AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Techno-economic analysis of hydrogen-driven calcium looping process for flue gas decarbonization

Dongliang Zhang1Hanke Li1,2 ( )Qiangqiang Wu1Guangxing Yang3Hao-Fan Wang1Yonghai Cao1Hongjuan Wang1Siyu Yang1 ( )Hao Yu1 ( )
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510641, China
National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
Show Author Information

Graphical Abstract

From a perspective of short to medium term, coke oven gas stands out as the least expensive option of alternative hydrogen source and is indeed feasible to be operated at an industrial scale for the proposed hydrogen-driven calcium looping (CaL) process, while wind-photovoltaic to hydrogen is not, unless the supportive or subsidizing programs are issued by the government or 2.15 USD per Nm3 CH4 of CH4 price.

Abstract

A techno-economic analysis was performed for a hydrogen-driven calcium looping (CaL) process capable of capturing 5 × 104–7 × 104 metric tons of CO2 per year from flue gas. The study investigated the use of coke oven gas (COG) and wind-photovoltaic to hydrogen (WPTH) as hydrogen sources. With COG as the hydrogen source, the CaL process yielded an annual production of 1.49 × 108 Nm3 CH4, an energy efficiency of 84.77%, and a payback period of 5.49 years. Conversely, using WPTH as the hydrogen source resulted in a lower annual CH4 output of 3.9 × 107 Nm3, a reduced energy efficiency of 65.04%, and annual losses of 62.10 million USD. In the near to mid-term, the hydrogen-driven CaL process enabled by COG is practically viable for industrial-scale operation. Using WPTH as the hydrogen source provides some improvements in certain aspects but drawbacks in others compared to COG. However, the considerably higher cost of producing green hydrogen remains a substantial hindrance to the process’s economic feasibility.

Electronic Supplementary Material

Download File(s)
0023_ESM.pdf (5.1 MB)

References

[1]
IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, 2015.
[2]

McCauley, K. J.; Farzan, H.; Alexander, K. C.; McDonald, D. K.; Varagani, R.; Prabhakar, R.; Tranier, J. P.; Perrin, N. Commercialization of oxy-coal combustion: Applying results of a large 30MWth pilot project. Energy Procedia 2009, 1, 439–446.

[3]

Yang, Z. W.; Khatri, D.; Verma, P.; Li, T. X.; Adeosun, A.; Kumfer, B. M.; Axelbaum, R. L. Experimental study and demonstration of pilot-scale, dry feed, oxy-coal combustion under pressure. Appl. Energy 2021, 285, 116367.

[4]

Manaf, N. A.; Cousins, A.; Feron, P.; Abbas, A. Dynamic modelling, identification and preliminary control analysis of an amine-based post-combustion CO2 capture pilot plant. J. Cleaner Prod. 2016, 113, 635–653.

[5]

Bui, M.; Tait, P.; Lucquiaud, M.; Mac Dowell, N. Dynamic operation and modelling of amine-based CO2 capture at pilot scale. Int. J. Greenhouse Gas Control 2018, 79, 134–153.

[6]

Esmaeili, H.; Roozbehani, B. Pilot-scale experiments for post-combustion CO2 capture from gas fired power plants with a novel solvent. Int. J. Greenhouse Gas Control 2014, 30, 212–215.

[7]

Fagerlund, J.; Zevenhoven, R.; Thomassen, J.; Tednes, M.; Abdollahi, F.; Thomas, L.; Nielsen, C. J.; Mikoviny, T.; Wisthaler, A.; Zhu, L. et al. Performance of an amine-based CO2 capture pilot plant at the fortum Oslo varme waste to energy plant in Oslo, Norway. Int. J. Greenhouse Gas Control 2021, 106, 103242.

[8]

Idem, R.; Supap, T.; Shi, H. C.; Gelowitz, D.; Ball, M.; Campbell, C.; Tontiwachwuthikul, P. Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants. Int. J. Greenhouse Gas Control 2015, 40, 6–25.

