Journal Home > Online First

Fullerene-derived carbon materials are promising catalysts for the oxygen reduction reaction (ORR) because of the presence of intrinsic defects in the carbon cage. Moreover, the N species and metallic catalytic sites can effectively overcome the sluggish kinetics of O2 activation. In this work, a rod-shaped tetraphenyl-porphyrin cobalt–C60 cocrystal (CoTPP/C60) was self-assembled and then annealed to prepare a series of N, Co-codoped carbon materials. Among the resulting CoTPP/C60-X materials, CoTPP/C60-800, which was obtained at 800 °C, demonstrated a half-wave potential of 0.824 VRHE, outstanding stability, and remarkable methanol tolerance. The superior ORR performance of CoTPP/C60-800 can be attributed to the presence of abundant defects, appropriate nitrogen (N) species (pyridine N and graphitic N), Co–Nx sites, and Co nanoparticles. Moreover, a Zn–air battery assembled using CoTPP/C60-800 as the cathode exhibited a high power density of 111.7 mW∙cm−2. This study provides a new strategy for designing and synthesizing advanced ORR catalysts for Zn–air batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fullerene-metalloporphyrin co-crystal as efficient oxygen reduction reaction electrocatalyst precursor for Zn–air batteries

Show Author's information Ao Yu1,2,#Qi Huang1,#Shixin Gao1,#Tingting Xu1Wei Zhang2,3Nimanyu Joshi2,3Ping Peng1 ( )Yang Yang2,3,4,5,6 ( )Fang-Fang Li1 ( )
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA
Renewable Energy and Chemical Transformation Cluster, University of Central Florida, Orlando, FL 32826, USA
Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL 32826, USA

# Ao Yu, Qi Huang, and Shixin Gao contributed equally to this work.

Abstract

Fullerene-derived carbon materials are promising catalysts for the oxygen reduction reaction (ORR) because of the presence of intrinsic defects in the carbon cage. Moreover, the N species and metallic catalytic sites can effectively overcome the sluggish kinetics of O2 activation. In this work, a rod-shaped tetraphenyl-porphyrin cobalt–C60 cocrystal (CoTPP/C60) was self-assembled and then annealed to prepare a series of N, Co-codoped carbon materials. Among the resulting CoTPP/C60-X materials, CoTPP/C60-800, which was obtained at 800 °C, demonstrated a half-wave potential of 0.824 VRHE, outstanding stability, and remarkable methanol tolerance. The superior ORR performance of CoTPP/C60-800 can be attributed to the presence of abundant defects, appropriate nitrogen (N) species (pyridine N and graphitic N), Co–Nx sites, and Co nanoparticles. Moreover, a Zn–air battery assembled using CoTPP/C60-800 as the cathode exhibited a high power density of 111.7 mW∙cm−2. This study provides a new strategy for designing and synthesizing advanced ORR catalysts for Zn–air batteries.

Keywords: oxygen reduction reaction (ORR), fullerene C60, tetraphenylporphyrin cobalt, fullerene-based co-crystal, zinc–air batteries

References(85)

[1]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[2]

Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y. E.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem 2019, 5, 1486–1511.

[3]

Chong, L. N.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.

[4]

Gewirth, A. A.; Varnell, J. A.; DiAscro, A. M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem. Rev. 2018, 118, 2313–2339.

[5]

Iqbal, A.; El-Kadri, O. M.; Hamdan, N. M. Insights into rechargeable Zn-air batteries for future advancements in energy storing technology. J. Energy Storage 2023, 62, 106926.

[6]

Yao, Z. C.; Tang, T.; Hu, J. S.; Wan, L. J. Recent advances on nonprecious-metal-based bifunctional oxygen electrocatalysts for zinc-air batteries. Energy Fuels 2021, 35, 6380–6401.

[7]

Guo, X. M.; Liu, S. J.; Wan, X. H.; Zhang, J. H.; Liu, Y. J.; Zheng, X. J.; Kong, Q. H.; Jin, Z. Controllable solid-phase fabrication of an Fe2O3/Fe5C2/Fe-N-C electrocatalyst toward optimizing the oxygen reduction reaction in zinc-air batteries. Nano Lett. 2022, 22, 4879–4887.

[8]

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

[9]

Liu, L. N.; Zhang, X.; Yan, F.; Geng, B.; Zhu, C. L.; Chen, Y. J. Self-supported N-doped CNT arrays for flexible Zn-air batteries. J. Mater. Chem. A 2020, 8, 18162–18172.

