AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.7 MB)
Submit Manuscript AI Chat Paper
Show Outline
Show full outline
Hide outline
Show full outline
Hide outline
Review | Open Access

Photocatalytic methane conversion to high-value chemicals

Youxun XuEnqi ChenJunwang Tang ( )
Department of Chemical Engineering, University College London, London WC1E 7JE, UK
Show Author Information

Graphical Abstract

Photocatalysis, using light as the only energy input, can directly convert methane to hydrocarbons and oxygenateswith oxidants (H2O, O2, etc.).


Methane has a substantial and widespread reserve on Earth. As a very abundant carbon and hydrogen source, as well as an energy vector, upgrading methane to higher-value fuels and chemicals (carbon oxygenates, C2+ hydrocarbons, etc.) is a promising technology in the supply of energy and chemicals by a low-carbon process. Due to the stable and inert nature of methane, activating and converting the molecule is extremely challenging. Currently, commercial methane conversion technology operates at high temperatures and/or high pressure, suffering from intense energy consumption and high capital investment. Photocatalysis, using photons as the only energy input, can operate at mild temperatures and under atmospheric pressure, which is a promising and green technology for methane conversion to high-value products. In this review, fundamental understandings of photocatalytic methane conversion and product selectivity involving different oxidants are discussed. Then recent advances in photocatalysts for methane conversion to hydrocarbons and oxygenates are detailed, including the relevant reaction mechanism and reaction pathways. Finally, the challenges and perspectives for photocatalytic methane conversion will be discussed based on the current progress and fundamental understanding.



MacCarty, N.; Ogle, D.; Still, D.; Bond, T.; Roden, C. A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy Sustainable Dev. 2008, 12, 56–65.


Lauvaux, T.; Giron, C.; Mazzolini, M.; D’Aspremont, A.; Duren, R.; Cusworth, D.; Shindell, D.; Ciais, P. Global assessment of oil and gas methane ultra-emitters. Science 2022, 375, 557–561.


Mohamedali, M.; Henni, A.; Ibrahim, H. Recent advances in supported metal catalysts for syngas production from methane. ChemEngineering 2018, 2, 9.


Behrens, M.; Studt, F.; Kasatkin, I.;Kühl, S.;Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897.


Heidlage, M. G.; Kezar, E. A.; Snow, K. C.; Pfromm, P. H. Thermochemical synthesis of ammonia and syngas from natural gas at atmospheric pressure. Ind. Eng. Chem. Res. 2017, 56, 14014–14024.


Kechagiopoulos, P. N.; Angeli, S. D.; Lemonidou, A. A. Low temperature steam reforming of methane: A combined isotopic and microkinetic study. Appl. Catal. B: Environ. 2017, 205, 238–253.


Snyder, B. E. R.; Vanelderen, P.; Bols, M. L.; Hallaert, S. D.; Böttger, L. H.; Ungur, L.; Pierloot, K.; Schoonheydt, R. A.; Sels, B. F.; Solomon, E. I. The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature 2016, 536, 317–321.


Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227.


Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 1998, 280, 560–564.


Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 2017, 356, 523–527.


Hashiguchi, B. G.; Konnick, M. M.; Bischof, S. M.; Gustafson, S. J.; Devarajan, D.; Gunsalus, N.; Ess, D. H.; Periana, R. A. Main-group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters. Science 2014, 343, 1232–1237.


Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616–619.


Li, X. Y.; Wang, C.; Tang, J. W. Methane transformation by photocatalysis. Nat. Rev. Mater. 2022, 7, 617–632.


Osadchii, D. Y.; Olivos-Suarez, A. I.; Szécsényi, Á.; Li, G. N.; Nasalevich, M. A.; Dugulan, I. A.; Crespo, P. S.; Hensen, E. J. M.; Veber, S. L.; Fedin, M. V. et al. Isolated Fe sites in metal organic frameworks catalyze the direct conversion of methane to methanol. ACS Catal. 2018, 8, 5542–5548.


Szécsényi, Á.; Li, G. N.; Gascon, J.; Pidko, E. A. Mechanistic complexity of methane oxidation with H2O2 by single-site Fe/ZSM-5 catalyst. ACS Catal. 2018, 8, 7961–7972.


