Journal Home > Volume 1 , Issue 1

Since 2021, the concept of the metaverse has gained significant popularity and attention, not only among the general public but also among researchers who are interested in novel technologies and human-machine interfaces. Sensors, a critical component of human-machine interaction, have seen rapid advancements in recent years, particularly graphene-based sensors. These sensors offer a number of benefits, including flexibility, lightweight, ease of integration, and outstanding electrical properties. Over the past decade, our research team has focused on developing advanced graphene sensors for use in human-machine interaction and wearable healthcare. In this review, we showcase our team’s efforts by presenting the design, manufacturing process, and performance of various graphene-based sensors, focusing on their suitability for diverse human-machine interaction needs across the human body. Additionally, we discuss potential future directions for the development of graphene-based sensors in human-machine interaction and share our insights.


menu
Abstract
Full text
Outline
About this article

Graphene-based sensors for human-machine interaction

Show Author's information Tianrui Cui1,2Ding Li1,2Thomas Hirtz1,2Jiandong Xu1,2Yancong Qiao1,2Haokai Xu1,2He Tian1,2Houfang Liu2 ( )Yi Yang1,2 ( )Tian-Ling Ren1,2,3 ( )
School of Integrated Circuit, Tsinghua University, Beijing 100084, China
Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China

Abstract

Since 2021, the concept of the metaverse has gained significant popularity and attention, not only among the general public but also among researchers who are interested in novel technologies and human-machine interfaces. Sensors, a critical component of human-machine interaction, have seen rapid advancements in recent years, particularly graphene-based sensors. These sensors offer a number of benefits, including flexibility, lightweight, ease of integration, and outstanding electrical properties. Over the past decade, our research team has focused on developing advanced graphene sensors for use in human-machine interaction and wearable healthcare. In this review, we showcase our team’s efforts by presenting the design, manufacturing process, and performance of various graphene-based sensors, focusing on their suitability for diverse human-machine interaction needs across the human body. Additionally, we discuss potential future directions for the development of graphene-based sensors in human-machine interaction and share our insights.

Keywords: graphene, wearable electronics, flexible sensor, metaverse, human-machine interaction

References(55)

[1]
Park, S. M. ; Kim, Y. G. A metaverse: Taxonomy, components, applications, and open challenges. IEEE Access 2022, 10, 4209–4251.
DOI
[2]

Rauschnabel, P. A.; Babin, B. J.; Dieck, M. C. T.; Krey, N.; Jung, T. What is augmented reality marketing? Its definition, complexity, and future. J. Bus. Res. 2022, 142, 1140–1150.

[3]

Greenbaum, D. The virtual worlds of the metaverse the metaverse: And how it will revolutionize everything Matthew Ball liveright, 2022.352 pp. Science 2022, 377, 377.

[4]

Yan, L.; Zheng, Y. B.; Zhao, F.; Li, S. J.; Gao, X. F.; Xu, B. Q.; Weiss, P. S.; Zhao, Y. L. Chemistry and physics of a single atomic layer: Strategies and challenges for functionalization of graphene and graphene-based materials. Chem. Soc. Rev. 2012, 41, 97–114.

[5]

Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902.

[6]

Loh, K. P.; Bao, Q. L.; Ang, P. K.; Yang, J. X. The chemistry of graphene. J. Mater. Chem. 2010, 20, 2277–2289.

[7]

Yang, Y.; Cui, T. R.; Li, D.; Ji, S. R.; Chen, Z. K.; Shao, W. C.; Liu, H. F.; Ren, T. L. Breathable electronic skins for daily physiological signal monitoring. Nano-Micro Lett. 2022, 14, 161.

[8]

Qiao, Y. C.; Li, X. S.; Hirtz, T.; Deng, G.; Wei, Y. H.; Li, M. G.; Ji, S. R.; Wu, Q.; Jian, J. M.; Wu, F. et al. Graphene-based wearable sensors. Nanoscale 2019, 11, 18923–18945.

[9]

Yang, Y.; Wei, Y. H.; Guo, Z. F.; Hou, W. W.; Liu, Y. J.; Tian, H.; Ren, T. L. From materials to devices: Graphene toward practical applications. Small Methods 2022, 6, 2200671.

[10]

Qiao, Y. C.; Gou, G. Y.; Wu, F.; Jian, J. M.; Li, X. S.; Hirtz, T.; Zhao, Y. F.; Zhi, Y.; Wang, F. W.; Tian, H. et al. Graphene-based thermoacoustic sound source. ACS Nano 2020, 14, 3779–3804.

[11]

Cui, T. R.; Li, D.; Huang, X. R.; Yan, A. Z.; Dong, Y.; Xu, J. D.; Guo, Y. Z.; Wang, Y.; Chen, Z. K.; Shao, W. C. et al. Graphene-based flexible electrode for electrocardiogram signal monitoring. Appl. Sci. 2022, 12, 4526.