[10]

Chen, J. P.; Ni, B. Q.; Hu, J. G.; Wu, Z. X.; Jin, W. Defective graphene aerogel-supported Bi-CoP nanoparticles as a high-potential air cathode for rechargeable Zn-air batteries. J. Mater. Chem. A 2019, 7, 22507–22513.

[11]

Liu, X. J.; Yang, W. X.; Chen, L. L.; Liu, Z. J.; Long, L.; Wang, S. Y.; Liu, C. Y.; Dong, S. J.; Jia, J. B. Graphitic carbon nitride (g-C3N4)-derived bamboo-like carbon nanotubes/co nanoparticles hybrids for highly efficient electrocatalytic oxygen reduction. ACS Appl. Mater. Interfaces 2020, 12, 4463–4472.

[12]

Lambert, T. N.; Davis, D. J.; Lu, W.; Limmer, S. J.; Kotula, P. G.; Thuli, A.; Hungate, M.; Ruan, G. D.; Jin, Z.; Tour, J. M. Graphene-Ni-α-MnO2 and-Cu-α-MnO2 nanowire blends as highly active non-precious metal catalysts for the oxygen reduction reaction. Chem. Commun. 2012, 48, 7931–7933.

[13]

Peng, Z. Y. ; Jiang, Q. L. ; Peng, P. ; Li, F. F. NH3-activated fullerene derivative hierarchical microstructures to porous Fe3O4/N-C for oxygen reduction reaction and Zn-air battery. Eng. Sci. 2021, 14, 27–38.

[14]

He, Z. M.; Wei, P.; Xu, T.; Han, J. T.; Gao, X. J.; Lu, X. Defect-rich N/S-co-doped porous hollow carbon nanospheres derived from fullerenes as efficient electrocatalysts for the oxygen-reduction reaction and Zn-air batteries. Mater. Chem. Front. 2021, 5, 7873–7882.

[15]

Gao, R. ; Dai, Q. B. ; Du, F. ; Yan, D. P. ; Dai, L. M. C60-adsorbed single-walled carbon nanotubes as metal-free, pH-universal, and multifunctional catalysts for oxygen reduction, oxygen evolution, and hydrogen evolution. J. Am. Chem. Soc. 2019, 141, 11658–11666.

[16]

He, Z. M. ; Wei, P. ; Chen, N. ; Han, J. T. ; Lu, X. N, S-Co-doped porous carbon nanofiber films derived from fullerenes (C60) as efficient electrocatalysts for oxygen reduction and a Zn-Air battery. Chem. -Eur. J. 2021, 27, 1423–1429.

[17]

Benzigar, M. R.; Joseph, S.; Ilbeygi, H.; Park, D. H.; Sarkar, S.; Chandra, G.; Umapathy, S.; Srinivasan, S.; Talapaneni, S. N.; Vinu, A. Highly crystalline mesoporous C60 with ordered pores: A class of nanomaterials for energy applications. Angew. Chem. , Int. Ed. 2018, 57, 569–573.

[18]

Peng, Z. Y.; Hu, Y. J.; Wang, J. J.; Liu, S. J.; Li, C. X.; Jiang, Q. L.; Lu, J.; Zeng, X. Q.; Peng, P.; Li, F. F. Fullerene-based in situ doping of N and Fe into a 3D cross-like hierarchical carbon composite for high-performance supercapacitors. Adv. Energy Mater. 2019, 9, 1802928.

[19]

Benzigar, M. R.; Joseph, S.; Baskar, A. V.; Park, D. H.; Chandra, G.; Umapathy, S.; Talapaneni, S. N.; Vinu, A. Ordered mesoporous C70 with highly crystalline pore walls for energy applications. Adv. Funct. Mater. 2018, 28, 1803701.

[20]

Zheng, S. S. ; Ju, H. ; Lu, X. A high-performance supercapacitor based on KOH activated 1D C70 Microstructures. Adv. Energy Mater. 2015, 5, 1500871.

[21]

Shrestha, L. K.; Shrestha, R. G.; Yamauchi, Y.; Hill, J. P.; Nishimura, T.; Miyazawa, K.; Kawai, T.; Okada, S.; Wakabayashi, K.; Ariga, K. Nanoporous carbon tubes from fullerene crystals as the π-electron carbon source. Angew. Chem. 2015, 127, 965–969.

