AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (147.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Progress in passive daytime radiative cooling from spectral design to real application

Zhuojing Zhao#Siming Zhao#Jiaqi Xu#Xueke Wu#Zhenyu GuoYa HuangRufan Zhang( )
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

#§ Zhuojing Zhao, Siming Zhao, Jiaqi Xu, and Xueke Wu contributed equally to this work.

Show Author Information

Graphical Abstract

Passive daytime radiative cooling (PDRC) is an attracting energy-saving cooling technology taking outer space as natural cold sink, however, there is still a gap between PDRC concept and practical application. In this review, we summarize the progress from spectral design in PDRC and provide practical guidelines for real and specific scenarios, aiming to provide a guideline for further development.

Abstract

High-performance cooling technology is increasingly critical due to the rising frequency of extremely hot weather caused by global warming. Passive daytime radiative cooling (PDRC) is an emerging zero-energy-consumption technology that provides sub-ambient cooling under strong solar conditions by emitting heat to the cold outer space (~ 3 K) while minimizing heat gain from solar irradiation. This technology has attracted wide attention and achieved huge progress in the past decade. Recently, extensive efforts have been devoted to constructing high-performance PDRC materials in various fields, such as thermal management of buildings, human comfort, equipment, and dynamic devices. However, there is still a big gap between the laboratory-reported PDRC materials and their practical applications because of their high costs, complex manufacturing processes, insufficient cooling performance, and potential nano- or micro-hazards. In this review, we summarized recent advancements in PDRC technology and focused on the spectral design, cooling mechanisms, and practical applications of PDRC materials. We also discussed the challenges and strategies for bridging the gap between academic research and real-world implementation. We hope that this review will provide more insight into the further development of advanced PDRC technologies.

References

[1]

Tian, H. Q.; Lu, C. Q.; Ciais, P.; Michalak, A. M.; Canadell, J. G.; Saikawa, E.; Huntzinger, D. N.; Gurney, K. R.; Sitch, S.; Zhang, B. W. et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 2016, 531, 225–228.

[2]

Sun, W.; Huang, C. C. Predictions of carbon emission intensity based on factor analysis and an improved extreme learning machine from the perspective of carbon emission efficiency. J. Cleaner Prod. 2022, 338, 130414.

[3]
IPCC. Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, 2022.
[4]

Sobel, A. H.; Camargo, S. J.; Hall, T. M.; Lee, C. Y.; Tippett, M. K.; Wing, A. A. Human influence on tropical cyclone intensity. Science 2016, 353, 242–246.

[5]

Ballester, J.; Quijal-Zamorano, M.; Méndez Turrubiates, R. F.; Pegenaute, F.; Herrmann, F. R.; Robine, J. M.; Basagaña, X.; Tonne, C.; Antó, J. M.; Achebak, H. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 2023, 29, 1857–1866.

[6]

Burkart, K. G.; Brauer, M.; Aravkin, A. Y.; Godwin, W. W.; Hay, S. I.; He, J. W.; Iannucci, V. C.; Larson, S. L.; Lim, S. S.; Liu, J. M. et al. Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: A two-part modelling approach applied to the global burden of disease study. Lancet 2021, 398, 685–697.

[7]

Dalvi-Isfahan, M.; Hamdami, N.; Xanthakis, E.; Le-Bail, A. Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields. J. Food Eng. 2017, 195, 222–234.

[8]

Mercier, S.; Villeneuve, S.; Mondor, M.; Uysal, I. Time-temperature management along the food cold chain: A review of recent developments. Compr. Rev. Food Sci. Food Saf. 2017, 16, 647–667.

[9]

Huang, Y. C.; Xiao, X. L.; Kang, H. F.; Lv, J. G.; Zeng, R.; Shen, J. Thermal management of polymer electrolyte membrane fuel cells: A critical review of heat transfer mechanisms, cooling approaches, and advanced cooling techniques analysis. Energy Convers. Manage. 2022, 254, 115221.

[10]

Li, P. L.; Wang, A.; Fan, J. J.; Kang, Q.; Jiang, P. K.; Bao, H.; Huang, X. Y. Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv. Funct. Mater. 2022, 32, 2109542.

[11]

Qin, Z. H.; Li, M.; Flohn, J.; Hu, Y. J. Thermal management materials for energy-efficient and sustainable future buildings. Chem. Commun. 2021, 57, 12236–12253.

[12]

Lin, C. J.; Li, Y.; Chi, C.; Kwon, Y. S.; Huang, J. Y.; Wu, Z. X.; Zheng, J. Z.; Liu, G. Z.; Tso, C. Y.; Chao, C. Y. H. et al. A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates. Adv. Mater. 2022, 34, e2109350.

[13]

Huang, Z. F.; Ruan, X. L. Nanoparticle embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transfer 2017, 104, 890–896.

[14]

Lee, M.; Kim, G.; Jung, Y.; Pyun, K. R.; Lee, J.; Kim, B. W.; Ko, S. H. Photonic structures in radiative cooling. Light: Sci. Appl. 2023, 12, 134.

[15]

Zhu, Y. N.; Luo, H.; Yang, C. Y.; Qin, B.; Ghosh, P.; Kaur, S.; Shen, W. D.; Qiu, M.; Belov, P.; Li, Q. Color-preserving passive radiative cooling for an actively temperature-regulated enclosure. Light: Sci. Appl. 2022, 11, 122.

[16]

Hossain, M. M.; Gu, M. Radiative cooling: Principles, progress, and potentials. Adv. Sci. 2016, 3, 1500360.

[17]

Barker, R. XXII. The process of making ice in the East Indies. By Sir Robert Barker, F. R. S. in a letter to Dr. Brocklesby. Philos. Trans. R. Soc. Lond. 1997, 65, 252–257.

[18]
Alatalo, E. The Persian Ice House, or How to Make Ice in the Desert. https://fieldstudyoftheworld.com/persian-ice-house-how-make-ice-desert/(accessed Jan 14, 2024).
[19]

Bartoli, B.; Catalanotti, S.; Coluzzi, B.; Cuomo, V.; Silvestrini, V.; Troise, G. Nocturnal and diurnal performances of selective radiators. Appl. Energy 1977, 3, 267–286.

[20]

Addeo, A.; Monza, E.; Peraldo, M.; Bartoli, B.; Coluzzi, B.; Silvestrini, V.; Troise, G. Selective covers for natural cooling devices. Il Nuovo Cimento C 1978, 1, 419–429.

[21]

Grenier, P. Réfrigération radiative. Effet de serre inverse. Rev. Phys. Appl. 1979, 14, 87–90.

[22]

Hjortsberg, A.; Granqvist, C. G. Radiative cooling with selectively emitting ethylene gas. Appl. Phys. Lett. 1981, 39, 507–509.

[23]

Mastai, Y.; Diamant, Y.; Aruna, S. T.; Zaban, A. TiO2 Nanocrystalline pigmented polyethylene foils for radiative cooling applications: Synthesis and characterization. Langmuir 2001, 17, 7118–7123.

[24]

Berdahl, P. Comments on radiative cooling efficiency of white pigmented paints. Sol. Energy 1995, 54, 203.

[25]

Huang, M. C.; Yang, M. P.; Guo, X. J.; Xue, C. H.; Wang, H. D.; Ma, C. Q.; Bai, Z. X.; Zhou, X. J.; Wang, Z. K.; Liu, B. Y. et al. Scalable multifunctional radiative cooling materials. Prog. Mater Sci. 2023, 137, 101144.

[26]

Raman, A. P.; Anoma, M. A.; Zhu, L. X.; Rephaeli, E.; Fan, S. H. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544.

[27]

Kong, A. R.; Cai, B. Y.; Shi, P.; Yuan, X. C. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling. Opt. Express 2019, 27, 30102–30115.

[28]

Hossain, M. M.; Jia, B. H.; Gu, M. A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater. 2015, 3, 1047–1051.

[29]

Yuan, H. X.; Yang, C. Y.; Zheng, X. W.; Mu, W.; Wang, Z.; Yuan, W. J.; Zhang, Y. G.; Chen, C. N.; Liu, X.; Shen, W. D. Effective, angle-independent radiative cooler based on one-dimensional photonic crystal. Opt. Express 2018, 26, 27885–27893.