[12]

Pang, Y.; Yang, Z.; Yang, Y.; Ren, T. L. Wearable electronics based on 2D materials for human physiological information detection. Small 2020, 16, 1901124.

[13]
Deng, G. ; Qiao, Y. C. ; Deng, N. Q. ; Li, X. S. ; Wu, Q. ; Zeng, Y. F. ; Yang, S. F. ; Ren, T. L. Flexible electroencephalography electronic skin based on graphene. In 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Chengdu, China, 2021, pp 1–3.
DOI
[14]

Qiao, Y. C.; Li, X. S.; Wang, J. B.; Ji, S. R.; Hirtz, T.; Tian, H.; Jian, J. M.; Cui, T. R.; Dong, Y.; Xu, X. W. et al. Intelligent and multifunctional graphene nanomesh electronic skin with high comfort. Small 2022, 18, 2104810.

[15]

Qiao, Y. C.; Gou, G. Y.; Shuai, H.; Han, F.; Liu, H. D.; Tang, H.; Li, X. S.; Jian, J. M.; Wei, Y. H.; Li, Y. F. et al. Electromyogram-strain synergetic intelligent artificial throat. Chem. Eng. J. 2022, 449, 137741.

[16]

Tian, H.; Li, X. S.; Wei, Y. H.; Ji, S. R.; Yang, Q. S.; Gou, G. Y.; Wang, X. F.; Wu, F.; Jian, J. M.; Guo, H. et al. Bioinspired dual-channel speech recognition using graphene-based electromyographic and mechanical sensors. Cell Rep. Phys. Sci. 2022, 3, 101075.

[17]

Xu, J. D.; Li, X. S.; Chang, H.; Zhao, B. C.; Tan, X. C.; Yang, Y.; Tian, H.; Zhang, S.; Ren, T. L. Electrooculography and tactile perception collaborative interface for 3D human-machine interaction. ACS Nano 2022, 16, 6687–6699.

[18]

Xu, J. D.; Li, R. S.; Xu, H. K.; Yang, Y.; Zhang, S.; Ren, T. L. Recent progress of continuous intraocular pressure monitoring. Nano Select 2022, 3, 1–19.

[19]

Liu, N.; Tian, H.; Schwartz, G.; Tok, J. B. H.; Ren, T. L.; Bao, Z. N. Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene. Nano Lett. 2014, 14, 3702–3708.

[20]

Wang, X. M. ; Tian, H. ; Mohammad, M. A. ; Li, C. ; Wu, C. ; Yang, Y. ; Ren, T. L. A spectrally tunable all-graphene-based flexible field-effect light-emitting device. Nat. Commun 2015, 6, 7767.

[21]

Pang, Y. ; Jian, J. M. ; Tu, T. ; Yang, Z. ; Ling, J. ; Li, Y. X. ; Wang, X. F. ; Qiao, Y. C. ; Tian, H. ; Yang, Y. et al. Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 2018, 116, 123–129.

[22]

Zou, S. M.; Tao, L. Q.; Wang, G. Y.; Zhu, C. C.; Peng, Z. R.; Sun, H.; Li, Y. B.; Wei, Y. G.; Ren, T. L. Humidity-based human-machine interaction system for healthcare applications. ACS Appl. Mater. Interfaces 2022, 14, 12606–12616.

[23]

Tian, H.; Xie, D.; Yang, Y.; Ren, T. L.; Wang, Y. F.; Zhou, C. J.; Peng, P. G.; Wang, L. G.; Liu, L. T. Single-layer graphene sound-emitting devices: Experiments and modeling. Nanoscale 2012, 4, 2272–2277.

[24]

Tao, L. Q.; Tian, H.; Liu, Y.; Ju, Z. Y.; Pang, Y.; Chen, Y. Q.; Wang, D. Y.; Tian, X. G.; Yan, J. C.; Deng, N. Q. et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Comm. 2017, 8, 14579.

[25]

Wei, Y. H. ; Qiao, Y. C. ; Jiang, G. Y. ; Wang, Y. F. ; Wang, F. W. ; Li, M. R. ; Zhao, Y. F. ; Tian, Y. ; Gou, G. Y. ; Tan, S. Y. et al. A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 2019, 13, 8639–8647.

[26]

Qiao, Y. C.; Jian, J. M.; Tang, H.; Ji, S. E.; Liu, Y.; Liu, H. D.; Li, Y. F.; Li, X. S.; Han, F.; Liu, Z. Y. et al. An intelligent nanomesh-reinforced graphene pressure sensor with an ultra large linear range. J. Mater. Chem. A. 2022, 10, 4858–4869.