Ab Rahim, M. H.; Forde, M. M.; Jenkins, R. L.; Hammond, C.; He, Q.; Dimitratos, N.; Lopez-Sanchez, J. A.; Carley, A. F.; Taylor, S. H.; Willock, D. J. et al. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. Angew. Chem., Int. Ed. 2013, 52, 1280–1284.


Huang, W. X.; Zhang, S. R.; Tang, Y.; Li, Y. T.; Nguyen, L.; Li, Y. Y.; Shan, J. J.; Xiao, D. Q.; Gagne, R.; Frenkel, A. I. et al. Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate. Angew. Chem., Int. Ed. 2016, 55, 13441–13445.


Kwon, Y.; Kim, T. Y.; Kwon, G.; Yi, J.; Lee, H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 2017, 139, 17694–17699.


Zuo, Z. J.; Ramírez, P. J.; Senanayake, S. D.; Liu, P.; Rodriguez, J. A. Low-temperature conversion of methane to methanol on CeOx/Cu2O catalysts: Water controlled activation of the C-H bond. J. Am. Chem. Soc. 2016, 138, 13810–13813.


Zhang, W. Q.; Fu, C. F.; Low, J.; Duan, D. L.; Ma, J.; Jiang, W. B.; Chen, Y. H.; Liu, H. J.; Qi, Z. M.; Long, R. et al. High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO2. Nat. Commun. 2022, 13, 2806.


Zhang, L. L.; Liu, L.; Pan, Z. Y.; Zhang, R.; Gao, Z. Y.; Wang, G. M.; Huang, K. K.; Mu, X. Y.; Bai, F. Q.; Wang, Y. et al. Visible-light-driven non-oxidative dehydrogenation of alkanes at ambient conditions. Nat. Energy 2022, 7, 1042–1051.


Li, L.; Fan, S. Z.; Mu, X. Y.; Mi, Z. T.; Li, C. J. Photoinduced conversion of methane into benzene over GaN nanowires. J. Am. Chem. Soc. 2014, 136, 7793–7796.


Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.


Hu, A. H.; Guo, J. J.; Pan, H.; Zuo, Z. W. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science 2018, 361, 668–672.


Fan, Y. Y.; Zhou, W. C.; Qiu, X. Y.; Li, H. D.; Jiang, Y. H.; Sun, Z. H.; Han, D. X.; Niu, L.; Tang, Z. Y. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. Nat. Sustain. 2021, 4, 509–515.


Khaki, M. R. D.; Shafeeyan, M. S.; Raman, A. A. A.; Daud, W. M. A. W. Application of doped photocatalysts for organic pollutant degradation-A review. J. Environ. Manage. 2017, 198, 78–94.


Albero, J. W.; Peng, Y.; García, H. Photocatalytic CO2 reduction to C2+ products. ACS Catal. 2020, 10, 5734–5749.


Tang, J.; Durrant, J. R.; Klug, D. R. Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J. Am. Chem. Soc. 2008, 130, 13885–13891.


Hoang, S.; Gao, P. X. Nanowire array structures for photocatalytic energy conversion and utilization: A review of design concepts, assembly and integration, and function enabling. Adv. Energy Mater. 2016, 6, 1600683.


Mohamed, H. H.; Bahnemann, D. W. The role of electron transfer in photocatalysis: Fact and fictions. Appl. Catal. B: Environ. 2012, 128, 91–104.


An, B.; Li, Z.; Wang, Z.; Zeng, X. D.; Han, X.; Cheng, Y. Q.; Sheveleva, A. M.; Zhang, Z. Y.; Tuna, F.; McInnes, E. J. L. et al. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. Nat. Mater. 2022, 21, 932–938.


Xie, J. J.; Jin, R. X.; Li, A.; Bi, Y. P.; Ruan, Q. S.; Deng, Y. C.; Zhang, Y. J.; Yao, S. Y.; Sankar, G.; Ma, D. et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 2018, 1, 889–896.


Li, N. X.; Li, X. H.; Pan, R.; Cheng, M.; Guan, J.; Zhou, J. C.; Liu, M. C.; Tang, J. W.; Jing, D. W. Efficient photocatalytic CO2 reformation of methane on Ru/La-g-C3N4 by promoting charge transfer and CO2 activation. ChemPhotoChem 2021, 5, 748–757.


