AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A biophysical-based skin model for heterogeneous volume rendering

State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, China
Adobe Research, San Francisco, CA 94103, USA
College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China
Zhejiang Lab, Hangzhou 311121, China
Show Author Information

Graphical Abstract

Abstract

Realistic human skin rendering has been a long-standing challenge in computer graphics. Recently, biophysical-based skin rendering has received increasing attention, as it provides a more realistic skin-rendering and a more intuitive way to adjust the skin style. In this work, we present a novel heterogeneous biophysical-based volume rendering method for human skin that improves the realism of skin appearance while easily simulating various types of skin effects, including skin diseases, by modifying biological coefficient textures. Specifically, we introduce a two-layer skin representation by mesh deformation that explicitly models the epidermis and dermis with heterogeneous volumetric medium layers containing the corresponding spatially varying melanin and hemoglobin, respectively. Furthermore, to better facilitate skin acquisition, we introduced a learning-based framework that automatically estimates spatially varying biological coefficients from an albedo texture, enabling biophysical-based and intuitive editing, such as tanning, pathological vitiligo, and freckles. We illustrated the effects of multiple skin-editing applications and demonstrated superior quality to the commonly used random walk skin-rendering method, with more convincing skin details regarding subsurface scattering.

References

[1]
Jensen, H. W.; Marschner, S. R.; Levoy, M.; Hanrahan, P. A practical model for subsurface light transport. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 511–518, 2001.
[2]

Habel, R.; Christensen, P. H.; Jarosz, W. Photon beam diffusion: A hybrid Monte Carlo method for subsurface scattering. Computer Graphics Forum Vol. 32, No. 4, 27–37, 2013.

[3]
Donner, C.; Jensen, H. A spectral BSSRDF for shading human skin. In: Proceedings of the 17th Eurographics Conference on Rendering Techniques, 409–418, 2006.
[4]

Donner, C.; Weyrich, T.; d'Eon, E.; Ramamoorthi, R.; Rusinkiewicz, S. A layered, heterogeneous reflectance model for acquiring and rendering human skin. ACM Transactions on Graphics Vol. 27, No. 5, Article No. 140, 2008.

[5]

Donner, C.; Jensen, H. W. Light diffusion in multi-layered translucent materials. ACM Transactions on Graphics Vol. 24, No. 3, 1032–1039, 2005.

[6]
Wrenninge, M.; Villemin, R.; Hery, C. Path traced subsurface scattering using anisotropic phase functions and non-exponential free flights. Pixar, 2017. Available at https://graphics.pixar.com/library/PathTracedSubsurface
[7]

Baranoski, G.; Krishnaswamy, A. Light & Skin Interactions: Simulations for Computer Graphics Applications. Morgan Kaufmann, 2010.

[8]

Gitlina, Y.; Guarnera, G. C.; Dhillon, D. S.; Hansen, J.; Lattas, A.; Pai, D.; Ghosh, A. Practical measurement and reconstruction of spectral skin reflectance. Computer Graphics Forum Vol. 39, No. 4, 75–89, 2020.

[9]

Krishnaswamy, A.; Baranoski, G. A biophysically-based spectral model of light interaction with human skin.Computer Graphics Forum Vol. 23, No. 3, 331–340, 2012.

[10]
Jimenez, J.; Weyrich, T.; Scully, T.; Barbosa, N.; Donner, C.; Alvarez, X.; Vieira, T.; Matts, P.; Orvalho, V.; Gutierrez, D. A practical appearance model for dynamic facial color. In: Proceedings of the ACM SIGGRAPH Asia Papers, Article No. 141, 2010.
[11]

Iglesias-Guitian, J. A.; Aliaga, C.; Jarabo, A.; Gutierrez, D. A biophysically-based model of the optical properties of skin aging. Computer Graphics Forum Vol. 34, No. 2, 45–55, 2015.

[12]
Aliaga, C.; Hery, C.; Xia, M. Estimation of spectral biophysical skin properties from captured RGB albedo. arXiv preprint arXiv: 2201.10695, 2022.
[13]
Stam, J. Multiple scattering as a diffusion process. In: Rendering Techniques '95. Eurographics. Hanrahan, P. M.; Purgathofer, W. Eds. Springer Cham, 41–50, 1995.
[14]
Jensen, H. W.; Buhler, J. A rapid hierarchical rendering technique for translucent materials. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, 576–581, 2002.
[15]
Donner, C.; Jensen, H. W. Rendering translucent materials using photon diffusion. In: Proceedings of the ACM SIGGRAPH Classes, Article No. 4, 2008.
[16]
Shirley, P.; Shirley, P. A ray tracing method for illumination calculation in diffuse-specular scenes. In: Proceedings of the Graphics Interface '90, 205–212, 1990.
[17]

Vicini, D.; Koltun, V.; Jakob, W. A learned shape-adaptive subsurface scattering model. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 127, 2019.

[18]
Křivánek, J.; d'Eon, E. A zero-variance-based sampling scheme for Monte Carlo subsurface scattering. In: Proceedings of the ACM SIGGRAPH Talks, Article No. 66, 2014.
[19]

Jimenez, J.; Whelan, D.; Sundstedt, V.; Gutierrez, D. Real-time realistic skin translucency. IEEE Computer Graphics and Applications Vol. 30, No. 4, 32–41, 2010.