[9]

Rezazadeh, F.; Gale, W. F.; Akram, M.; Hughes, K. J.; Pourkashanian, M. Performance evaluation and optimisation of post combustion CO2 capture processes for natural gas applications at pilot scale via a verified rate-based model. Int. J. Greenhouse Gas Control 2016, 53, 243–253.

[10]

Stec, M.; Tatarczuk, A.; Więcław-Solny, L.; Krótki, A.; Spietz, T.; Wilk, A.; Śpiewak, D. Demonstration of a post-combustion carbon capture pilot plant using amine-based solvents at the łaziska power plant in Poland. Clean Technol. Environ. Policy 2016, 18, 151–160.

[11]

Von Harbou, I.; Mangalapally, H. P.; Hasse, H. Pilot plant experiments for two new amine solvents for post-combustion carbon dioxide capture. Int. J. Greenhouse Gas Control 2013, 18, 305–314.

[12]

Arias, B.; Diego, M. E.; Abanades, J. C.; Lorenzo, M.; Diaz, L.; Martínez, D.; Alvarez, J.; Sánchez-Biezma, A. Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot. Int. J. Greenhouse Gas Control 2013, 18, 237–245.

[13]

Bidwe, A. R.; Hawthorne, C.; Dieter, H.; Dominguez, M. A. M.; Zieba, M.; Scheffknecht, G. Cold model hydrodynamic studies of a 200 kWth dual fluidized bed pilot plant of calcium looping process for CO2 capture. Powder Technol. 2014, 253, 116–128.

[14]

Diego, M. E.; Arias, B. Impact of load changes on the carbonator reactor of a 1.7 MWth calcium looping pilot plant. Fuel Process. Technol. 2020, 200, 106307.

[15]

Hilz, J.; Helbig, M.; Haaf, M.; Daikeler, A.; Ströhle, J.; Epple, B. Long-term pilot testing of the carbonate looping process in 1 MWth scale. Fuel 2017, 210, 892–899.

[16]

Ströhle, J.; Hilz, J.; Epple, B. Performance of the carbonator and calciner during long-term carbonate looping tests in a 1 MWth pilot plant. J. Environ. Chem. Eng. 2020, 8, 103578.

[17]

Ströhle, J.; Junk, M.; Kremer, J.; Galloy, A.; Epple, B. Carbonate looping experiments in a 1 MWth pilot plant and model validation. Fuel 2014, 127, 13–22.

[18]

Shimizu, T.; Hirama, T.; Hosoda, H.; Kitano, K.; Inagaki, M.; Tejima, K. A twin fluid-bed reactor for removal of CO2 from combustion processes. Chem. Eng. Res. Des. 1999, 77, 62–68.

[19]

Hanak, D. P.; Anthony, E. J.; Manovic, V. A review of developments in pilot-plant testing and modelling of calcium looping process for CO2 capture from power generation systems. Energy Environ. Sci. 2015, 8, 2199–2249.

[20]
North, V. M. The human natural resource endowment of limestone for cement manufacturing. Master Degree Thesis, University of Arkansas, Fayetteville, NC USA, 2022.
[21]

Lara, Y.; Martínez, A.; Lisbona, P.; Romeo, L. M. Heat integration of alternative Ca-looping configurations for CO2 capture. Energy 2016, 116, 956–962.

[22]

Martínez, A.; Lara, Y.; Lisbona, P.; Romeo, L. M. Operation of a cyclonic preheater in the Ca-looping for CO2 capture. Environ. Sci. Technol. 2013, 47, 11335–11341.

[23]

Martínez, A.; Lara, Y.; Lisbona, P.; Romeo, L. M. Operation of a mixing seal valve in calcium looping for CO2 capture. Energy Fuels 2014, 28, 2059–2068.