[30]

Li, J. L.; Liang, Y.; Li, W.; Xu, N.; Zhu, B.; Wu, Z.; Wang, X. Y.; Fan, S. H.; Wang, M. H.; Zhu, J. Protecting ice from melting under sunlight via radiative cooling. Sci. Adv. 2022, 8, eabj9756.

[31]

Shi, S. K.; Lv, P. F.; Valenzuela, C.; Li, B. X.; Liu, Y.; Wang, L.; Feng, W. Scalable bacterial cellulose-based radiative cooling materials with switchable transparency for thermal management and enhanced solar energy harvesting. Small 2023, 19, 2301957.

[32]

Zhai, Y.; Ma, Y. G.; David, S. N.; Zhao, D. L.; Lou, R. N.; Tan, G.; Yang, R. G.; Yin, X. B. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017, 355, 1062–1066.

[33]

Zeng, S. N.; Pian, S.; Su, M. Y.; Wang, Z. N.; Wu, M. Q.; Liu, X. H.; Chen, M. Y.; Xiang, Y. Z.; Wu, J. W.; Zhang, M. N. et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 2021, 373, 692–696.

[34]

Lin, K. T.; Nian, X. B.; Li, K.; Han, J. H.; Zheng, N.; Lu, X. K.; Guo, C. S.; Lin, H.; Jia, B. H. Highly efficient flexible structured metasurface by roll-to-roll printing for diurnal radiative cooling. eLight 2023, 3, 22.

[35]

Catrysse, P. B.; Fan, S. H. Radiative cooling textiles using industry-standard particle-free nonporous micro-structured fibers. Nanophotonics 2024, 13, 649–657.

[36]

Mandal, J.; Fu, Y. K.; Overvig, A. C.; Jia, M. X.; Sun, K. R.; Shi, N. N.; Zhou, H.; Xiao, X. H.; Yu, N. F.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–319.

[37]

Zhou, K.; Li, W.; Patel, B. B.; Tao, R.; Chang, Y. L.; Fan, S. H.; Diao, Y.; Cai, L. L. Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano Lett. 2021, 21, 1493–1499.

[38]

Dopphoopha, B.; Li, K. Q.; Lin, C. J.; Huang, B. L. Aqueous double-layer paint of low thickness for sub-ambient radiative cooling. Nanophotonics 2024, 13, 659–668.

[39]

Lv, J. P.; Chen, Z.; Li, X. J. Calcium phosphate paints for full-daytime subambient radiative cooling. ACS Appl. Energy Mater. 2022, 5, 4117–4124.

[40]

Cheng, Z. M.; Han, H.; Wang, F. Q.; Yan, Y. Y.; Shi, X. H.; Liang, H. X.; Zhang, X. P.; Shuai, Y. Efficient radiative cooling coating with biomimetic human skin wrinkle structure. Nano Energy 2021, 89, 106377.

[41]

Huang, W. L.; Chen, Y. J.; Luo, Y.; Mandal, J.; Li, W. X.; Chen, M. J.; Tsai, C. C.; Shan, Z. Q.; Yu, N. F.; Yang, Y. Scalable aqueous processing-based passive daytime radiative cooling coatings. Adv. Funct. Mater. 2021, 31, 2010334.

[42]

Zhang, Y. B.; Tan, X. Y.; Qi, G. G.; Yang, X. B.; Hu, D.; Fyffe, P.; Chen, X. B. Effective radiative cooling with ZrO2/PDMS reflective coating. Sol. Energy Mater. Sol. Cells 2021, 229, 111129.

[43]

Li, L. H.; Liu, G. M.; Zhang, Q.; Zhao, H. C.; Shi, R. D.; Wang, C. L.; Li, Z. H.; Zhou, B. Y.; Zhang, Y. Porous structure of polymer films optimized by rationally tuning phase separation for passive all-day radiative cooling. ACS Appl. Mater. Interfaces 2024, 16, 6504–6512.

[44]

Li, X.; Pattelli, L.; Ding, Z. M.; Chen, M. J.; Zhao, T.; Li, Y.; Xu, H. B.; Pan, L.; Zhao, J. P. A novel BST@TPU membrane with superior UV durability for highly efficient daytime radiative cooling. Adv. Funct. Mater. 2024, 34, 2315315.

[45]

Wang, T.; Wu, Y.; Shi, L.; Hu, X. H.; Chen, M.; Wu, L. M. A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 2021, 12, 365.

[46]

Li, T.; Zhai, Y.; He, S. M.; Gan, W. T.; Wei, Z. Y.; Heidarinejad, M.; Dalgo, D.; Mi, R. Y.; Zhao, X. P.; Song, J. W. et al. A radiative cooling structural material. Science 2019, 364, 760–763.

[47]

Chen, Y. P.; Dang, B. K.; Fu, J. Z.; Wang, C.; Li, C. C.; Sun, Q. F.; Li, H. Q. Cellulose-based hybrid structural material for radiative cooling. Nano Lett. 2021, 21, 397–404.

[48]

Zhao, X. P.; Li, T. Y.; Xie, H.; Liu, H.; Wang, L. Z.; Qu, Y. R.; Li, S. C.; Liu, S. F.; Brozena, A. H.; Yu, Z. F. et al. A solution-processed radiative cooling glass. Science 2023, 382, 684–691.

[49]

Lin, K. X.; Chen, S. R.; Zeng, Y. J.; Ho, T. C.; Zhu, Y. H.; Wang, X.; Liu, F. Y.; Huang, B. L.; Chao, C. Y. H.; Wang, Z. K. et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 2023, 382, 691–697.

[50]

Cai, C. Y.; Wei, Z. C.; Ding, C. X.; Sun, B. J.; Chen, W. B.; Gerhard, C.; Nimerovsky, E.; Fu, Y.; Zhang, K. Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 2022, 22, 4106–4114.

[51]

Leroy, A.; Bhatia, B.; Kelsall, C. C.; Castillejo-Cuberos, A.; Di Capua H, M.; Zhao, L.; Zhang, L.; Guzman, A. M.; Wang, E. N. High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 2019, 5, eaat9480.

[52]

Galib, R. H.; Tian, Y.; Lei, Y.; Dang, S.; Li, X.; Yudhanto, A.; Lubineau, G.; Gan, Q. Atmospheric-moisture-induced polyacrylate hydrogels for hybrid passive cooling. Nat. Commun. 2023, 14, 6707.

[53]

Cai, L. L.; Peng, Y. C.; Xu, J. W.; Zhou, C. Y.; Zhou, C. X.; Wu, P. L.; Lin, D. C.; Fan, S. H.; Cui, Y. Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 2019, 3, 1478–1486.

[54]

Cai, L. L.; Song, A. Y.; Li, W.; Hsu, P. C.; Lin, D. C.; Catrysse, P. B.; Liu, Y. Y.; Peng, Y. C.; Chen, J.; Wang, H. X. et al. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 2018, 30, e1802152.

[55]

Hsu, P. C.; Liu, C.; Song, A. Y.; Zhang, Z.; Peng, Y. C.; Xie, J.; Liu, K.; Wu, C. L.; Catrysse, P. B.; Cai, L. L. et al. A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 2017, 3, e1700895.

[56]

Shi, N. N.; Tsai, C. C.; Camino, F.; Bernard, G. D.; Yu, N. F.; Wehner, R. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 2015, 349, 298–301.

[57]

Hsu, P. C.; Song, A. Y.; Catrysse, P. B.; Liu, C.; Peng, Y. C.; Xie, J.; Fan, S. H.; Cui, Y. Radiative human body cooling by nanoporous polyethylene textile. Science 2016, 353, 1019–1023.

[58]

Wu, R. H.; Sui, C.; Chen, T. H.; Zhou, Z. R.; Li, Q. Z.; Yan, G. B.; Han, Y.; Liang, J. W.; Hung, P. J.; Luo, E. et al. Spectrally engineered textile for radiative cooling against urban heat islands. Science 2024, 384, 1203–1212.

[59]

Xie, F.; Jin, W. L.; Nolen, J. R.; Pan, H.; Yi, N. Q.; An, Y.; Zhang, Z. Y.; Kong, X. T.; Zhu, F.; Jiang, K. et al. Subambient daytime radiative cooling of vertical surfaces. Science 2024, 386, 788–794.