[27]

Tian, H. ; Shu, Y. ; Wang, X. F. ; Mohammad, M. A. ; Bie, Z. ; Xie, Q. Y. ; Li, C. ; Mi, W. T. ; Yang, Y. ; Ren, T. L. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 2015, 5, 8603.

[28]

Liu, H.; Sun, K.; Guo, X. L.; Liu, Z. L.; Wang, Y. H.; Yang, Y.; Yu, D. L.; Li, Y. T.; Ren, T. L. An ultrahigh linear sensitive temperature sensor based on PANI: Graphene and PDMS hybrid with negative temperature compensation. ACS Nano 2022, 16, 21527–21535.

[29]

Zhang, T. Y. ; Zhao, H. M. ; Wang, D. Y. ; Wang, Q. ; Pang, Y. ; Deng, N. Q. ; Cao, H. W. ; Yang, Y. ; Ren, T. L. A super flexible and custom-shaped graphene heater. Nanoscale 2017, 9, 14357–14363.

[30]

Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346–2354.

[31]

Zhang, T. Y. ; Wang, Q. ; Deng, N. Q. ; Zhao, H. M. ; Wang, D. Y. ; Yang, Z. ; Liu, Y. ; Yang, Y. ; Ren, T. L. A large-strain, fast-response, and easy-to-manufacture electrothermal actuator based on laser-reduced graphene oxide. Appl. Phys. Lett. 2017, 11, 121901.

[32]

Yang, Z.; Pang, Y.; Han, X. L.; Yang, Y. F.; Ling, J.; Jian, M. Q.; Zhang, Y. Y.; Yang, Y.; Ren, T. L. Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 2018, 12, 9134–9141.

[33]

Wu, Q.; Qiao, Y. C.; Guo, R.; Naveed, S.; Hirtz, T.; Li, X. S.; Fu, Y. X.; Wei, Y. H.; Deng, G.; Yang, Y. et al. Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 2020, 14, 10104–10114.

[34]

Cui, T. R. ; Yang, L. ; Han, X. L. ; Xu, J. D. ; Yang, Y. ; Ren, T. L. A low-cost, portable, and wireless in-shoe system based on a flexible porous graphene pressure sensor. Materials (Basel) 2021, 14, 6475.

[35]

Guo, R. ; Cheng, X. ; Hou, Z. C. ; Ma, J. Z. ; Zheng, W. Q. ; Wu, X. M. ; Jiang, D. ; Pan, Y. ; Ren, T. L. A shoe-integrated sensor system for long-term center of pressure evaluation. IEEE Sensors J. 2021, 21, 27037–27044.

[36]

Xu, J. D.; Cui, T. R.; Hirtz, T.; Qiao, Y. C.; Li, X. S.; Zhong, F. H.; Han, X. L.; Yang, Y.; Zhang, S.; Ren, T. L. Highly transparent and sensitive graphene sensors for continuous and non-invasive intraocular pressure monitoring. ACS Appl. Mater. Interfaces 2020, 12, 18375–18384.

[37]

Fan, Y. Y. ; Tu, H. L. ; Zhao, H. B. ; Wei, F. ; Yang, Y. ; Ren, T. L. A wearable contact lens sensor for noninvasive in-situ monitoring of intraocular pressure. Nanotechnology 2021, 32, 095106.

[38]

Sun, H.; Gao, X.; Guo, L. Y.; Tao, L. Q.; Guo, Z. H.; Shao, Y. S.; Cui, T. R.; Yang, Y.; Pu, X.; Ren, T. L. Graphene-based dual-function acoustic transducers for machine learning-assisted human-robot interfaces. InfoMat 2023, 5, e12385.

[39]

Gou, G. Y.; Li, X. S.; Jian, J. M.; Tian, H.; Wu, F.; Ren, J.; Geng, X. S.; Xu, J. D.; Qiao, Y. C.; Yan, Z. Y. et al. Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci. Adv. 2022, 8, eabn2156.

[40]

Tian, H.; Li, C.; Mohammad, M. A.; Cui, Y. L.; Mi, W. T.; Yang, Y.; Xie, D.; Ren, T. L. Graphene earphones: Entertainment for both humans and animals. ACS Nano 2014, 8, 5883–5890.

[41]

Gou, G. Y.; Jin, M. L.; Lee, B. J.; Tian, H.; Wu, F.; Li, Y. T.; Ju, Z. Y.; Jian, J. M.; Geng, X. S.; Ren, J. et al. Flexible two-dimensional Ti3C2 MXene films as thermoacoustic devices. ACS Nano 2019, 13, 12613–12620.