Tang, P.; Zhu, Q. J.; Wu, Z. X.; Ma, D. Methane activation: The past and future. Energy Environ. Sci. 2014, 7, 2580–2591.


Labinger, J. A.; Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 2002, 417, 507–514.


Bergman, R. G. C–H activation. Nature 2007, 446, 391–393.


Miao, T. J. ; Wang, C. ; Xiong, L. Q. ; Li, X. Y. ; Xie, J. J. ; Tang, J. W. In-situ investigation of charge performance in anatase TiO2 powder for methane conversion by vis-NIR spectroscopy. ACS Catal. 2021, 11, 8226–8238.


Li, L.; Li, G. D.; Yan, C.; Mu, X. Y.; Pan, X. L.; Zou, X. X.; Wang, K. X.; Chen, J. S. Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew. Chem., Int. Ed. 2011, 50, 8299–8303.


Li, L.; Cai, Y. Y.; Li, G. D.; Mu, X. Y.; Wang, K. X.; Chen, J. S. Synergistic effect on the photoactivation of the methane C–H bond over Ga3+-modified ETS-10. Angew. Chem., Int. Ed. 2012, 51, 4702–4706.


Meng, L. S.; Chen, Z. Y.; Ma, Z. Y.; He, S.; Hou, Y. D.; Li, H. H.; Yuan, R. S.; Huang, X. H.; Wang, X. X.; Wang, X. C. et al. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy Environ. Sci. 2018, 11, 294–298.


Jiang, W. B.; Low, J.; Mao, K. K.; Duan, D. L.; Chen, S. M.; Liu, W.; Pao, C. W.; Ma, J.; Sang, S. K.; Shu, C. et al. Pd-modified ZnO-Au enabling alkoxy intermediates formation and dehydrogenation for photocatalytic conversion of methane to ethylene. J. Am. Chem. Soc. 2021, 143, 269–278.


Shoji, S.; Bin Mohd Najib, A. S.; Yu, M. W.; Yamamoto, T.; Yasuhara, S.; Yamaguchi, A.; Peng, X. B.; Matsumura, S.; Ishii, S.; Cho, Y. et al. Charge partitioning by intertwined metal-oxide nano-architectural networks for the photocatalytic dry reforming of methane. Chem Catal. 2022, 2, 321–329.


Yuliati, L.; Hamajima, T.; Hattori, T.; Yoshida, H. Nonoxidative coupling of methane over supported ceria photocatalysts. J. Phys. Chem. C 2008, 112, 7223–7232.


Shoji, S.; Peng, X. B.; Yamaguchi, A.; Watanabe, R.; Fukuhara, C.; Cho, Y.; Yamamoto, T.; Matsumura, S.; Yu, M. W.; Ishii, S. et al. Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nat. Catal. 2020, 3, 148–153.


Singh, S. P. ; Yamamoto, A. ; Fudo, E. ; Tanaka, A. ; Kominami, H. ; Yoshida, H. A Pd-Bi dual-cocatalyst-loaded gallium oxide photocatalyst for selective and stable nonoxidative coupling of methane. ACS Catal. 2021, 11, 13768–13781.


Wang, G. M.; Mu, X. W.; Li, J. Y.; Zhan, Q. Y.; Qian, Y. M.; Mu, X. Y.; Li, L. Light-induced nonoxidative coupling of methane using stable solid solutions. Angew. Chem., Int. Ed. 2021, 60, 20760–20764.


Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 2005, 127, 8286–8287.


Song, S.; Song, H.; Li, L. M.; Wang, S. Y.; Chu, W.; Peng, K.; Meng, X. G.; Wang, Q.; Deng, B. W.; Liu, Q. X. et al. A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nat. Catal. 2021, 4, 1032–1042.


Xie, P. F.; Ding, J.; Yao, Z. H.; Pu, T. C.; Zhang, P.; Huang, Z. N.; Wang, C. H.; Zhang, J. L.; Zecher-Freeman, N.; Zong, H. et al. Oxo dicopper anchored on carbon nitride for selective oxidation of methane. Nat. Commun. 2022, 13, 1375.