[60]

Chai, J. L.; Fan, J. T. Solar and thermal radiation–modulation materials for building applications. Adv. Energy Mater. 2023, 13, 2202932.

[61]

Gentle, A. R.; Smith, G. B. A Subambient open roof surface under the mid-summer sun. Adv. Sci. 2015, 2, 1500119.

[62]

Hu, R.; Liu, Y. D.; Shin, S.; Huang, S. Y.; Ren, X. C.; Shu, W. C.; Cheng, J. J.; Tao, G. M.; Xu, W. L.; Chen, R. K. et al. Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 2020, 10, 1903921.

[63]

He, M. Y.; Zhao, B. C.; Yue, X. J.; Chen, Y. F.; Qiu, F. X.; Zhang, T. Infrared radiative modulating textiles for personal thermal management: Principle, design and application. Nano Energy 2023, 116, 108821.

[64]

Wang, Z.; Kortge, D.; Zhu, J.; Zhou, Z. G.; Torsina, H.; Lee, C.; Bermel, P. Lightweight, passive radiative cooling to enhance concentrating photovoltaics. Joule 2020, 4, 2702–2717.

[65]

Lu, K. G.; Zhao, B.; Xu, C. F.; Li, X. S.; Pei, G. A full-spectrum synergetic management strategy for passive cooling of solar cells. Sol. Energy Mater. Sol. Cells 2022, 245, 111860.

[66]

Haechler, I.; Park, H.; Schnoering, G.; Gulich, T.; Rohner, M.; Tripathy, A.; Milionis, A.; Schutzius, T. M.; Poulikakos, D. Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere. Sci. Adv. 2021, 7, eabf3978.

[67]

Zou, H.; Wang, C. X.; Yu, J. Q.; Huang, D. F.; Yang, R. G.; Wang, R. Z. Eliminating greenhouse heat stress with transparent radiative cooling film. Cell Rep. Phys. Sci. 2023, 4, 101539.

[68]

Zhang, Q.; Qi, C.; Wang, X. Y.; Zhu, B.; Li, W.; Xiao, X. F.; Fu, H. Y.; Hu, S.; Zhu, S. N.; Xu, W. L. et al. Daytime radiative cooling dressings for accelerating wound healing under sunlight. Nat. Chem. Eng. 2024, 1, 301–310.

[69]

Lee, K. W.; Yi, J.; Kim, M. K.; Kim, D. R. Transparent radiative cooling cover window for flexible and foldable electronic displays. Nat. Commun. 2024, 15, 4443.

[70]

Li, J. Y.; Fu, Y.; Zhou, J. K.; Yao, K. M.; Ma, X.; Gao, S. W.; Wang, Z. K.; Dai, J. G.; Lei, D. Y.; Yu, X. G. Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. Sci. Adv. 2023, 9, eadg1837.

[71]

Chen, J. W.; Lu, L. Development of radiative cooling and its integration with buildings: A comprehensive review. Sol. Energy 2020, 212, 125–151.

[72]

Liu, J. W.; Zhang, J.; Tang, H. J.; Zhou, Z. H.; Zhang, D. B.; Ye, L.; Zhao, D. L. Recent advances in the development of radiative sky cooling inspired from solar thermal harvesting. Nano Energy 2021, 81, 105611.

[73]

Woo, H. Y.; Choi, Y.; Chung, H.; Lee, D. W.; Paik, T. Colloidal inorganic nano- and microparticles for passive daytime radiative cooling. Nano Converg. 2023, 10, 17.

[74]

Liu, J. W.; Zhang, Y. F.; Li, S.; Valenzuela, C.; Shi, S. K.; Jiang, C. X.; Wu, S. Q.; Ye, L.; Wang, L.; Zhou, Z. H. Emerging materials and engineering strategies for performance advance of radiative sky cooling technology. Chem. Eng. J. 2023, 453, 139739.

[75]

Xie, W.; Xiao, C. Y.; Sun, Y.; Fan, Y. L.; Zhao, B. Y.; Zhang, D.; Fan, T. X.; Zhou, H. Flexible photonic radiative cooling films: Fundamentals, fabrication and applications. Adv. Funct. Mater. 2023, 33, 2305734.

[76]

Li, Z. Z.; Chen, Q. Y.; Song, Y.; Zhu, B.; Zhu, J. Fundamentals, materials, and applications for daytime radiative cooling. Adv. Mater. Tech. 2020, 5, 1901007.

[77]

So, S.; Yun, J.; Ko, B.; Lee, D.; Kim, M.; Noh, J.; Park, C.; Park, J.; Rho, J. Radiative cooling for energy sustainability: From fundamentals to fabrication methods toward commercialization. Adv. Sci. 2024, 11, 2305067.

[78]

Lin, K. T.; Han, J. H.; Li, K.; Guo, C. S.; Lin, H.; Jia, B. H. Radiative cooling: Fundamental physics, atmospheric influences, materials and structural engineering, applications and beyond. Nano Energy 2021, 80, 105517.

[79]

Chen, M. J.; Pang, D.; Chen, X. Y.; Yan, H. J.; Yang, Y. Passive daytime radiative cooling: Fundamentals, material designs, and applications. EcoMat 2022, 4, e12153.

[80]

Liu, J.; Zhou, Z.; Zhang, J.; Feng, W.; Zuo, J. Advances and challenges in commercializing radiative cooling. Mater. Today Phys. 2019, 11, 100161.

[81]

Liang, J.; Wu, J. W.; Guo, J.; Li, H. G.; Zhou, X. J.; Liang, S.; Qiu, C. W.; Tao, G. M. Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 2023, 10, nwac208.

[82]

Chan, Y. H.; Zhang, Y.; Tennakoon, T.; Fu, S. C.; Chan, K. C.; Tso, C. Y.; Yu, K. M.; Wan, M. P.; Huang, B. L.; Yao, S. H. et al. Potential passive cooling methods based on radiation controls in buildings. Energy Convers. Manage. 2022, 272, 116342.

[83]

Chen, L. F.; Zhang, K.; Ma, M. Q.; Tang, S. H.; Li, F.; Niu, X. F. Sub-ambient radiative cooling and its application in buildings. Building Simul. 2020, 13, 1165–1189.

[84]

Tien, C. L. Radiation heat transfer. Nucl. Sci. Eng. 1971, 46, 441–442.

[85]

Taylor, J. H. Planck’s radiation law. Opt. News 1987, 13, 26–27.

[86]

Dickinson, R. E. Infrared radiative cooling in the mesosphere and lower thermosphere. J. Atmos. Terr. Phys. 1984, 46, 995–1008.

[87]

Fan, S. H.; Li, W. Photonics and thermodynamics concepts in radiative cooling. Nat. Photonics 2022, 16, 182–190.

[88]

Lee, A. C. L. A study of the continuum absorption within the 8–13 μm atmospheric window. Quart. J. Roy. Meteor. Soc. 1973, 99, 490–505.

[89]

Catalanotti, S.; Cuomo, V.; Piro, G.; Ruggi, D.; Silvestrini, V.; Troise, G. The radiative cooling of selective surfaces. Sol. Energy 1975, 17, 83–89.

[90]

Rephaeli, E.; Raman, A.; Fan, S. H. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 2013, 13, 1457–1461.

[91]

Yin, X. B.; Yang, R. G.; Tan, G.; Fan, S. H. Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science 2020, 370, 786–791.

[92]

Li, D.; Liu, X.; Li, W.; Lin, Z. H.; Zhu, B.; Li, Z. Z.; Li, J. L.; Li, B.; Fan, S. H.; Xie, J. W. et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 2021, 16, 153–158.

[93]

Peng, Y. C.; Chen, J.; Song, A. Y.; Catrysse, P. B.; Hsu, P. C.; Cai, L. L.; Liu, B. F.; Zhu, Y. Y.; Zhou, G. M.; Wu, D. S. et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 2018, 1, 105–112.

[94]

Wu, X. K.; Li, J. L.; Jiang, Q. Y.; Zhang, W. S.; Wang, B. S.; Li, R.; Zhao, S. M.; Wang, F.; Huang, Y.; Lyu, P. et al. An all-weather radiative human body cooling textile. Nat. Sustain. 2023, 6, 1446–1454.