[24]

Li, K. K.; Sun, J.; Zhang, Y. X.; Zhang, X. Y.; Liu, L.; Tong, X. L.; Jiang, L.; Zhou, Z. J.; Zhao, C. W. Cigarette butt-assisted combustion synthesis of dolomite-derived sorbents with enhanced cyclic CO2 capturing capability for direct solar-driven calcium looping. Sep. Purif. Technol. 2023, 311, 123269.

[25]

Manovic, V.; Anthony, E. J. Carbonation of CaO-based sorbents enhanced by steam addition. Ind. Eng. Chem. Res. 2010, 49, 9105–9110.

[26]

Lara, Y.; Lisbona, P.; Martínez, A.; Romeo, L. M. Design and analysis of heat exchanger networks for integrated Ca-looping systems. Appl. Energy 2013, 111, 690–700.

[27]

Martínez, I.; Murillo, R.; Grasa, G.; Abanades, J. C. Integration of a Ca looping system for CO2 capture in existing power plants. AIChE J. 2011, 57, 2599–2607.

[28]

Giardini, A. A.; Salotti, C. A.; Lakner, J. F. Synthesis of graphite and hydrocarbons by reaction between calcite and hydrogen. Science 1968, 159, 317–319.

[29]

Reller, A.; Padeste, C.; Hug, P. Formation of organic carbon compounds from metal carbonates. Nature 1987, 329, 527–529.

[30]

Belete, T. T.; Van De Sanden, M. C. M.; Gleeson, M. A. Effects of transition metal dopants on the calcination of CaCO3 under Ar, H2O and H2. J. CO2 Util. 2019, 31, 152–166.

[31]

Jagadeesan, D.; Eswaramoorthy, M.; Rao, C. N. R. Investigations of the conversion of inorganic carbonates to methane. ChemSusChem 2009, 2, 878–882.

[32]

Shi, S. L.; Yu, J. C.; Pan, Y.; Zhang, Y. X.; Yang, H. Y.; Shen, T.; Liu, Q. Y.; Liu, Z. Y. Hydrogenation of calcium carbonate to carbon monoxide and methane. Fuel 2023, 354, 129385.

[33]

Wang, I.; Li, D.; Wang, S. H.; Wang, Y.; Lin, G.; Yan, B. H.; Li, Z. S. Limestone hydrogenation combined with reverse water–gas shift reaction under fluidized and iso-thermal conditions using MFB-TGA-MS. Chem. Eng. J. 2023, 472, 144822.

[34]

Xue, Z.; Guo, J. Y.; Wu, S. S.; Xie, W. F.; Fu, Y. J.; Zhao, X. J.; Fan, K.; Xu, M.; Yan, H.; Shao, M. F. et al. Co-thermal in-situ reduction of inorganic carbonates to reduce carbon-dioxide emission. Sci. China Chem. 2023, 66, 1201–1210.

[35]

Wu, X. Y.; Chang, R.; Tan, M. W.; Tao, L. G.; Fan, Q. W. H.; Hu, X. C.; Tan, H. L.; Åhlén, M.; Cheung, O.; Liu, W. An investigation of the Ni/carbonate interfaces on dual function materials in integrated CO2 capture and utilisation cycles. Appl. Catal. B: Environ. 2023, 338, 123053.

[36]

Zhou, J. X.; Dang, C. X.; Zheng, G. P.; Cai, W. Q. The capture and in-situ hydrogenation of CO2 over Ni-CaO-Ca12Al14O33 bifunctional catalyst. Sep. Purif. Technol. 2025, 354, 129375.

[37]

Jo, S.; Woo, J. H.; Nguyen, T.; Kim, J. E.; Kim, T. Y.; Ryu, H. J.; Hwang, B.; Kim, J. C.; Lee, S. C.; Gilliard-Abdulaziz, K. L. Zr-modified Ni/CaO dual function materials (DFMs) for direct methanation in an integrated CO2 capture and utilization process. Energy Fuels 2023, 37, 19680–19694.

[38]

Lv, Z. Z.; Du, H.; Xu, S. J.; Deng, T.; Ruan, J. Q.; Qin, C. L. Techno-economic analysis on CO2 mitigation by integrated carbon capture and methanation. Appl. Energy 2024, 355, 122242.