Olivos-Suarez, A. I.; Szécsényi, À.; Hensen, E. J. M.; Ruiz-Martinez, J.; Pidko, E. A.; Gascon, J. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: Challenges and opportunities. ACS Catal. 2016, 6, 2965–2981.


Zhao, Y. T.; Cui, C. N.; Han, J. Y.; Wang, H.; Zhu, X. L.; Ge, Q. F. Direct C–C Coupling of CO2 and the methyl group from CH4 activation through facile insertion of CO2 into Zn-CH3 σ-Bond. J. Am. Chem. Soc. 2016, 138, 10191–10198.


Murcia-López, S.; Villa, K.; Andreu, T.; Morante, J. R. Partial oxidation of methane to methanol using bismuth-based photocatalysts. ACS Catal. 2014, 4, 3013–3019.


Hameed, A.; Ismail, I. M. I.; Aslam, M.; Gondal, M. A. Photocatalytic conversion of methane into methanol: Performance of silver impregnated WO3. Appl. Catal. A: Gen. 2014, 470, 327–335.


Li, Y.; Li, J.; Zhang, G.; Wang, K.; Wu, X. Y. Selective photocatalytic oxidation of low concentration methane over graphitic carbon nitride-decorated tungsten bronze cesium. ACS Sustainable Chem. Eng. 2019, 7, 4382–4389.


Sastre, F.; Fornés, V.; Corma, A.; García, H. Selective, room-temperature transformation of methane to C1 oxygenates by deep UV photolysis over zeolites. J. Am. Chem. Soc. 2011, 133, 17257–17261.


Zhu, W. L.; Shen, M. K.; Fan, G. Z.; Yang, A.; Meyer, J. R.; Ou, Y. N.; Yin, B.; Fortner, J.; Foston, M.; Li, Z. S. et al. Facet-dependent enhancement in the activity of bismuth vanadate microcrystals for the photocatalytic conversion of methane to methanol. ACS Appl. Nano Mater. 2018, 1, 6683–6691.


Murcia-López, S.; Bacariza, M. C.; Villa, K.; Lopes, J. M.; Henriques, C.; Morante, J. R.; Andreu, T. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta zeolites. ACS Catal. 2017, 7, 2878–2885.


Murcia-López, S.; Villa, K.; Andreu, T.; Morante, J. R. Improved selectivity for partial oxidation of methane to methanol in the presence of nitrite ions and BiVO4 photocatalyst. Chem. Commun. 2015, 51, 7249–7252.


López-Martín, Á.; Caballero, A.; Colón, G. Photochemical methane partial oxidation to methanol assisted by H2O2. J. Photochem. Photobiol. A: Chem. 2017, 349, 216–223.


Margitan, J. J.; Kaufman, F.; Anderson, J. G. The reaction of OH with CH4. Geophys. Res. Lett. 1974, 1, 80–81.


Song, H.; Meng, X. G.; Wang, S. Y.; Zhou, W.; Wang, X. S.; Kako, T.; Ye, J. H. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J. Am. Chem. Soc. 2019, 141, 20507–20515.


Song, H.; Meng, X. G.; Wang, S. Y.; Zhou, W.; Song, S.; Kako, T.; Ye, J. H. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modified titanium dioxide. ACS Catal. 2020, 10, 14318–14326.


Jiang, Y. H.; Zhao, W. S.; Li, S. Y.; Wang, S. K.; Fan, Y. Y.; Wang, F.; Qiu, X. Y.; Zhu, Y. F.; Zhang, Y.; Long, C. et al. Elevating photooxidation of methane to formaldehyde via TiO2 crystal phase engineering. J. Am. Chem. Soc. 2022, 144, 15977–15987.


Luo, L.; Fu, L.; Liu, H. F.; Xu, Y. X.; Xing, J. L.; Chang, C. R.; Yang, D. Y.; Tang, J. W. Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light. Nat. Commun. 2022, 13, 2930.