[95]

Peng, Y. C.; Fan, L. L.; Jin, W. L.; Ye, Y. S.; Huang, Z. J.; Zhai, S.; Luo, X.; Ma, Y. X.; Tang, J.; Zhou, J. W. et al. Coloured low-emissivity films for building envelopes for year-round energy savings. Nat. Sustain. 2021, 5, 339–347.

[96]

Peng, Y. C.; Lai, J. C.; Xiao, X.; Jin, W. L.; Zhou, J. W.; Yang, Y. F.; Gao, X.; Tang, J.; Fan, L. L.; Fan, S. H. et al. Colorful low-emissivity paints for space heating and cooling energy savings. Proc. Natl. Acad. Sci. USA 2023, 120, e2300856120.

[97]

Zhou, J. W.; Chen, T. G.; Tsurimaki, Y.; Hajj-Ahmad, A.; Fan, L. L.; Peng, Y. C.; Xu, R.; Wu, Y. C.; Assawaworrarit, S.; Fan, S. H. et al. Angle-selective thermal emitter for directional radiative cooling and heating. Joule 2023, 7, 2830–2844.

[98]

Mandal, J.; Anand, J.; Mandal, S.; Brewer, J.; Ramachandran, A.; Raman, A. P. Radiative cooling and thermoregulation in the earth’s glow. Cell Rep. Phys. Sci. 2024, 5, 102065.

[99]

Wu, X. K.; Li, J. L.; Xie, F.; Wu, X. E.; Zhao, S. M.; Jiang, Q. Y.; Zhang, S. L.; Wang, B. S.; Li, Y. R.; Gao, D. et al. A dual-selective thermal emitter with enhanced subambient radiative cooling performance. Nat. Commun. 2024, 15, 815.

[100]

Song, J. N.; Zhang, W. L.; Sun, Z. N.; Pan, M. Y.; Tian, F.; Li, X. H.; Ye, M.; Deng, X. Durable radiative cooling against environmental aging. Nat. Commun. 2022, 13, 4805.

[101]

Aili, A.; Wei, Z. Y.; Chen, Y. Z.; Zhao, D. L.; Yang, R. G.; Yin, X. B. Selection of polymers with functional groups for daytime radiative cooling. Mater. Today Phys. 2019, 10, 100127.

[102]

Zhu, R. K.; Hu, D. W.; Chen, Z.; Xu, X. B.; Zou, Y. S.; Wang, L.; Gu, Y. Plasmon-enhanced infrared emission approaching the theoretical limit of radiative cooling ability. Nano Lett. 2020, 20, 6974–6980.

[103]
United Nations Environment Programme. Global Status Report for Buildings and Construction: Beyond foundations: Mainstreaming sustainable solutions to cut emissions from the buildings sector; United Nations Environment Programme: Nairobi, 2024.
[104]
China Association of Building Energy Efficiency. 2022 Research Report of China Building Energy Consumption and Carbon Emissions; China Association of Building Energy Efficiency: Chongqing, 2022.
[105]

Zhao, D. L.; Tang, H. J. Staying stably cool in the sunlight. Science 2023, 382, 644–645.

[106]

Zhou, L.; Song, H. M.; Liang, J. W.; Singer, M.; Zhou, M.; Stegenburgs, E.; Zhang, N.; Xu, C.; Ng, T.; Yu, Z. F. et al. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2019, 2, 718–724.

[107]

Chae, D.; Son, S.; Lim, H.; Jung, P. H.; Ha, J.; Lee, H. Scalable and paint-format microparticle-polymer composite enabling high-performance daytime radiative cooling. Mater. Today Phys. 2021, 18, 100389.

[108]

Son, S.; Liu, Y. T.; Chae, D.; Lee, H. Cross-linked porous polymeric coating without a metal-reflective layer for sub-ambient radiative cooling. ACS Appl. Mater. Interfaces 2020, 12, 57832–57839.

[109]

Qi, G. G.; Tan, X. Y.; Tu, Y. T.; Yang, X. B.; Qiao, Y. L.; Wang, Y. Q.; Geng, J. L.; Yao, S. M.; Chen, X. B. Ordered-porous-array polymethyl methacrylate films for radiative cooling. ACS Appl. Mater. Interfaces 2022, 14, 31277–31284.

[110]

Atiganyanun, S.; Plumley, J. B.; Han, S. J.; Hsu, K.; Cytrynbaum, J.; Peng, T. L.; Han, S. M.; Han, S. E. Effective radiative cooling by paint-format microsphere-based photonic random media. ACS Photonics 2018, 5, 1181–1187.

[111]

Huang, J.; Fan, D. S.; Li, Q. Structural rod-like particles for highly efficient radiative cooling. Mater. Today Energy 2022, 25, 100955.

[112]

Tang, H. J.; Li, S.; Zhang, Y. F.; Na, Y.; Sun, C.; Zhao, D. L.; Liu, J. W.; Zhou, Z. H. Radiative cooling performance and life-cycle assessment of a scalable MgO paint for building applications. J. Cleaner Prod. 2022, 380, 135035.

[113]

Hong, D.; Lee, Y. J.; Jeon, O. S.; Lee, I. S.; Lee, S. H.; Won, J. Y.; Jeon, Y. P.; La, Y.; Kim, S.; Park, G. S. et al. Humidity-tolerant porous polymer coating for passive daytime radiative cooling. Nat. Commun. 2024, 15, 4457.

[114]

Luo, H.; Yang, M.; Guo, J.; Zou, W. Z.; Xu, J.; Zhao, N. Hierarchical porous polymer coatings based on UV-curing for highly efficient passive all-day radiative cooling. ACS Appl. Polym. Mater. 2022, 4, 5746–5755.

[115]

Mandal, J.; Yang, Y.; Yu, N. F.; Raman, A. P. Paints as a scalable and effective radiative cooling technology for buildings. Joule 2020, 4, 1350–1356.

[116]

Bao, H.; Yan, C.; Wang, B. X.; Fang, X.; Zhao, C. Y.; Ruan, X. L. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Sol. Energy Mater. Sol. Cells 2017, 168, 78–84.

[117]

Han, D.; Wang, C. H.; Han, C. B.; Cui, Y. N.; Ren, W. R.; Zhao, W. K.; Jiang, Q.; Yan, H. Highly optically selective and thermally insulating porous calcium silicate composite SiO2 aerogel coating for daytime radiative cooling. ACS Appl. Mater. Interfaces 2024, 16, 9303–9312.

[118]

Li, X. Y.; Peoples, J.; Huang, Z. F.; Zhao, Z. X.; Qiu, J.; Ruan, X. L. Full daytime sub-ambient radiative cooling in commercial-like paints with high figure of merit. Cell Rep. Phys. Sci. 2020, 1, 100221.

[119]

Li, X. Y.; Peoples, J.; Yao, P. Y.; Ruan, X. L. Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 2021, 13, 21733–21739.

[120]

Andrady, A. L.; Hamid, S. H.; Hu, X.; Torikai, A. Effects of increased solar ultraviolet radiation on materials. J. Photochem. Photobiol. B: Biol. 1998, 46, 96–103.

[121]

Yang, N.; Fu, Y.; Xue, X.; Lei, D. Y.; Dai, J. G. Geopolymer-based sub-ambient daytime radiative cooling coating. EcoMat 2023, 5, e12284.

[122]

Xiong, L. H.; Wei, Y.; Chen, C. L.; Chen, X.; Fu, Q.; Deng, H. Thin lamellar films with enhanced mechanical properties for durable radiative cooling. Nat. Commun. 2023, 14, 6129.

[123]

Huang, M. C.; Xue, C. H.; Huang, J. Y.; Liu, B. Y.; Guo, X. J.; Bai, Z. X.; Wei, R. X.; Wang, H. D.; Du, M. M.; Jia, S. T. et al. A hierarchically structured self-cleaning energy-free polymer film for daytime radiative cooling. Chem. Eng. J. 2022, 442, 136239.

[124]

Jaramillo-Fernandez, J.; Yang, H.; Schertel, L.; Whitworth, G. L.; Garcia, P. D.; Vignolini, S.; Sotomayor-Torres, C. M. Highly-scattering cellulose-based films for radiative cooling. Adv. Sci. 2022, 9, 2104758.

[125]

Zhao, J. Y.; Meng, Q.; Li, Y.; Yang, Z. C.; Li, J. T. Structural porous ceramic for efficient daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 2023, 15, 47286–47293.

