820
Views
97
Downloads
14
Crossref
N/A
WoS
N/A
Scopus
N/A
CSCD
To investigate neural mechanisms of human psychology with electroencephalography (EEG), we typically instruct participants to perform certain tasks with simultaneous recording of their brain activities. The identification of task-related EEG responses requires data analysis techniques that are normally different from methods for analyzing resting-state EEG. This review aims to demystify commonly used signal processing methods for identifying task-related EEG activities for psychologists. To achieve this goal, we first highlight the different preprocessing pipelines between task-related EEG and resting-state EEG. We then discuss the methods to extract and visualize event-related potentials in the time domain and event-related oscillatory responses in the time-frequency domain. Potential applications of advanced techniques such as source analysis and single-trial analysis are briefly discussed. We conclude this review with a short summary of task-related EEG data analysis, recommendations for further study, and caveats we should take heed of.
To investigate neural mechanisms of human psychology with electroencephalography (EEG), we typically instruct participants to perform certain tasks with simultaneous recording of their brain activities. The identification of task-related EEG responses requires data analysis techniques that are normally different from methods for analyzing resting-state EEG. This review aims to demystify commonly used signal processing methods for identifying task-related EEG activities for psychologists. To achieve this goal, we first highlight the different preprocessing pipelines between task-related EEG and resting-state EEG. We then discuss the methods to extract and visualize event-related potentials in the time domain and event-related oscillatory responses in the time-frequency domain. Potential applications of advanced techniques such as source analysis and single-trial analysis are briefly discussed. We conclude this review with a short summary of task-related EEG data analysis, recommendations for further study, and caveats we should take heed of.
This work was supported by the National Natural Science Foundation of China (No. 31822025, No. 31671141). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
This article is published with open access at journals.sagepub.com/home/BSA
Creative Commons Non Commercial CC BY- NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/ en-us/nam/open-access-at-sage).