[39]

Shi, S. L.; Zhang, Y. X.; Pan, Y.; Liu, X.; Zhang, F. H.; Yang, H. Y.; Liu, Q. Y.; Liu, Z. Y. Hydrogenation of CaCO3 to CH4 catalyzed by NiCO3. Chem. Eng. J. 2024, 485, 150012.

[40]

Biasin, A.; Segre, C. U.; Salviulo, G.; Zorzi, F.; Strumendo, M. Investigation of CaO-CO2 reaction kinetics by in-situ XRD using synchrotron radiation. Chem. Eng. Sci. 2015, 127, 13–24.

[41]

Chen, L. Y.; Chen, Y. H.; Wei, G. Q.; Liu, K. L. Conceptual design and assessment of integrated capture and methanation of CO2 from flue gas using chemical-looping scheme of dual function materials. Energy Convers. Manage. 2024, 299, 117847.

[42]

Chirone, R.; Paulillo, A.; Coppola, A.; Scala, F. Carbon capture and utilization via calcium looping, sorption enhanced methanation and green hydrogen: A techno-economic analysis and life cycle assessment study. Fuel 2022, 328, 125255.

[43]

Tregambi, C.; Bareschino, P.; Mancusi, E.; Pepe, F.; Montagnaro, F.; Solimene, R.; Salatino, P. Modelling of a concentrated solar power-photovoltaics hybrid plant for carbon dioxide capture and utilization via calcium looping and methanation. Energy Convers. Manage. 2021, 230, 113792.

[44]

Guo, R.; Li, L. M.; Chang, C. G.; Di, Z. C. Steel slag-enhanced reforming process for blue hydrogen production from coke oven gas: Techno-economic evaluation. J. Cleaner Prod. 2022, 379, 134778.

[45]

Man, Y.; Yang, S. Y.; Qian, Y. Integrated process for synthetic natural gas production from coal and coke-oven gas with high energy efficiency and low emission. Energy Convers. Manage. 2016, 117, 162–170.

[46]

Man, Y.; Yang, S. Y.; Zhang, J.; Qian, Y. Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission. Appl. Energy 2014, 133, 197–205.

[47]

Xiang, D.; Zhou, Y. P. Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process. Appl. Energy 2018, 229, 1024–1034.

[48]

Yi, Q.; Wu, G. S.; Gong, M. H.; Huang, Y.; Feng, J.; Hao, Y. H.;Li, W. Y. A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas. Appl. Energy 2017, 193, 149–161.

[49]

Di, Z. C.; Lei, F. X.; Jing, J. K.; Peng, H.; Lu, X.; Cheng, F. Q. Technical alternatives for coke oven gas utilization in China: A comparative analysis of environment-economic-strategic perspectives. Environ. Sci. Ecotechnol. 2024, 21, 100395.

[50]

Jang, D.; Kim, K.; Kim, K. H.; Kang, S. Techno-economic analysis and Monte Carlo simulation for green hydrogen production using offshore wind power plant. Energy Convers. Manage. 2022, 263, 115695.

[51]

Abomazid, A. M.; El-Taweel, N. A.; Farag, H. E. Z. Optimal energy management of hydrogen energy facility using integrated battery energy storage and solar photovoltaic systems. IEEE Trans. Sustain. Energy 2022, 13, 1457–1468.

[52]

Li, H. K.; Wu, S. J.; Dang, C. X.; Yang, G. X.; Cao, Y. H.; Wang, H. J.; Peng, F.; Yu, H. Production of high-purity hydrogen from paper recycling black liquor via sorption enhanced steam reforming. Green Energy Environ. 2021, 6, 771–779.

[53]

Egeland-Eriksen, T.; Jensen, J. F.; Ulleberg, Ø.; Sartori, S. Simulating offshore hydrogen production via PEM electrolysis using real power production data from a 2.3 MW floating offshore wind turbine. Int. J. Hydrogen Energy 2023, 48, 28712–28732.