Luo, L.; Gong, Z. Y.; Xu, Y. X.; Ma, J. N.; Liu, H. F.; Xing, J. L.; Tang, J. W. Binary Au-Cu reaction sites decorated ZnO for selective methane oxidation to C1 oxygenates with nearly 100% selectivity at room temperature. J. Am. Chem. Soc. 2022, 144, 740–750.


Luo, L. H.; Luo, J.; Li, H. L.; Ren, F. N.; Zhang, Y. F.; Liu, A. D.; Li, W. X.; Zeng, J. Water enables mild oxidation of methane to methanol on gold single-atom catalysts. Nat. Commun. 2021, 12, 1218.


Pan, L. H. ; Zhang, J. L. ; Wang, L. Z. 2D FeNi-LDO nanosheets for photocatalytic non-oxidative coupling of methane. Res. Chem. Intermed. 2022, 48, 2903–2913.


Zhou, Y. Y.; Zhang, L.; Wang, W. Z. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat. Commun. 2019, 10, 506.


An, B.; Zhang, Q. H.; Zheng, B. S.; Li, M.; Xi, Y. Y.; Jin, X.; Xue, S.; Li, Z. T.; Wu, M. B.; Wu, W. T. Sulfone-decorated conjugated organic polymers activate oxygen for photocatalytic methane conversion. Angew. Chem., Int. Ed. 2022, 61, e202204661.


Ohkubo, K.; Hirose, K. Light-driven C–H oxygenation of methane into methanol and formic acid by molecular oxygen using a perfluorinated solvent. Angew. Chem., Int. Ed. 2018, 57, 2126–2129.


Feng, N. D.; Lin, H. W.; Song, H.; Yang, L. X.; Tang, D. M.; Deng, F.; Ye, J. H. Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2. Nat. Commun. 2021, 12, 4652.


Hao, L.; Kang, L.; Huang, H. W.; Ye, L. Q.; Han, K. L.; Yang, S. Q.; Yu, H. J.; Batmunkh, M.; Zhang, Y. H.; Ma, T. Y. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 2019, 31, 1900546.


Li, W.; He, D.; Hu, G. X.; Li, X.; Banerjee, G.; Li, J. Y.; Lee, S. H.; Dong, Q.; Gao, T. Y.; Brudvig, G. W. et al. Selective CO production by photoelectrochemical methane oxidation on TiO2. ACS Cent. Sci. 2018, 4, 631–637.


Song, H.; Meng, X. G.; Wang, Z. J.; Wang, Z.; Chen, H. L.; Weng, Y. X.; Ichihara, F.; Oshikiri, M.; Kako, T.; Ye, J. H. Visible-light-mediated methane activation for steam methane reforming under mild conditions: A case study of Rh/TiO2 catalysts. ACS Catal. 2018, 8, 7556–7565.


Du, J.; Chen, W.; Wu, G. F.; Song, Y. F.; Dong, X.; Li, G. H.; Fang, J. H.; Wei, W.; Sun, Y. H. Evoked methane photocatalytic conversion to C2 oxygenates over ceria with oxygen vacancy. Catalysts 2020, 10, 196.


Chen, Z. Y.; Wu, S. Q.; Ma, J. Y.; Mine, S.; Toyao, T.; Matsuoka, M.; Wang, L. Z.; Zhang, J. L. Non-oxidative coupling of methane: N-type doping of niobium single atoms in TiO2-SiO2 induces electron localization. Angew. Chem., Int. Ed. 2021, 60, 11901–11909.

Kato, Y.; Yoshida, H.; Hattori, T. Photoinduced non-oxidative coupling of methane over silica-alumina and alumina around room temperature. Chem. Commun. 1998, 2389–2390.

Yuliati, L.; Hattori, T.; Yoshida, H. Highly dispersed magnesium oxide species on silica as photoactive sites for photoinduced direct methane coupling and photoluminescence. Phys. Chem. Chem. Phys. 2005, 7, 195–201.


Yuliati, L.; Hattori, T.; Itoh, H.; Yoshida, H. Photocatalytic nonoxidative coupling of methane on gallium oxide and silica-supported gallium oxide. J. Catal. 2008, 257, 396–402.


Yoshida, H. ; Chaskar, M. G. ; Kato, Y. ; Hattori, T. Fine structural photoluminescence spectra of silica-supported zirconium oxide and its photoactivity in direct methane conversion. Chem. Commun. 2002, 2014–2015.