[22]

Xu, T. ; Yu, D. Y. ; Du, Z. L. ; Huang, W. H. ; Lu, X. Two-dimensional mesoporous carbon materials derived from fullerene microsheets for energy applications. Chem. -Eur. J. 2020, 26, 10811–10816.

[23]

Yu, A.; Peng, Z. Y.; Li, Y. Z.; Zhu, L. T.; Peng, P.; Li, F. F. Fullerene-derived carbon nanotubes and their electrocatalytic properties in oxygen reduction and Zn-air batteries. ACS Appl. Mater. Interfaces 2022, 14, 42337–42346.

[24]

Benzigar, M. R.; Joseph, S.; Saianand, G.; Gopalan, A. I.; Sarkar, S.; Srinivasan, S.; Park, D. H.; Kim, S.; Talapaneni, S. N.; Ramadass, K. et al. Highly ordered iron oxide-mesoporous fullerene nanocomposites for oxygen reduction reaction and supercapacitor applications. Microporous Mesoporous Mater. 2019, 285, 21–31.

[25]

Kirner, S. ; Sekita, M. ; Guldi, D. M. 25th anniversary article: 25 years of fullerene research in electron transfer chemistry. Adv. Mater. 2014, 26, 1482–1493.

[26]

Yang, Z. K.; Yuan, C. Z.; Xu, A. W. Confined pyrolysis within a nanochannel to form a highly efficient single iron site catalyst for Zn-air batteries. ACS Energy Lett. 2018, 3, 2383–2389.

[27]

Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T.; Wang, H. J. Carbon-supported pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467.

[28]

Xu, J. B.; Gao, P.; Zhao, T. S. Non-precious Co3O4 nano-rod electrocatalyst for oxygenreduction reaction in anion-exchange membranefuelcells. Energy Environ. Sci. 2012, 5, 5333–5339.

[29]

Wakahara, T.; Sathish, M.; Miyazawa, K.; Hu, C. P.; Tateyama, Y.; Nemoto, Y.; Sasaki, T.; Ito, O. Preparation and optical properties of fullerene/ferrocene hybrid hexagonal nanosheets and large-scale production of fullerene hexagonal nanosheets. J. Am. Chem. Soc. 2009, 131, 9940–9944.

[30]

Ahsan, A.; He, T. W.; Eid, K.; Abdullah, A. M.; Curry, M. L.; Du, A. J.; Puente Santiago, A. R.; Echegoyen, L.; Noveron, J. C. Tuning the intermolecular electron transfer of low-dimensional and metal-free BCN/C60 electrocatalysts via interfacial defects for efficient hydrogen and oxygen electrochemistry. J. Am. Chem. Soc. 2021, 143, 1203–1215.

[31]

Morisue, M.; Saito, G.; Sasada, D.; Umeyama, T.; Imahori, H.; Mitamura, K.; Masunaga, H.; Hoshino, T.; Sakurai, S.; Sasaki, S. Glassy porphyrin/C60 composites: Morphological engineering of C60 fullerene with liquefied porphyrins. Langmuir 2020, 36, 13583–13590.

[32]

Wakahara, T.; D’Angelo, P.; Miyazawa, K.; Nemoto, Y.; Ito, O.; Tanigaki, N.; Bradley, D. D. C.; Anthopoulos, T. D. Fullerene/cobalt porphyrin hybrid nanosheets with ambipolar charge transporting characteristics. J. Am. Chem. Soc. 2012, 134, 7204–7206.

[33]

Wakahara, T.; Nagaoka, K.; Nakagawa, A.; Hirata, C.; Matsushita, Y.; Miyazawa, K.; Ito, O.; Wada, Y.; Takagi, M.; Ishimoto, T. et al. One-dimensional fullerene/porphyrin cocrystals: Near-infrared light sensing through component interactions. ACS Appl. Mater. Interfaces 2020, 12, 2878–2883.

[34]

Wang, B. Z.; Zheng, S. S.; Saha, A.; Bao, L. P.; Lu, X.; Guldi, D. M. Understanding charge-transfer characteristics in crystalline nanosheets of fullerene/(metallo)porphyrin cocrystals. J. Am. Chem. Soc. 2017, 139, 10578–10584.