[126]

Park, J.; Chae, D.; Lim, H.; Ha, J.; Park, C.; Sung, H.; Song, H.; Lee, H. Highly efficient and versatile daytime radiative cooler based on optimized polymer-ceramic composite fabricated via facile process. Sol. Energy Mater. Sol. Cells 2024, 269, 112763.

[127]

She, Y. N.; Wang, J.; Zhu, C. F.; Tian, F. Y.; Jin, Y. Y.; Mao, W.; Wu, Y. T.; Chen, K.; Xu, X. W. From nature back to nature: Spectrally modified poplar and its all-day passive radiative cooling. Ind. Crops Prod. 2023, 193, 116242.

[128]

Li, G. W.; Huang, J. W.; Zhou, J.; Zhang, Y. C.; Zhang, C. C.; Rao, Z. G.; Fei, L. F. A flame-retardant wood-based composite with magnesium-aluminium layered double hydroxides for efficient daytime radiative cooling. J. Mater. Chem. A 2024, 12, 1609–1616.

[129]

Li, N.; Wei, L. M.; You, M. Z.; Chen, M. T.; Li, H. J.; Liu, H. J.; Fang, Z.; Bao, H. F. Hierarchically structural TiO2-PVDF fiber film with particle-enhanced spectral performance for radiative sky cooling. Sol. Energy 2023, 259, 41–48.

[130]

Zhang, J.; Zhou, Z. H.; Tang, H. J.; Xing, J. C.; Quan, J. Y.; Liu, J. W.; Yu, J. R.; Hu, M. K. Mechanically robust and spectrally selective convection shield for daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 2021, 13, 14132–14140.

[131]

Tang, H. J.; Guo, C. Y.; Fan, F.; Pan, H. D.; Xu, Q. H.; Zhao, D. L. Both sub-ambient and above-ambient conditions: A comprehensive approach for the efficient use of radiative cooling. Energy Environ. Sci. 2024, 17, 4498–4507.

[132]

Banik, U.; Meddeb, H.; Berends, D.; Reininghaus, N.; Sergeev, O.; Busch, L.; Gehrke, K.; Vehse, M.; Agert, C. Impact of parasitic heat fluxes on deep sub-ambient radiative coolers under variable pressure. Appl. Therm. Eng. 2024, 237, 121655.

[133]

Li, X. S.; Xu, H. L.; Yang, Y. C.; Li, F. X.; Ramakrishna, S.; Yu, J. Y.; Ji, D. X.; Qin, X. H. Selective spectral absorption of nanofibers for color-preserving daytime radiative cooling. Mater. Horiz. 2023, 10, 2487–2495.

[134]

Liu, H.; Sun, Y.; Ren, J.; Liang, D. D.; Yang, Y. X.; Fan, Z. Q.; Wang, C. Inorganic multilayer film with high infrared selective emission enhanced by SiN x for daytime radiative cooling. ACS Appl. Energy Mater. 2024, 7, 2478–2486.

[135]

Li, W.; Fan, S. H. Nanophotonic control of thermal radiation for energy applications. Opt. Express 2018, 26, 15995–16021.

[136]

Chen, Z.; Zhu, L. X.; Raman, A.; Fan, S. H. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 2016, 7, 13729.

[137]

Verbeke, S.; Audenaert, A. Thermal inertia in buildings: A review of impacts across climate and building use. Renew. Sustain. Energy Rev. 2018, 82, 2300–2318.

[138]

Martilli, A.; Clappier, A.; Rotach, M. W. An urban surface exchange parameterisation for mesoscale models. Boundary Layer Meteorol. 2002, 104, 261–304.

[139]

Joudi, A.; Svedung, H.; Cehlin, M.; Rönnelid, M. Reflective coatings for interior and exterior of buildings and improving thermal performance. Appl. Energy 2013, 103, 562–570.

[140]

Zhou, Z. G.; Wang, X.; Ma, Y. G.; Hu, B.; Zhou, J. Transparent polymer coatings for energy-efficient daytime window cooling. Cell Rep. Phys. Sci. 2020, 1, 100231.

[141]

Paneri, A.; Wong, I. L.; Burek, S. Transparent insulation materials: An overview on past, present and future developments. Sol. Energy 2019, 184, 59–83.

[142]

Yi, Z. T.; Lv, Y. Y.; Xu, D. K.; Xu, J. T.; Qian, H.; Zhao, D. L.; Yang, R. G. Energy saving analysis of a transparent radiative cooling film for buildings with roof glazing. Energy Built Environ. 2021, 2, 214–222.

[143]

Huang, G.; Yengannagari, A. R.; Matsumori, K.; Patel, P.; Datla, A.; Trindade, K.; Amarsanaa, E.; Zhao, T. H.; Köhler, U.; Busko, D. et al. Radiative cooling and indoor light management enabled by a transparent and self-cleaning polymer-based metamaterial. Nat. Commun. 2024, 15, 3798.

[144]

Zhou, Y.; Wang, S. C.; Peng, J. Q.; Tan, Y. T.; Li, C. C.; Boey, F. Y. C.; Long, Y. Liquid thermo-responsive smart window derived from hydrogel. Joule 2020, 4, 2458–2474.

[145]

Wang, S. C.; Jiang, T. Y.; Meng, Y.; Yang, R. G.; Tan, G.; Long, Y. Scalable thermochromic smart windows with passive radiative cooling regulation. Science 2021, 374, 1501–1504.

[146]

Liu, S.; Li, Y.; Wang, Y.; Yu, K. M.; Huang, B. L.; Tso, C. Y. Near-infrared-activated thermochromic perovskite smart windows. Adv. Sci. 2022, 9, 2106090.

[147]

Liu, X. H.; Zhang, W. R.; Zhang, X.; Zhou, Z. G.; Wang, C. F.; Pan, Y. M.; Hu, B.; Liu, C. T.; Pan, C. F.; Shen, C. Y. Transparent ultrahigh-molecular-weight polyethylene/MXene films with efficient UV-absorption for thermal management. Nat. Commun. 2024, 15, 3076.

[148]

Zhang, X. P.; Li, X.; Wang, F. Q.; Yuan, W. Z.; Cheng, Z. M.; Liang, H. X.; Yan, Y. Y. Low-cost and large-scale producible biomimetic radiative cooling glass with multiband radiative regulation performance. Adv. Opt. Mater. 2022, 10, 2202031.

[149]

Yu, S.; Yu, J. S.; Chen, Z. H.; Li, Q. H.; Wang, Z. C.; Luo, X. B.; Kim, S. K.; Hu, R. Ultrahigh visible-transparency, submicrometer, and polymer-free radiative cooling meta-glass coating for building energy saving. ACS Photonics 2024, 11, 3412–3423.

[150]

Wen, Z. Y.; Tang, J. Z.; Zhai, M. M.; Wang, S. H.; Zhang, S. W.; Wang, J. F.; Cui, Y. M.; Liu, Q. T.; Zhang, J. M.; Wang, X. G. Tough and transparent supramolecular cross-linked Co-assembled silk fibroin films for passive radiative cooling. Adv. Funct. Mater. 2024, 34, 2406920.

[151]

Li, J. L.; Jiang, Y.; Liu, J.; Wu, L. S.; Xu, N.; Zhang, Z. Y.; Zhao, D. Y.; Li, G.; Wang, P.; Li, W. et al. A photosynthetically active radiative cooling film. Nat. Sustain. 2024, 7, 786–795.

[152]

Wang, J. Y.; Tan, G.; Yang, R. G.; Zhao, D. L. Materials, structures, and devices for dynamic radiative cooling. Cell Rep. Phys. Sci. 2022, 3, 101198.

[153]

Heo, S. Y.; Lee, G. J.; Kim, D. H.; Kim, Y. J.; Ishii, S.; Kim, M. S.; Seok, T. J.; Lee, B. J.; Lee, H.; Song, Y. M. A Janus emitter for passive heat release from enclosures. Sci. Adv. 2020, 6, eabb1906.

[154]

Kim, M.; Lee, D.; Son, S.; Yang, Y.; Lee, H.; Rho, J. Visibly transparent radiative cooler under direct sunlight. Adv. Opt. Mater. 2021, 9, 2002226.