Lang, J. Y.; Ma, Y. L.; Wu, X. C.; Jiang, Y. Y.; Hu, Y. H. Highly efficient light-driven methane coupling under ambient conditions based on an integrated design of a photocatalytic system. Green Chem. 2020, 22, 4669–4675.


Wu, S. Q.; Tan, X. J.; Lei, J. Y.; Chen, H. J.; Wang, L. Z.; Zhang, J. L. Ga-Doped and Pt-loaded porous TiO2-SiO2 for photocatalytic nonoxidative coupling of methane. J. Am. Chem. Soc. 2019, 141, 6592–6600.


Feng, X. Y.; Kang, K.; Wu, Y.; Zhang, J. L.; Wang, L. Z. Exploring the slow-light effect of Pt/TiO2-SiO2 inverse opal on photocatalytic nonoxidative coupling of methane. Chem. Commun. 2021, 57, 13000–13003.


Ma, J. Y.; Tan, X. J.; Zhang, Q. Q.; Wang, Y.; Zhang, J. L.; Wang, L. Z. Exploring the size effect of Pt nanoparticles on the photocatalytic nonoxidative coupling of methane. ACS Catal. 2021, 11, 3352–3360.


Singh, S. P.; Anzai, A.; Kawaharasaki, S.; Yamamoto, A.; Yoshida, H. Non-oxidative coupling of methane over Pd-loaded gallium oxide photocatalysts in a flow reactor. Catal. Today 2021, 375, 264–272.


Pan, L. H.; Wu, S. Q.; Huang, Z.; Zhang, S. W.; Wang, L. Z.; Zhang, J. L. MoO3-modified SAPO-34 for photocatalytic nonoxidative coupling of methane. Catal. Sci. Technol. 2022, 12, 3322–3327.


Yu, X.; Zholobenko, V. L.; Moldovan, S.; Hu, D.; Wu, D.; Ordomsky, V. V.; Khodakov, A. Y. Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat. Energy 2020, 5, 511–519.


Pan, X. Y.; Chen, X. X.; Yi, Z. G. Photocatalytic oxidation of methane over SrCO3 decorated SrTiO3 nanocatalysts via a synergistic effect. Phys. Chem. Chem. Phys. 2016, 18, 31400–31409.


Wei, J. P.; Yang, J.; Wen, Z. H.; Dai, J.; Li, Y.; Yao, B. H. Efficient photocatalytic oxidation of methane over β-Ga2O3/activated carbon composites. RSC Adv. 2017, 7, 37508–37521.


Han, B. ; Wei, W. ; Li, M. J. ; Sun, K. ; Hu, Y. H. A thermo-photo hybrid process for steam reforming of methane: Highly efficient visible light photocatalysis. Chem. Commun. 2019, 55, 7816–7819.


Chen, X. X.; Li, Y. P.; Pan, X. Y.; Cortie, D.; Huang, X. T.; Yi, Z. G. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat. Commun. 2016, 7, 12273.


Li, Z. H.; Boda, M. A.; Pan, X. Y.; Yi, Z. G. Photocatalytic oxidation of small molecular hydrocarbons over ZnO nanostructures: The difference between methane and ethylene and the impact of polar and nonpolar facets. ACS Sustainable Chem. Eng. 2019, 7, 19042–19049.


Li, X. Y.; Xie, J. J.; Rao, H.; Wang, C.; Tang, J. W. Platinum- and CuOx-decorated TiO2 photocatalyst for oxidative coupling of methane to C2 hydrocarbons in a flow reactor. Angew. Chem., Int. Ed. 2020, 59, 19702–19707.


Kaddeche, D.; Djaidja, A.; Barama, A. Partial oxidation of methane on co-precipitated Ni-Mg/Al catalysts modified with copper or iron. Int. J. Hydrogen Energy 2017, 42, 15002–15009.


Souza, J. D.; Souza, V. S.; Scholten, J. D. Synthesis of hybrid zinc-based materials from ionic liquids: A novel route to prepare active Zn catalysts for the photoactivation of water and methane. ACS Sustainable Chem. Eng. 2019, 7, 8090–8098.