[54]

Mohsin, M.; Rasheed, A. K.; Saidur, R. Economic viability and production capacity of wind generated renewable hydrogen. Int. J. Hydrogen Energy 2018, 43, 2621–2630.

[55]

Olateju, B.; Kumar, A. Hydrogen production from wind energy in western Canada for upgrading bitumen from oil sands. Energy 2011, 36, 6326–6339.

[56]

Sigal, A.; Cioccale, M.; Rodríguez, C. R.; Leiva, E. P. M. Study of the natural resource and economic feasibility of the production and delivery of wind hydrogen in the province of Córdoba, Argentina. Int. J. Hydrogen Energy 2015, 40, 4413–4425.

[57]

Hai, T.; Dhahad, H. A.; Attia, E. A.; Zakaria, Z.; Rashidi, S.; Singh, P. K.; Shamseldin, M. A.; Almojil, S. F.; Almohana, A. I.; Alali, A. F. et al. Design, modeling and multi-objective techno-economic optimization of an integrated supercritical Brayton cycle with solar power tower for efficient hydrogen production. Sustain. Energy Technol. Assess. 2022, 53, 102599.

[58]

Sadeghi, S.; Ghandehariun, S. A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization. Energy 2022, 240, 122723.

[59]

Sadeghi, S.; Ghandehariun, S.; Rosen, M. A. Comparative economic and life cycle assessment of solar-based hydrogen production for oil and gas industries. Energy 2020, 208, 118347.

[60]

Ayub, H. M. U.; Nizami, M.; Qyyum, M. A.; Iqbal, N.; Al-Muhtaseb, A. H.; Hasan, M. Sustainable hydrogen production via microalgae: Technological advancements, economic indicators, environmental aspects, challenges, and policy implications. Environ. Res. 2024, 244, 117815.

[61]

Garcia, G. M.; Oliva, H. S. Technical, economic, and CO2 emissions assessment of green hydrogen production from solar/wind energy: The case of Chile. Energy 2023, 278, 127981.

[62]

Shi, X. F.; Qian, Y.; Yang, S. Y. Fluctuation analysis of a complementary wind-solar energy system and integration for large scale hydrogen production. ACS Sustain. Chem. Eng. 2020, 8, 7097–7110.

[63]

Haaf, M.; Anantharaman, R.; Roussanaly, S.; Ströhle, J.; Epple, B. CO2 capture from waste-to-energy plants: Techno-economic assessment of novel integration concepts of calcium looping technology. Resour. Conserv. Recycl. 2020, 162, 104973.

[64]

Hu, Y.; Ahn, H. Process integration of a calcium-looping process with a natural gas combined cycle power plant for CO2 capture and its improvement by exhaust gas recirculation. Appl. Energy 2017, 187, 480–488.

[65]

Romano, M. C. Ultra-high CO2 capture efficiency in CFB oxyfuel power plants by calcium looping process for CO2 recovery from purification units vent gas. Int. J. Greenhouse Gas Control 2013, 18, 57–67.

[66]

Zhang, D. L.; Li, H. K.; Yang, G. X.; Wang, H. F.; Cao, Y. H.; Wang, H. J.; Yu, H. Hydrogen-driven routes to steel from siderite with low CO2 emissions: A modeling study. Chem. Eng. Sci. 2024, 287, 119702.

[67]

Atsonios, K.; Grammelis, P.; Antiohos, S. K.; Nikolopoulos, N.; Kakaras, E. Integration of calcium looping technology in existing cement plant for CO2 capture: Process modeling and technical considerations. Fuel 2015, 153, 210–223.

[68]

De Lena, E.; Arias, B.; Romano, M. C.; Abanades, J. C. Integrated calcium looping system with circulating fluidized bed reactors for low CO2 emission cement plants. Int. J. Greenhouse Gas Control 2022, 114, 103555.