[155]

Lee, G.; Kang, H.; Yun, J.; Chae, D.; Jeong, M.; Jeong, M.; Lee, D.; Kim, M.; Lee, H.; Rho, J. Integrated triboelectric nanogenerator and radiative cooler for all-weather transparent glass surfaces. Nat. Commun. 2024, 15, 6537.

[156]

Song, J. N.; Shen, Q. C.; Shao, H. J.; Deng, X. Anti-environmental aging passive daytime radiative cooling. Adv. Sci. 2024, 11, 2305664.

[157]
ASTM International. Standard Practice for Laboratory Soiling and Weathering of Roofing Materials to Simulate Effects of Natural Exposure on Solar Reflectance and Thermal Emittance; ASTM D7897-18; West Conshohocken, PA, 2018.
[158]

Yousif, E.; Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene: Review. SpringerPlus 2013, 2, 398.

[159]

Yao, P. C.; Chen, Z. P.; Liu, T. J.; Liao, X. B.; Yang, Z. W.; Li, J. L.; Jiang, Y.; Xu, N.; Li, W.; Zhu, B. et al. Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling. Adv. Mater. 2022, 34, 2208236.

[160]

Zhong, H. M.; Gao, S. W.; Wang, Z. K. Superhydrophobic designs for durable radiative cooling. Langmuir 2024, 40, 2792–2799.

[161]

Meng, X.; Chen, Z. C.; Qian, C. L.; Li, Q.; Chen, X. M. Durable and mechanically robust superhydrophobic radiative cooling coating. Chem. Eng. J. 2023, 478, 147341.

[162]

Fan, F.; Xu, Q. H.; Zhao, D. L. Heat transfer properties of dusty radiative cooling surface: Modeling and experimental studies. Int. J. Heat Mass Transfer 2023, 214, 124465.

[163]

Ding, Z. M.; Pattelli, L.; Xu, H. B.; Sun, W. H.; Li, X.; Pan, L.; Zhao, J. P.; Wang, C. Y.; Zhang, X.; Song, Y. et al. Iridescent daytime radiative cooling with no absorption peaks in the visible range. Small 2022, 18, 2202400.

[164]

Yu, S. X.; Zhang, Q.; Wang, Y. F.; Lv, Y. W.; Ma, R. J. Photonic-structure colored radiative coolers for daytime subambient cooling. Nano Lett. 2022, 22, 4925–4932.

[165]

Xu, J.; Wan, R.; Xu, W.; Ma, Z.; Cheng, X.; Yang, R.; Yin, X. Colored radiative cooling coatings using phosphor dyes. Mater. Today Nano 2022, 19, 100239.

[166]

Li, J. C.; Dong, K. C.; Zhang, T. C.; Tseng, D.; Fang, C.; Guo, R. H.; Li, J. G.; Xu, Y. J.; Dun, C.; Urban, J. J. et al. Printable, emissivity-adaptive and albedo-optimized covering for year-round energy saving. Joule 2023, 7, 2552–2567.

[167]

Chen, Y. J.; Mandal, J.; Li, W. X.; Smith-Washington, A.; Tsai, C. C.; Huang, W. L.; Shrestha, S.; Yu, N. F.; Han, R. P. S.; Cao, A. Y. et al. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 2020, 6, eaaz5413.

[168]

Chen, F. X.; Huang, Y.; Li, R.; Zhang, S. L.; Wang, B. S.; Zhang, W. S.; Wu, X. K.; Jiang, Q. Y.; Wang, F.; Zhang, R. F. Bio-inspired structural colors and their applications. Chem. Commun. 2021, 57, 13448–13464.

[169]

Li, W.; Shi, Y.; Chen, Z.; Fan, S. H. Photonic thermal management of coloured objects. Nat. Commun. 2018, 9, 4240.

[170]

Zhu, W. K.; Droguet, B.; Shen, Q. C.; Zhang, Y.; Parton, T. G.; Shan, X. W.; Parker, R. M.; De Volder, M. F. L.; Deng, T.; Vignolini, S. et al. Structurally colored radiative cooling cellulosic films. Adv. Sci. 2022, 9, 2202061.

[171]

Wang, X. Y.; Zhang, Q.; Wang, S. H.; Jin, C. Q.; Zhu, B.; Su, Y. C.; Dong, X. Y.; Liang, J.; Lu, Z. D.; Zhou, L. et al. Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. Sci. Bull.(Beijing) 2022, 67, 1874–1881.

[172]
Forsberg, C. H. Introduction to heat transfer. In Heat Transfer Principles and Applications. Forsberg, C. H., Ed.; Elsevier: Amsterdam, 2021; pp 1–21.
[173]

Yu, L.; Huang, Y. M.; Zhao, Y. W.; Rao, Z. H.; Li, W. H.; Chen, Z.; Chen, M. J. Self-sustained and insulated radiative/evaporative cooler for daytime subambient passive cooling. ACS Appl. Mater. Interfaces 2024, 16, 6513–6522.

[174]

Qian, X.; Zhou, J. W.; Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 2021, 20, 1188–1202.

[175]

Cuce, E.; Cuce, P. M.; Wood, C. J.; Riffat, S. B. Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2014, 34, 273–299.

[176]

Hu, F.; Wu, S. Y.; Sun, Y. G. Hollow-structured materials for thermal insulation. Adv. Mater. 2019, 31, 1801001.

[177]

Zhong, H. M.; Li, Y. N.; Zhang, P.; Gao, S. W.; Liu, B. Y.; Wang, Y.; Meng, T.; Zhou, Y. S.; Hou, H. W.; Xue, C. H. et al. Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 2021, 15, 10076–10083.

[178]

Tian, Y. P.; Liu, X. J.; Wang, Z. Q.; Li, J. S.; Mu, Y.; Zhou, S. Y.; Chen, F. Q.; Minus, M. L.; Xiao, G.; Zheng, Y. Subambient daytime cooling enabled by hierarchically architected all-inorganic metapaper with enhanced thermal dissipation. Nano Energy 2022, 96, 107085.

[179]

Fu, H. T.; Zhang, Y. R.; Liu, X. H.; Han, H. X.; Kondo, H.; Zhou, H. Flexible highly thermal conductive hybrid film for efficient radiative cooling. Sol. Energy Mater. Sol. Cells 2024, 266, 112660.

[180]

Li, W. C.; Zhan, H. C.; Huang, N. Y.; Ying, Y.; Yu, J.; Zheng, J. W.; Qiao, L.; Li, J.; Che, S. L. Scalable and flexible multi-layer prismatic photonic metamaterial film for efficient daytime radiative cooling. Small Methods 2024, 8, 2301258.

[181]

Ebi, K. L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R. S.; Ma, W.; Malik, A. et al. Hot weather and heat extremes: Health risks. Lancet 2021, 398, 698–708.

[182]

Xue, S. D.; Huang, G. H.; Chen, Q.; Wang, X. G.; Fan, J. T.; Shou, D. H. Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 2024, 16, 153.

[183]

Walther, G. R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T. J. C.; Fromentin, J. M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395.

[184]

Peng, Y. C.; Cui, Y. Advanced textiles for personal thermal management and energy. Joule 2020, 4, 724–742.

[185]

Fang, Y. S.; Chen, G. R.; Bick, M.; Chen, J. Smart textiles for personalized thermoregulation. Chem. Soc. Rev. 2021, 50, 9357–9374.

[186]

Zhu, B.; Li, W.; Zhang, Q.; Li, D.; Liu, X.; Wang, Y. X.; Xu, N.; Wu, Z.; Li, J. L.; Li, X. Q. et al. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 2021, 16, 1342–1348.

[187]

Song, Y. N.; Lei, M. Q.; Lei, J.; Li, Z. M. Spectrally selective polyvinylidene fluoride textile for passive human body cooling. Mater. Today Energy 2020, 18, 100504.

[188]

Chen, Z.; Zhu, L. X.; Li, W.; Fan, S. H. Simultaneously and synergistically harvest energy from the sun and outer space. Joule 2019, 3, 101–110.

[189]

Steketee, J. Spectral emissivity of skin and pericardium. Phys. Med. Biol. 1973, 18, 686–694.

[190]

Tong, J. K.; Huang, X. P.; Boriskina, S. V.; Loomis, J.; Xu, Y. F.; Chen, G. Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2015, 2, 769–778.