[20]

Jimenez, J.; Sundstedt, V.; Gutierrez, D. Screen-space perceptual rendering of human skin. ACM Transactions on Applied Perception Vol. 6, No. 4, Article No. 23, 2009.

[21]

Jimenez, J.; Gutierrez, D. Faster Rendering of Human Skin. The Eurographics Association, 2008.

[22]
Burley, B. Extending the Disney BRDF to a BSDF with integrated subsurface scattering. SIGGRAPH'15 Courses, 2015. Available at https://blog.selfshadow.com/publications/s2015-shading-course/burley/s2015_pbs_disney_bsdf_slides.pdf
[23]
Golubev, E. Efficient screen-space subsurface scattering using Burley's normalized diffusion in real-time. In: Proceedings of the ACM SIGGRAPH Courses: Advances in Real-Time Rendering in Games Course, 2018.
[24]

Gevaux, L.; Gierschendorf, J.; Rengot, J.; Cherel, M.; Séroul, P.; Nkengne, A.; Robic, J.; Trémeau, A.; Hébert, M. Real-time skin chromophore estimation from hyperspectral images using a neural network. Skin Research and Technology Vol. 27, No. 2, 163–177, 2021.

[25]

Daszak, P.; Berger, L.; Cunningham, A. A.; Hyatt, A. D.; Green, D. E.; Speare, R. Emerging infectious diseases and amphibian population declines. Emerging Infectious Diseases Vol. 5, No. 6, 735–748, 1999.

[26]

Saidi, I. S.; Jacques, S. L.; Tittel, F. K. Mie and Rayleigh modeling of visible-light scattering in neonatal skin. Applied Optics Vol. 34, No. 31, 7410–7418, 1995.

[27]

Van Gemert, M. J. C.; Jacques, S. L.; Sterenborg, H. J. C. M.; Star, W. M. Skin optics. IEEE Transactions on Biomedical Engineering Vol. 36, No. 12, 1146–1154, 1989.

[28]
Prahl, S. Optical absorption of hemoglobin. 1999. Available at http://omlc.ogi.edu/spectra/hemoglobin
[29]

Du, H.; Fuh, R. A.; Li, J.; Corkan, L. A.; Lindsey, J. S. PhotochemCAD‡: A computer-aided design and research tool in photochemistry. Photochemistry and Photobiology Vol. 68, No. 2, 141–142, 1998.

[30]

Jacques, S. L. Optical properties of biological tissues: A review. Physics in Medicine and Biology Vol. 58, No. 11, R37–R61, 2013.

[31]

Salomatina, E. V.; Jiang, B.; Novak, J.; Yaroslavsky, A. N. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. Journal of Biomedical Optics Vol. 11, No. 6, Article No. 064026, 2006.

[32]

Kutz, P.; Habel, R.; Li, Y. K.; Novák, J. Spectral and decomposition tracking for rendering heterogeneous volumes. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 111, 2017.

[33]
Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention. Lecture Notes in Computer Science, Vol. 9351. Navab, N.; Hornegger, J.; Wells W. M.; Frangi, A. F. Eds. Springer Cham, 234–241, 2015.
[34]
Kingma, D. P.; Ba, J.; Hammad, M. M. Adam: A method for stochastic optimization. arXiv preprint arXiv: 1412.6980, 2014.
[35]
Johnson, J.; Alahi, A.; Li, F. F. Perceptual losses for real-time style transfer and super-resolution. In: Computer Vision – ECCV 2016. Lecture Notes in Computer Science, Vol. 9906. Leibe, B.; Matas, J.; Sebe, N.; Welling, M. Eds. Springer Cham, 694–711, 2016.
[36]
Wang, Z.; Simoncelli, E. P.; Bovik, A. C. Multiscale structural similarity for image quality assessment. In: Proceedings of the 37th Asilomar Conference on Signals, Systems & Computers, 1398–1402, 2003.
[37]
Zhang, R.; Isola, P.; Efros, A. A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 586–595, 2018.
[38]

Torrance, K. E.; Sparrow, E. M. Theory for off-specular reflection from roughened surfaces. JOSA Vol. 57, No. 9, 1105–1114, 1967.

[39]

Weyrich, T.; Matusik, W.; Pfister, H.; Bickel, B.; Donner, C.; Tu, C.; McAndless, J.; Lee, J.; Ngan, A.; Jensen, H. W.; et al. Analysis of human faces using a measurement-based skin reflectance model. ACM Transactions on Graphics Vol. 25, No. 3, 1013–1024, 2006.

[40]
Burley, B. Physically-based shading at Disney. 2012. Available at https://disneyanimation.com/publications/physically-based-shading-at-disney/
Computational Visual Media
Pages 289-303
Cite this article:
Wang Q, Luan F, Dai Y, et al. A biophysical-based skin model for heterogeneous volume rendering. Computational Visual Media, 2025, 11(2): 289-303. https://doi.org/10.26599/CVM.2025.9450360

29

Views

1

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 February 2023
Accepted: 08 June 2023
Published: 08 May 2025
© The Author(s) 2025.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

To submit a manuscript, please go to https://jcvm.org.

Return