Yu, X.; De Waele, V.; Löfberg, A.; Ordomsky, V.; Khodakov, A. Y. Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites. Nat. Commun. 2019, 10, 700.


Yang, J.; Xiao, W.; Chi, X.; Lu, X. X.; Hu, S. Y.; Wu, Z. L.; Tang, W. X.; Ren, Z.; Wang, S. B.; Yu, X. J. et al. Solar-driven efficient methane catalytic oxidation over epitaxial ZnO/La0.8Sr0.2CoO3 heterojunctions. Appl. Catal. B: Environ. 2020, 265, 118469.


Villa, K.; Murcia-López, S.; Andreu, T.; Morante, J. R. Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers. Appl. Catal. B:Environ. 2015, 163, 150–155.


Villa, K.; Murcia-López, S.; Morante, J. R.; Andreu, T. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol. Appl. Catal. B: Environ. 2016, 187, 30–36.


Zheng, K.; Wu, Y.; Zhu, J. C.; Wu, M. Y.; Jiao, X. C.; Li, L.; Wang, S. M.; Fan, M. H.; Hu, J.; Yan, W. S. et al. Room-temperature photooxidation of CH4 to CH3OH with nearly 100% selectivity over hetero-ZnO/Fe2O3 porous nanosheets. J. Am. Chem. Soc. 2022, 144, 12357–12366.


Zhang, S. S.; Xu, J.; Cheng, H. M.; Zang, C. C.; Bian, F. X.; Sun, B.; Shen, Y.; Jiang, H. Y. Photocatalytic H2 evolution from ammonia borane: Improvement of charge separation and directional charge transmission. ChemSusChem 2020, 13, 5264–5272.


Kennedy, J.; Bahruji, H.; Bowker, M.; Davies, P. R.; Bouleghlimat, E.; Issarapanacheewin, S. Hydrogen generation by photocatalytic reforming of potential biofuels: Polyols, cyclic alcohols, and saccharides. J. Photochem. Photobiol. A: Chem. 2018, 356, 451–456.


Kim, M. S.; Park, K. H.; Cho, S. J.; Park, E. D. Partial oxidation of methane with hydrogen peroxide over Fe-ZSM-5 catalyst. Catal. Today 2021, 376, 113–118.


Song, H.; Huang, H. M.; Meng, X. G.; Wang, Q.; Hu, H. L.; Wang, S. Y.; Zhang, H. W.; Jewasuwan, W.; Fukata, N.; Feng, N. D. et al. Atomically dispersed nickel anchored on a nitrogen-doped carbon/TiO2 composite for efficient and selective photocatalytic CH4 oxidation to oxygenates. Angew. Chem., Int. Ed. 2023, 62, e202215057.


Boudart, M. Turnover rates in heterogeneous catalysis. Chem. Rev. 1995, 95, 661–666.


Masood, H.; Toe, C. Y.; Teoh, W. Y.; Sethu, V.; Amal, R. Machine learning for accelerated discovery of solar photocatalysts. ACS Catal. 2019, 9, 11774–11787.


Mai, H.; Le, T. C.; Chen, D. H.; Winkler, D. A.; Caruso, R. A. Machine learning for electrocatalyst and photocatalyst design and discovery. Chem. Rev. 2022, 122, 13478–13515.


Li, X. B.; Maffettone, P. M.; Che, Y.; Liu, T.; Chen, L. J.; Cooper, A. I. Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules. Chem. Sci. 2021, 12, 10742–10754.


Wu, C. Y.; Corrigan, N.; Lim, C. H.; Liu, W. J.; Miyake, G.; Boyer, C. Rational design of photocatalysts for controlled polymerization: Effect of structures on photocatalytic activities. Chem. Rev. 2022, 122, 5476–5518.

Carbon Future
Pages 9200004-1-9200004-20
Cite this article:
Xu Y, Chen E, Tang J. Photocatalytic methane conversion to high-value chemicals. Carbon Future, 2024, 1(1): 9200004.








Received: 20 January 2023
Revised: 15 March 2023
Accepted: 29 March 2023
Published: 07 August 2023
© The Author(s) 2023.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See