[191]

Hu, R. J.; Wang, N.; Hou, L. L.; Liu, J. C.; Cui, Z. M.; Zhang, C. H.; Zhao, Y. Bilayer nanoporous polyethylene membrane with anisotropic wettability for rapid water transportation/evaporation and radiative cooling. ACS Appl. Mater. Interfaces 2022, 14, 9833–9843.

[192]

Liu, X. H.; Li, Y. N.; Pan, Y. M.; Zhou, Z. Y.; Zhai, Z. Y.; Liu, C. T.; Shen, C. Y. A shish-kebab superstructure film for personal radiative cooling. ACS Appl. Mater. Interfaces 2023, 15, 17188–17194.

[193]

Chen, Y. P.; Du, Z. C.; Zhang, J. Y.; Zeng, P.; Liang, H. G.; Wang, Y. X.; Sun, Q. F.; Zhou, G. M.; Li, H. Q. Personal microenvironment management by smart textiles with negative oxygen ions releasing and radiative cooling performance. ACS Nano 2023, 17, 13269–13277.

[194]

Gu, B.; Xu, Q. H.; Wang, H. K.; Pan, H. D.; Zhao, D. L. A hierarchically nanofibrous self-cleaning textile for efficient personal thermal management in severe hot and cold environments. ACS Nano 2023, 17, 18308–18317.

[195]

Fang, Y. S.; Zhao, X.; Chen, G. R.; Tat, T.; Chen, J. Smart polyethylene textiles for radiative and evaporative cooling. Joule 2021, 5, 752–754.

[196]

Zhang, X. A.; Yu, S. J.; Xu, B. B.; Li, M.; Peng, Z. W.; Wang, Y. X.; Deng, S. L.; Wu, X. J.; Wu, Z. P.; Ouyang, M. et al. Dynamic gating of infrared radiation in a textile. Science 2019, 363, 619–623.

[197]

Shi, N. N.; Tsai, C. C.; Carter, M. J.; Mandal, J.; Overvig, A. C.; Sfeir, M. Y.; Lu, M.; Craig, C. L.; Bernard, G. D.; Yang, Y. et al. Nanostructured fibers as a versatile photonic platform: Radiative cooling and waveguiding through transverse Anderson localization. Light: Sci. Appl. 2018, 7, 37.

[198]

Xia, J. C.; Kong, X. D.; Li, L. H.; Zhang, Z. B.; Chen, Y. P.; Li, M. H.; Qin, Y.; Cai, T.; Dai, W.; Fang, S. Q. et al. High thermal conductivity and radiative cooling designed boron nitride nanosheets/silk fibroin films for personal thermal management. ACS Appl. Mater. Interfaces 2024, 16, 7732–7741.

[199]

Hsu, P. C.; Li, X. Q. Photon-engineered radiative cooling textiles. Science 2020, 370, 784–785.

[200]

Han, D.; Ng, B. F.; Wan, M. P. Preliminary study of passive radiative cooling under Singapore's tropical climate. Sol. Energy Mater. Sol. Cells 2020, 206, 110270.

[201]

Godbole, R. V. On destabilization of clouds by radiative cooling. Mon. Weather Rev. 1973, 101, 496–500.

[202]

Huang, J. Y.; Lin, C. J.; Li, Y.; Huang, B. L. Effects of humidity, aerosol, and cloud on subambient radiative cooling. Int. J. Heat Mass Transfer 2022, 186, 122438.

[203]

Wu, X. E.; Wang, Y. D.; Liang, X. P.; Zhang, Y.; Bi, P.; Zhang, M. C.; Li, S.; Liang, H. R.; Wang, S.; Wang, H. M. et al. Durable radiative cooling multilayer silk textile with excellent comprehensive performance. Adv. Funct. Mater. 2024, 34, 2313539.

[204]

Dong, J. W.; Feng, Y. Z.; Lin, K.; Zhou, B.; Su, F. M.; Liu, C. T. A stretchable electromagnetic interference shielding fabric with dual-mode passive personal thermal management. Adv. Funct. Mater. 2024, 34, 2310774.

[205]

Zhang, Q.; Wang, S. H.; Wang, X. Y.; Jiang, Y.; Li, J. L.; Xu, W. L.; Zhu, B.; Zhu, J. Recent progress in daytime radiative cooling: Advanced material designs and applications. Small Methods 2022, 6, 2101379.

[206]

Kalmutzki, M. J.; Diercks, C. S.; Yaghi, O. M. Metal-organic frameworks for water harvesting from air. Adv. Mater. 2018, 30, 1704304.

[207]

Lord, J.; Thomas, A.; Treat, N.; Forkin, M.; Bain, R.; Dulac, P.; Behroozi, C. H.; Mamutov, T.; Fongheiser, J.; Kobilansky, N. et al. Global potential for harvesting drinking water from air using solar energy. Nature 2021, 598, 611–617.

[208]

Tan, J.; Wang, X.; Chu, W. C.; Fang, S. M.; Zheng, C. X.; Xue, M. M.; Wang, X. F.; Hu, T.; Guo, W. L. Harvesting energy from atmospheric water: Grand challenges in continuous electricity generation. Adv. Mater. 2024, 36, 2211165.

[209]

Guo, C. Y.; Tang, H. J.; Wang, P. F.; Xu, Q. H.; Pan, H. D.; Zhao, X. Y.; Fan, F.; Li, T. X.; Zhao, D. L. Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting. Nat. Commun. 2024, 15, 6100.

[210]

Wang, J. Y.; Ying, W. J.; Lin, B. W.; Li, C. F.; Deng, C. H.; Zhang, H.; Wang, S. G.; Wang, R. Z. Tillandsia-inspired ultra-efficient thermo-responsive hygroscopic nanofibers for solar-driven atmospheric water harvesting. Adv. Mater. 2024, 2408977.

[211]

Liu, C. Y.; Fan, J. J.; Bao, H. Hydrophilic radiative cooler for direct water condensation in humid weather. Sol. Energy Mater. Sol. Cells 2020, 216, 110700.

[212]

Xi, Z. Y.; Li, S.; Yu, L.; Yan, H. J.; Chen, M. J. All-day freshwater harvesting by selective solar absorption and radiative cooling. ACS Appl. Mater. Interfaces 2022, 14, 26255–26263.

[213]

Zhang, Y.; Zhu, W. K.; Zhang, C.; Peoples, J.; Li, X.; Felicelli, A. L.; Shan, X. W.; Warsinger, D. M.; Borca-Tasciuc, T.; Ruan, X. L. et al. Atmospheric water harvesting by large-scale radiative cooling cellulose-based fabric. Nano Lett. 2022, 22, 2618–2626.

[214]

Wang, Y.; Gao, S. W.; Zhong, H. M.; Zhang, B. P.; Cui, M. M.; Jiang, M. N.; Wang, S.; Wang, Z. K. Heterogeneous wettability and radiative cooling for efficient deliquescent sorbents-based atmospheric water harvesting. Cell Rep. Phys. Sci. 2022, 3, 100879.

[215]

Ahmad, S.; Siddiqui, A. R.; Yang, K. J.; Zhou, M.; Ali, H. M.; Hardian, R.; Szekely, G.; Daniel, D.; Yang, S.; Gan, Q. Q. Lubricated surface in a vertical double-sided architecture for radiative cooling and atmospheric water harvesting. Adv. Mater. 2024, 36, e2404037.

[216]

Zhu, L. X.; Raman, A. P.; Fan, S. H. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl. Acad. Sci. USA 2015, 112, 12282–12287.

[217]

Li, W.; Shi, Y.; Chen, K. F.; Zhu, L. X.; Fan, S. H. A comprehensive photonic approach for solar cell cooling. ACS Photonics 2017, 4, 774–782.

[218]

Al-Khayat, O.; Hong, J. K.; Beck, D. M.; Minett, A. I.; Neto, C. Patterned polymer coatings increase the efficiency of dew harvesting. ACS Appl. Mater. Interfaces 2017, 9, 13676–13684.

[219]

Li, J. L.; Wang, X. Y.; Liang, D.; Xu, N.; Zhu, B.; Li, W.; Yao, P. C.; Jiang, Y.; Min, X. Z.; Huang, Z. Z. et al. A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 2022, 8, eabq0411.