[42]

Peng, Z. R. ; Tao, L. Q. ; Zou, S. M. ; Zhu, C. C. ; Wang, G. Y. ; Sun, H. ; Ren, T. L. A Multi-functional NO2 gas monitor and self-alarm based on laser-induced graphene. Chem. Eng. J. 2022, 428, 131079.

[43]

Mi, W. T.; Chiu, S. W.; Xue, T.; Chen, Y. Q.; Qi, H. Y.; Yang, Y.; Tang, K. T.; Ren, T. L. Highly sensitive and portable gas sensing system based on reduced graphene oxide. Tsinghua Sci. Technol. 2016, 21, 435–441.

[44]

Tian, H.; Ren, T. L.; Xie, D.; Wang, Y. F.; Zhou, C. J.; Feng, T. T.; Fu, D.; Yang, Y.; Peng, P. G.; Wang, L. G. et al. Graphene-on-paper sound source devices. ACS Nano 2011, 5, 4878–4885.

[45]

Zhang, X. Y.; Liu, H.; Ma, X. Y.; Wang, Z. C.; Li, G. P.; Han, L.; Sun, K.; Yang, Q. S.; Ji, S. R.; Yu, D. L. et al. Deep learning enabled high-performance speech command recognition on graphene flexible microphones. ACS Appl. Electron. Mater. 2022, 4, 2306–2312.

[46]

Tan, X. C.; Xu, J. D.; Jian, J. M.; Dun, G. H.; Cui, T. R.; Yang, Y.; Ren, T. L. Programmable sensitivity screening of strain sensors by local electrical and mechanical properties coupling. ACS Nano 2021, 15, 20590–20599.

[47]

Lv, P.; Li, X. S.; Zhang, Z. H.; Nie, B.; Wu, Y. L.; Tian, H.; Ren, T. L.; Wang, G. Z. Ultrathin encapsulated rGO strain sensor for gesture recognition. Microelectron. Eng. 2022, 259, 111779.

[48]

Qiao, Y. C.; Wang, Y. F.; Tian, H.; Li, M. R.; Jian, J. M.; Wei, Y. H.; Tian, Y.; Wang, D. Y.; Pang, Y.; Geng, X. S. et al. Multilayer graphene epidermal electronic skin. ACS Nano 2018, 12, 8839–8846.

[49]

Cui, T. R.; Qiao, Y. C.; Li, D.; Huang, X. R.; Yang, L.; Yan, A. Z.; Chen, Z. K.; Xu, J. D.; Tan, X. C.; Jian, J. M. et al. Multifunctional, breathable MXene-PU mesh electronic skin for wearable intelligent 12-lead ECG monitoring system. Chem. Eng. J. 2023, 455, 140690.

[50]

Tian, Y.; Li, Y. T.; Tian, H.; Yang, Y.; Ren, T. L. Recent progress of soft electrothermal actuators. Soft Robot. 2021, 8, 241–250.

[51]
Deng, N. Q. ; Tian, H. ; Wu, F. ; Tian, Y. ; Li, X. S. ; Xu, Y. ; Yang, Y. ; Ren, T. L. Graphene muscle with artificial intelligence. 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Penang, Malaysia, 2020, pp 1–4.
DOI
[52]

Wei, Y. H.; Li, X. S.; Wang, Y. F.; Hirtz, T.; Guo, Z. F.; Qiao, Y. C.; Cui, T. R.; Tian, H.; Yang, Y.; Ren, T. L. Graphene-based multifunctional textile for sensing and actuating. ACS Nano 2021, 15, 17738–17747.

[53]

Xu, J. D.; Li, R. S.; Ji, S. R.; Zhao, B. C.; Cui, T. R.; Tan, X. C.; Gou, G. Y.; Jian, J. M.; Xu, H. K.; Qiao, Y. C. et al. Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 2021, 15, 8907–8918.

[54]

Xu, J. D.; Chang, H.; Zhao, B. C.; Li, R. S.; Cui, T. R.; Jian, J. M.; Yang, Y.; Tian, H.; Zhang, S.; Ren, T. L. Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability. Chem. Eng. J. 2022, 431, 133908.

[55]

Qiao, Y. C.; Li, X. S.; Jian, J. M.; Wu, Q.; Wei, Y. H.; Shuai, H.; Hirtz, T.; Zhi, Y.; Deng, G.; Wang, Y. F. et al. Substrate-free multilayer graphene electronic skin for intelligent diagnosis. ACS Appl. Mater. Interfaces. 2020, 12, 49945–49956.

Publication history
Copyright
Rights and permissions

Publication history

Received: 01 March 2023
Revised: 31 March 2023
Accepted: 11 July 2023
Published: 14 August 2023
Issue date: March 2024

Copyright

© The Author(s) 2023.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.

Return