[35]

Lei, Y.; Yang, F. W.; Si, Y. J.; Guo, C. Z.; Liu, J.; Li, M. J.; Xiong, Z. P. Boosting oxygen reduction catalysis with tailorable active-N-dominated doped defective CNTs. Appl. Surf. Sci. 2020, 499, 143844.

[36]

Wang, F. M.; Zhao, H. M.; Ma, Y. R.; Yang, Y.; Li, B.; Cui, Y. Y.; Guo, Z. Y.; Wang, L. Core-shell-structured Co@Co4N nanoparticles encapsulated into MnO-modified porous N-doping carbon nanocubes as bifunctional catalysts for rechargeable Zn-air batteries. J. Energy Chem. 2020, 50, 52–62.

[37]

Li, Z. H.; He, H. Y.; Cao, H. B.; Sun, S. M.; Diao, W. L.; Gao, D. L.; Lu, P. L.; Zhang, S. S.; Guo, Z.; Li, M. J. et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B:Environ. 2019, 240, 112–121.

[38]

Tong, Y. ; Chen, P. Z. ; Zhou, T. P. ; Xu, K. ; Chu, W. S. ; Wu, C. Z. ; Xie, Y. A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: Cobalt oxide nanoparticles strongly coupled to B, N-decorated graphene. Angew. Chem. , Int. Ed. 2017, 56, 7121–7125.

[39]

Shang, C. Q.; Yang, M. Y.; Wang, Z. Y.; Li, M. C.; Liu, M.; Zhu, J.; Zhu, Y. G.; Zhou, L. J.; Cheng, H.; Gu, Y. Y. et al. Encapsulated MnO in N-doping carbon nanofibers as efficient ORR electrocatalysts. Sci. China Mater. 2017, 60, 937–946.

[40]

Vimalanathan, K.; Shrestha, R. G.; Zhang, Z.; Zou, J.; Nakayama, T.; Raston, C. L. Surfactant-free fabrication of fullerene C60 nanotubules under shear. Angew. Chem. , Int. Ed. 2017, 56, 8398–8401.

[41]

Guo, J. P.; Wang, J.; Wu, Z. X.; Lei, W.; Zhu, J.; Xia, K. D.; Wang, D. L. Controllable synthesis of molybdenum-based electrocatalysts for a hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 4879–4885.

[42]

Zhu, G. Y.; Chen, T.; Hu, Y.; Ma, L. B.; Chen, R. P.; Lv, H. L.; Wang, Y. R.; Liang, J.; Li, X. J.; Yan, C. Z. et al. Recycling PM2.5 carbon nanoparticles generated by diesel vehicles for supercapacitors and oxygen reduction reaction. Nano Energy 2017, 33, 229–237.

[43]

Yu, A.; Ma, G. M.; Jiang, J. T.; Hu, Y. J.; Su, M. M.; Long, W. T.; Gao, S. X.; Hsu, H. Y.; Peng, P.; Li, F. F. Bio-inspired and eco-friendly synthesis of 3D spongy meso-microporous carbons from CO2 for supercapacitors. Chem. -Eur. J. 2021, 27, 10405–10412.

[44]

Xu, Z. Q.; Zhao, H. T.; Liang, J.; Wang, Y.; Li, T. S.; Luo, Y. S.; Shi, X. F.; Lu, S.; Feng, Z. S.; Wu, Q. et al. Noble-metal-free electrospun nanomaterials as electrocatalysts for oxygen reduction reaction. Mater. Today Phys. 2020, 15, 100280.

[45]

Liu, Y.; Li, K. X.; Ge, B. C.; Pu, L. T.; Liu, Z. Q. Influence of micropore and mesoporous in activated carbon air-cathode catalysts on oxygen reduction reaction in microbial fuel cells. Electrochim. Acta 2016, 214, 110–118.

[46]

Quílez-Bermejo, J.; Melle-Franco, M.; San-Fabián, E.; Morallón, E.; Cazorla-Amorós, D. Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: An experimental and computational approach. J. Mater. Chem. A 2019, 7, 24239–24250.

[47]

Liu, Z.; Niu, W.; Chu, H.; Zhou, T.; Niu, Z. Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources 2018, 13, 3429–3446.

[48]

Liang, B. L.; Zhao, Y. B.; Zong, M. Z.; Huo, S. L.; Khan, I. U.; Li, K. X.; Lv, C. C. Hierarchically porous N-doped carbon encapsulating CoO/MgO as superior cathode catalyst for microbial fuel cell. Chem. Eng. J. 2020, 385, 123861.