[220]

Tang, K. C.; Dong, K. C.; Li, J. C.; Gordon, M. P.; Reichertz, F. G.; Kim, H.; Rho, Y.; Wang, Q. J.; Lin, C. Y.; Grigoropoulos, C. P. et al. Temperature-adaptive radiative coating for all-season household thermal regulation. Science 2021, 374, 1504–1509.

[221]

Guo, N.; Yang, R. Y.; Chen, M. J.; Yan, H. J.; Chen, W. Self-adaptive colored radiative cooling by tuning visible spectra. Solar RRL 2023, 7, 2300512.

[222]

Zhu, L. P.; Wang, L. F.; Pan, C. F.; Chen, L. B.; Xue, F.; Chen, B. D.; Yang, L. J.; Su, L.; Wang, Z. L. Enhancing the efficiency of silicon-based solar cells by the piezo-phototronic effect. ACS Nano 2017, 11, 1894–1900.

[223]

Etxebarria, I.; Ajuria, J.; Pacios, R. Solution-processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10%. Org. Electron. 2015, 19, 34–60.

[224]

Taguchi, M.; Maruyama, E.; Tanaka, M. Temperature dependence of amorphous/crystalline silicon heterojunction solar cells. Jpn. J. Appl. Phys. 2008, 47, 814.

[225]

Singh, P.; Ravindra, N. M. Temperature dependence of solar cell performance—An analysis. Sol. Energy Mater. Sol. Cells 2012, 101, 36–45.

[226]

Zhao, B.; Lu, K. G.; Hu, M. K.; Liu, J.; Wu, L. J.; Xu, C. F.; Xuan, Q. D.; Pei, G. Radiative cooling of solar cells with micro-grating photonic cooler. Renew. Energy 2022, 191, 662–668.

[227]

Guo, J. F.; Huai, X. L. Maximizing electric power through spectral-splitting photovoltaic-thermoelectric hybrid system integrated with radiative cooling. Adv. Sci. 2023, 10, 2206575.

[228]

Heo, S. Y.; Kim, D. H.; Song, Y. M.; Lee, G. J. Determining the effectiveness of radiative cooler-integrated solar cells. Adv. Energy Mater. 2022, 12, 2103258.

[229]

Dong, M. H.; Chen, N.; Zhao, X. D.; Fan, S. H.; Chen, Z. Nighttime radiative cooling in hot and humid climates. Opt. Express 2019, 27, 31587–31598.

[230]

Kou, J. L.; Jurado, Z.; Chen, Z.; Fan, S. H.; Minnich, A. J. Daytime radiative cooling using near-black infrared emitters. ACS Photonics 2017, 4, 626–630.

[231]

Ulpiani, G.; Ranzi, G.; Shah, K. W.; Feng, J.; Santamouris, M. On the energy modulation of daytime radiative coolers: A review on infrared emissivity dynamic switch against overcooling. Sol. Energy 2020, 209, 278–301.

[232]

Tang, W. M.; Zhan, Y. H.; Yang, J. R.; Meng, X.; Zhu, X. Y.; Li, Y.; Lin, T. Y.; Jiang, L.; Zhao, Z. G.; Wang, S. T. Cascaded heteroporous nanocomposites for thermo-adaptive passive radiation cooling. Adv. Mater. 2024, 36, 2310923.

[233]

Xue, X.; Qiu, M.; Li, Y. W.; Zhang, Q. M.; Li, S. Q.; Yang, Z.; Feng, C.; Zhang, W. D.; Dai, J. G.; Lei, D. Y. et al. Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 2020, 32, 1906751.

[234]

Wang, X. J.; Narayan, S. Thermal radiative switching interface for energy-efficient temperature control. Renew. Energy 2022, 197, 574–582.

[235]

Guo, N.; Yu, L.; Shi, C. M.; Yan, H. J.; Chen, M. J. A facile and effective design for dynamic thermal management based on synchronous solar and thermal radiation regulation. Nano Lett. 2024, 24, 1447–1453.

[236]

Mandal, J.; Jia, M. X.; Overvig, A.; Fu, Y. K.; Che, E.; Yu, N. F.; Yang, Y. Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule 2019, 3, 3088–3099.

[237]

Zhou, L.; Yin, X. B.; Gan, Q. Q. Best practices for radiative cooling. Nat. Sustain. 2023, 6, 1030–1032.

[238]

Sui, C. X.; Hsu, P. C. Standardizing the thermodynamic definition of daytime subambient radiative cooling. ACS Energy Lett. 2024, 9, 2997–3000.

[239]

Zhang, Q.; Rao, Z. H.; Ma, R. J. Radiative cooling: Arising from practice and in turn serving practice. Nanophotonics 2024, 13, 563–582.

[240]

Zhao, D. L.; Yin, X. B.; Xu, J. T.; Tan, G.; Yang, R. G. Radiative sky cooling-assisted thermoelectric cooling system for building applications. Energy 2020, 190, 116322.

[241]

Zhao, D. L.; Aili, A.; Zhai, Y.; Lu, J. T.; Kidd, D.; Tan, G.; Yin, X. B.; Yang, R. G. Subambient cooling of water: Toward real-world applications of daytime radiative cooling. Joule 2019, 3, 111–123.

[242]

Liu, X. Y.; Li, P. L.; Liu, Y. J.; Zhang, C.; He, M.; Pei, Z. T.; Chen, J.; Shi, K. M.; Liu, F.; Wang, W. L. et al. Hybrid passive cooling for power equipment enabled by metal-organic framework. Adv. Mater. 2024, 36, e2409473.

[243]

Poredoš, P.; Shan, H.; Wang, C. X.; Chen, Z. H.; Shao, Z.; Deng, F. F.; Liu, H. R.; Yu, J. Q.; Wang, R. Z. Radiative sky cooling thermal concentration with cooling power exceeding one kW per square meter. Energy Environ. Sci. 2024, 17, 2336–2355.

[244]

Cheng, Q. L.; Gomez, S.; Hu, G. Z.; Abaalkhail, A.; Beasley, J. E.; Zhang, P.; Xu, Y.; Chen, X. H.; Tian, S.; Mandal, J. et al. Realizing optimal radiative cooling walls in building-energy nexus via asymmetric emissivity. Nexus 2024, 1, 100028.

[245]

Fu, Y. T.; Chen, L.; Guo, Y. A.; Shi, Y. Q.; Liu, Y. J.; Zeng, Y. Q.; Lin, Y. J.; Luo, D. Pyramid textured photonic films with high-refractive index fillers for efficient radiative cooling. Adv. Sci. 2024, 11, 2404900.

[246]

Gu, B.; Li, G.; Zhang, Q.; Pan, H. D.; Duan, M. F.; Weng, L. Q.; Zhao, D. L. A novel method for increasing phase-change microcapsules in nanofiber textile through electrospinning. Adv. Funct. Mater. 2025, 35, 2412089.

[247]

Jung, Y.; Kim, M.; Kim, T.; Ahn, J.; Lee, J.; Ko, S. H. Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 2023, 15, 160.

[248]

Yang, Z. W.; Wu, Z. Y.; Lin, Z. X.; Liu, T. J.; Ding, L. P.; Zhai, W. B.; Chen, Z. P.; Jiang, Y.; Li, J. L.; Ren, S. Y. et al. Optically selective catalyst design with minimized thermal emission for facilitating photothermal catalysis. Nat. Commun. 2024, 15, 7599.

[249]

Ma, X.; Fu, Y.; Liu, D. J.; Yang, N.; Dai, J. G.; Lei, D. Y. Fluorescence-enabled colored bilayer subambient radiative cooling coatings. Adv. Opt. Mater. 2024, 12, 2303296.

Carbon Future
Article number: 9200033
Cite this article:
Zhao Z, Zhao S, Xu J, et al. Progress in passive daytime radiative cooling from spectral design to real application. Carbon Future, 2025, 2(1): 9200033. https://doi.org/10.26599/CF.2025.9200033

1610

Views

650

Downloads

1

Crossref

Altmetrics

Received: 26 October 2024
Revised: 07 January 2025
Accepted: 07 January 2025
Published: 26 February 2025
© The Author(s) 2025.

Open AccessThis article is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, distribution and reproduction in any medium, provided the original work is properly cited.

Return