[69]

Ozcan, D. C.; Ahn, H.; Brandani, S. Process integration of a Ca-looping carbon capture process in a cement plant. Int. J. Greenhouse Gas Control 2013, 19, 530–540.

[70]

Telesca, A.; Marroccoli, M.; Tomasulo, M.; Valenti, G. L.; Dieter, H.; Montagnaro, F. Calcium looping spent sorbent as a limestone replacement in the manufacture of Portland and calcium sulfoaluminate cements. Environ. Sci. Technol. 2015, 49, 6865–6871.

[71]

Fu, C.; Roussanaly, S.; Jordal, K.; Anantharaman, R. Techno-economic analyses of the CaO/CaCO3 post-combustion CO2 capture from NGCC power plants. Front. Chem. Eng. 2021, 2, 596417.

[72]

Chen, J. J.; Qian, Y.; Yang, S. Y. Conceptual design and techno-economic analysis of a coal to methanol and ethylene glycol cogeneration process with low carbon emission and high efficiency. ACS Sustain. Chem. Eng. 2020, 8, 5229–5239.

[73]

Tregambi, C.; Bareschino, P.; Hanak, D. P.; Montagnaro, F.; Pepe, F.; Mancusi, E. Modelling of an integrated process for atmospheric carbon dioxide capture and methanation. J. Cleaner Prod. 2022, 356, 131827.

[74]

Tregambi, C.; Bareschino, P.; Hanak, D. P.; Mancusi, E.; Montagnaro, F.; Pepe, F. Techno-economic assessment of a synthetic methane production process by hydrogenation of carbon dioxide from direct air capture. Int. J. Hydrogen Energy 2023, 48, 37594–37606.

[75]

Barón, C.; Perpiñán, J.; Bailera, M.; Peña, B. Techno-economic assessment of glassmaking decarbonization through integration of calcium looping carbon capture and power-to-gas technologies. Sustain. Prod. Consumption 2023, 41, 121–133.

[76]

Michalski, J. R.; Noe Dobrea, E. Z.; Niles, P. B.; Cuadros, J. Ancient hydrothermal seafloor deposits in eridania basin on mars. Nat. Commun. 2017, 8, 15978.

[77]

Lomax, B. A.; Just, G. H.; McHugh, P. J.; Broadley, P. K.; Hutchings, G. C.; Burke, P. A.; Roy, M. J.; Smith, K. L.; Symes, M. D. Predicting the efficiency of oxygen-evolving electrolysis on the moon and mars. Nat. Commun. 2022, 13, 583.

[78]

Wright, V.; Morzfeld, M.; Manga, M. Liquid water in the Martian mid-crust. Proc. Natl. Acad. Sci. USA 2024, 121, e2409983121.

[79]

Xu, Y.; Yang, K.; Yuan, J. H. Levelized cost of offshore wind power in China. Environ. Sci. Pollut. Res. 2021, 28, 25614–25627.

[80]

Guo, P. H.; Zhai, Y. X.; Xu, X. H.; Li, J. Y. Assessment of levelized cost of electricity for a 10-MW solar chimney power plant in Yinchuan China. Energy Convers. Manage. 2017, 152, 176–185.

[81]

Yu, Y. H.; Du, E. S.; Chen, Z. C.; Su, Y. B.; Zhang, X. F.; Yang, H. B.; Wang, P.; Zhang, N. Optimal portfolio of a 100% renewable energy generation base supported by concentrating solar power. Renew. Sustain. Energy Rev. 2022, 170, 112937.

Carbon Future
Article number: 9200023
Cite this article:
Zhang D, Li H, Wu Q, et al. Techno-economic analysis of hydrogen-driven calcium looping process for flue gas decarbonization. Carbon Future, 2024, 1(4): 9200023. https://doi.org/10.26599/CF.2024.9200023

674

Views

129

Downloads

0

Crossref

Altmetrics

Received: 01 October 2024
Revised: 14 November 2024
Accepted: 15 November 2024
Published: 13 December 2024
© The Author(s) 2024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.

Return