[49]

Xie, S. N.; Li, L. K.; Chen, Y.; Fan, J. C.; Li, Q. X.; Min, Y. L.; Xu, Q. J. Folic acid coordinated Cu-Co site N-doped carbon nanosheets for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2021, 13, 3949–3958.

[50]

Cheng, Q. Q.; Yang, L. J.; Zou, L. L.; Zou, Z. Q.; Chen, C.; Hu, Z.; Yang, H. Single cobalt atom and N codoped carbon nanofibers as highly durable electrocatalyst for oxygen reduction reaction. ACS Cata. 2017, 7, 6864–6871.

[51]

Zhao, D. K.; Dai, J. L.; Zhou, N.; Wang, N.; Peng, X. W.; Qu, Y. P.; Li, L. G. Prussian blue analogues-derived carbon composite with cobalt nanoparticles as an efficient bifunctional electrocatalyst for oxygen reduction and hydrogen evolution. Carbon 2019, 142, 196–205.

[52]

Su, Y. H.; Jiang, H. L.; Zhu, Y. H.; Yang, X. L.; Shen, J. H.; Zou, W. J.; Chen, J. D.; Li, C. Z. Enriched graphitic N-doped carbon-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 7281–7287.

[53]

Chen, C.; Liu, M. R.; Rao, H. Z.; Liu, Y. Q.; Lin, S.; Sun, J. K.; Zhang, J. Doped porous carbon nanostructures with N-C-O catalytic active sites for efficient electrocatalytic oxygen reduction reaction. Appl. Surf. Sci. 2019, 463, 386–394.

[54]

Liang, Z.; Fan, X.; Lei, H.; Qi, J.; Li, Y.; Gao, J.; Huo, M.; Yuan, H.; Zhang, W.; Lin, H. et al. Cobalt-nitrogen-doped helical carbonaceous nanotubes as a class of efficient electrocatalysts for the oxygen reduction reaction. Angew. Chem. , Int. Ed. 2018, 57, 13187–13191.

[55]

Han, M. N.; Shi, M. J.; Wang, J.; Zhang, M. L.; Yan, C.; Jiang, J. T.; Guo, S. H.; Sun, Z. Y.; Guo, Z. H. Efficient bifunctional Co/N dual-doped carbon electrocatalysts for oxygen reduction and evolution reaction. Carbon 2019, 153, 575–584.

[56]

Liu, Y. C.; Shi, M. J.; Yan, C.; Zhuo, Q. Q.; Wu, H. Z.; Wang, L.; Liu, H.; Guo, Z. H. Inspired cheese-like biomass-derived carbon with plentiful heteroatoms for high performance energy storage. J. Mater. Sci. :Mater. Electron. 2019, 30, 6583–6592.

[57]

Liu, J.; Xu, L.; Deng, Y.; Zhu, X.; Deng, J.; Lian, J.; Wu, J.; Qian, J.; Xu, H.; Yuan, S. et al. Metallic cobalt nanoparticles embedded in sulfur and nitrogen co-doped rambutan-like nanocarbons for the oxygen reduction reaction under both acidic and alkaline conditions. J. Mater. Chem. A 2019, 7, 14291–14301.

[58]

Zan, Y. X.; Zhang, Z. P.; Zhu, B. N.; Dou, M. L.; Wang, F. Ultrathin two-dimensional phosphorus and nitrogen Co-doped carbon nanosheet as efficient oxygen reduction electrocatalyst. Carbon 2021, 174, 404–412.

[59]

Bao, M.; Chen, X. H.; Hu, S. Y.; Zhang, L. Q.; Li, Y.; Carraro, C.; Maboudian, R.; Wei, W.; Zhang, Y. J.; Liu, S. Q. Atomically ordered intermetallic PdZn coupled with Co nanoparticles as a highly dispersed dual catalyst chemically bonded to N-doped carbon for boosting oxygen reduction reaction performance. J. Mater. Chem. A 2020, 8, 21327–21338.

[60]

Jiang, Y. J.; Huang, T. W.; Chou, H. L.; Zhou, L. H.; Lee, S. W.; Wang, K. W.; Dai, S. Revealing and magnifying interfacial effects between ruthenium and carbon supports for efficient hydrogen evolution. J. Mater. Chem. A 2022, 10, 17730–17739.

