, T.; Marpe, D. Cross-component prediction in HEVC. IEEE Transactions on Circuits and Systems for Video Technology Vol. 30, No. 6, 1699–1708, 2020.

[49]
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778, 2016.
[50]
Kong, L.; Ding, D.; Liu, F.; Mukherjee, D.; Joshi, U.; Chen, Y. Guided CNN restoration with explicitly signaled linear combination. In: Proceedings of the IEEE International Conference on Image Processing, 3379–3383, 2020.
[51]

Zhang, K.; Chen, J.; Zhang, L.; Li, X.; Karczewicz, M. Enhanced cross-component linear model for chroma intra-prediction in video coding. IEEE Transactions on Image Processing Vol. 27, No. 8, 3983–3997, 2018.

[52]
Chang, A. X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H.; et al. ShapeNet: An information-rich 3D model repository. arXiv preprint arXiv: 1512.03012, 2015.
[53]
Lin, T-Y.; Maire. M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C. L.; Dollár, P. Microsoft COCO: Common objects in context. arXiv preprint arXiv: 1405.0312, 2014.
[54]
Loop, C.; Cai, Q.; Escolano, S. O.; Chou, P. A. Microsoft voxelized upper bodies-a voxelized point cloud dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document m38673 M. 2016. Available at https://plenodb.jpeg.org/pc/microsoft
[55]
d’Eon, E.; Harrison, B.; Myers, T.; Chou, P. A. 8i voxelized full bodies - A voxelized point cloud dataset. ISO/IEC JTC1/SC29 JointWG11/WG1 (MPEG/ JPEG) input document WG11M40059/WG1M74006. 2017. Available at: https://plenodb.jpeg.org/pc/8ilabs
[56]
Xu, Y.; Lu, Yao.; Wen, Z. Owlii dynamic human mesh sequence dataset. ISO/IEC JTC1/SC29/WG11 m41658, 120th MPEG Meeting. 2017. Available at https://mpeg-pcc.org/index.php/pcc-content-database/owlii-dynamic-human-textured-mesh-sequence-dataset/
[57]
Choy, C.; Gwak, J.; Savarese, S. 4D spatio-temporal ConvNets: Minkowski convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3075–3084, 2019.
[58]
Bjøntegaard, G. Calculation of average PSNR differences between RD-curves. In: Proceedings of the Bjintegaard Calculation OA, 2001.
[59]
Meynet, G.; Nehme, Y.; Digne, J.; Lavoue, G. PCQM: A full-reference quality metric for colored 3D point clouds. In: Proceedings of the 12th International Conference on Quality of Multimedia Experience, 1–6, 2020.
Computational Visual Media
Pages 327-342
Cite this article:
Zhang J, Zhang J, Ding D, et al. ARNet: Attribute artifact reduction for G-PCC compressed point clouds. Computational Visual Media, 2025, 11(2): 327-342. https://doi.org/10.26599/CVM.2025.9450380

27

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 08 June 2023
Accepted: 12 September 2023
Published: 08 May 2025
© The Author(s) 2025.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

To submit a manuscript, please go to https://jcvm.org.

Return