[61]

Hong, W. X. ; Wang, W. H. ; Chang, Y. H. ; Pourzolfaghar, H. ; Tseng, I. H. ; Li, Y. Y. A Ni-Fe layered double hydroxide anchored FeCo nanoalloys and Fe-Co dual single-atom electrocatalysts for rechargeable and flexible zinc-air and aluminum-air batteries. Nano Energy 2024, 121, 109236.

[62]

Li, P. Z. ; Wei, B. ; Lü, Z. ; Wu, Y. Y. ; Huang, X. Q. ; Zhang, Y. H. In-situ reduction synthesis of La2O3/NiM-NCNTs (M = Fe, Co) as efficient bifunctional electrocatalysts for oxygen reduction and evolution reactions. Int. J. Hydrog. Energy 2018, 43, 21959–21968.

[63]

Li, G. H.; Mezaal, M. A.; Zhang, K.; Lei, L. X. Synthesis and electrocatalytic performance of NiO modified Co3O4 composites for zinc-air batteries. Int. J. Electrochem. Sci. 2015, 10, 5395–5404.

[64]

Han, J. X.; Meng, X. Y.; Lu, L.; Bian, J. J.; Li, Z. P.; Sun, C. W. Single-atom Fe-Nx-C as an efficient electrocatalyst for zinc-air batteries. Adv. Funct. Mater. 2019, 29, 1808872.

[65]

Ren, D. Z.; Ying, J.; Xiao, M. L.; Deng, Y. P.; Ou, J. H.; Zhu, J. B.; Liu, G. H.; Pei, Y.; Li, S.; Jauhar, A. M. et al. Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable zinc-air batteries. Adv. Funct. Mater. 2020, 30, 1908167.

[66]

Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 2018, 30, 1705431.

[67]

Zhang, H. R. ; Zhang, B. ; Yang, Y. ; Ye, D. D. ; Chen, R. ; Liao, Q. ; Zhu, X. A high power density paper-based zinc-air battery with a hollow channel structure. Chem. Commun. 2021, 57, 1258–1261.

[68]

Zhou, W. S.; Liu, Y. Y.; Liu, H.; Wu, D. C.; Zhang, G. Y.; Jiang, J. C. Co/N-Doped hierarchical porous carbon as an efficient oxygen electrocatalyst for rechargeable Zn-air battery. RSC Adv. 2021, 11, 15753–15761.

[69]

Wu, M. C.; Li, C. L.; Liu, R. Freestanding 1D hierarchical porous Fe-N-doped carbon nanofibers as efficient oxygen reduction catalysts for Zn-air batteries. Energy Technol. 2019, 7, 1800790.

[70]

Zhang, Y. D.; Guo, Y. M.; Liu, T.; Feng, F. X.; Wang, C. C.; Hu, H. B.; Wu, M. Z.; Ni, M.; Shao, Z. P. The synergistic effect accelerates the oxygen reduction/evolution reaction in a Zn-air battery. Front. Chem. 2019, 7, 524.

[71]

Gebremariam, T. T. ; Chen, F. Y. ; Wang, Q. ; Wang, J. L. ; Liu, Y. X. ; Wang, X. L. ; Qaseem, A. bimetallic Mn-Co oxide nanoparticles anchored on carbon nanofibers wrapped in nitrogen-doped carbon for application in Zn-Air batteries and supercapacitors. ACS Appl. Energy Mater. 2018, 1, 1612–1625.

[72]

Majee, R.; Islam, Q. A.; Bhattacharyya, S. Surface charge modulation of perovskite oxides at the crystalline junction with layered double hydroxide for a durable rechargeable zinc-air battery. ACS Appl. Mater. Interfaces 2019, 11, 35853–35862.

[73]

Yu, Q. M.; Xu, J. X.; Wu, C. X.; Zhang, J. S.; Guan, L. H. MnO2 nanofilms on nitrogen-doped hollow graphene spheres as a high-performance electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 35264–35269.

[74]

Kim, S.; Park, H.; Li, O. L. Cobalt nanoparticles on plasma-controlled nitrogen-doped carbon as high-performance ORR electrocatalyst for primary Zn-air battery. Nanomaterials 2020, 10, 223.

[75]

Özen, Ü. E.; Doğan, E.; Özer, M.; Bekaroğlu, Ö.; Özkaya, A. R. Communication-high-performance and non-precious bifunctional oxygen electrocatalysis with binuclear ball-type phthalocyanine based complexes for zinc-air batteries. J. Electrochem. Soc. 2016, 163, A2001.

[76]

Tian, H. ; Zeng, L. M. ; Huang, Y. F. ; Ma, Z. H. ; Meng, G. ; Peng, L. X. ; Chen, C. ; Cui, X. Z. ; Shi, J. L. In situ electrochemical Mn(III)/Mn(IV) generation of Mn(II)O electrocatalysts for high-performance oxygen reduction. Nano-Micro Lett. 2020, 12, 161.

[77]

Zheng, X. R.; Cao, Y. H.; Liu, D. Y.; Cai, M.; Ding, J.; Liu, X. R.; Wang, J. H.; Hu, W. B.; Zhong, C. Bimetallic metal-organic-framework/reduced graphene oxide composites as bifunctional electrocatalysts for rechargeable Zn-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 15662–15669.

[78]

Deng, X. M.; Imhanria, S.; Sun, Y.; Zhang, M.; Cheng, Y. S.; Wang, W. Mo, Fe bimetallic carbide composite as high stability electrocatalyst for oxygen reduction reaction. J. Environ. Chem. Eng. 2022, 10, 108052.

[79]

Zhang, X.; Xu, J.; Wu, L. Hexamethylenetetramine-derived pyridinic N abundant porous carbon-supported Co/Co-Nx nanoparticles as highly efficient oxygen reduction catalyst and zinc-air battery cathode. Mater. Today Sustain. 2022, 19, 100180.

[80]

Zhang, J.; Chen, Y.; Liu, Y.; Liu, X. P.; Gao, S. Y. Self-catalyzed growth of Zn/Co-N-C carbon nanotubes derived from metal-organic frameworks as efficient oxygen reduction catalysts for Zn-air battery. Sci. China Mater. 2022, 65, 653–662.

[81]

Xie, Y.; Li, S. J.; Huang, J. P.; Qiu, R.; Liu, Z. Q.; Li, N. Strengthening C-Co bond by copper doping in Co9S8 coupled with nitrogen-doped carbon sphere for enhancing the catalytic activity of oxygen reaction. J. Alloys Compd. 2022, 921, 166076.

[82]

Wang, B.; Tang, J.; Zhang, X. H.; Hong, M.; Yang, H.; Guo, X.; Xue, S.; Du, C. C.; Liu, Z. X.; Chen, J. H. Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic catalysts: Template-free and metal ligand-free sysnthesis with microwave-assistance and d-band center modulating for boosted ORR catalysis in zinc-air batteries. Chem. Eng. J. 2022, 437, 135295.

[83]

Li, C.; Wu, Y. M.; Fu, M. C.; Zhao, X.; Zhai, S. Y.; Yan, Y.; Zhang, L. H.; Zhang, X. Preparation of Fe/N double doped carbon nanotubes from lignin in pennisetum as oxygen reduction reaction electrocatalysts for zinc-air batteries. ACS Appl. Energy Mater. 2022, 5, 4340–4350.

[84]

Wang, L. Y.; Guo, S. Q.; Hu, Z. Z.; Shen, B. X.; Zhou, W. Biomass waste-derived electrocatalyst constructed with g-C3N4 as a multifunctional template for efficient oxygen reduction reaction. ChemCatChem 2022, 14, e202200063.

[85]

Sun, Q. H. ; Zhu, K. ; Ji, X. L. ; Chen, D. D. ; Han, C. ; Li, T. T. ; Hu, Y. ; Huang, S. M. ; Qian, J. J. MOF-derived three-dimensional ordered porous carbon nanomaterial for efficient alkaline zinc-air batteries. Sci. China Mater. 2022, 65, 1453–1462.

File
0009_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 November 2023
Revised: 15 January 2024
Accepted: 18 January 2024
Published: 26 February 2024

Copyright

© The Author(s) 2024.

Acknowledgements

Acknowledgements

F.-F.L. and P.P. thank the financial support from the National Natural Science Foundation of China (21971077 and 22071070), the facility support of the Center for Nanoscale Characterization & Devices (CNCD), WNLO of HUST, Shiyanjia Lab (www.shiyanjia.com), and the Analytical and Testing Center in Huazhong University of Science and Technology for all related measurements.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.

Return