Journal Home > Volume 4 , Issue 1

Rhythmicity and oscillations are common features in nature, and can be seen in phenomena such as seasons, breathing, and brain activity. Despite the fact that a single neuron transmits its activity to its neighbor through a transient pulse, rhythmic activity emerges from large population-wide activity in the brain, and such rhythms are strongly coupled with the state and cognitive functions of the brain. However, it is still debated whether the oscillations of brain activity actually carry information. Here, we briefly introduce the biological findings of brain oscillations, and summarize the recent progress in understanding how oscillations mediate brain function. Finally, we examine the possible relationship between brain cognitive function and oscillation, focusing on how oscillation is related to memory, particularly with respect to state-dependent memory formation and memory retrieval under specific brain waves. We propose that oscillatory waves in the neocortex contribute to the synchronization and activation of specific memory trace ensembles in the neocortex by promoting long-range neural communication.


menu
Abstract
Full text
Outline
About this article

Do brain oscillations orchestrate memory?

Show Author's information Wenhan Luo1,2,3( )Ji-Song Guan2
Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China

Abstract

Rhythmicity and oscillations are common features in nature, and can be seen in phenomena such as seasons, breathing, and brain activity. Despite the fact that a single neuron transmits its activity to its neighbor through a transient pulse, rhythmic activity emerges from large population-wide activity in the brain, and such rhythms are strongly coupled with the state and cognitive functions of the brain. However, it is still debated whether the oscillations of brain activity actually carry information. Here, we briefly introduce the biological findings of brain oscillations, and summarize the recent progress in understanding how oscillations mediate brain function. Finally, we examine the possible relationship between brain cognitive function and oscillation, focusing on how oscillation is related to memory, particularly with respect to state-dependent memory formation and memory retrieval under specific brain waves. We propose that oscillatory waves in the neocortex contribute to the synchronization and activation of specific memory trace ensembles in the neocortex by promoting long-range neural communication.

Keywords: learning and memory, neural oscillation, state-dependent memory, synchronization

References(151)

[1]
Karbowski K. Hans Berger (1873–1941). J Neurol 2002, 249(8): 1130-1131.
[2]
Maier N, Nimmrich V, Draguhn A. Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. J Physiol 2003, 550(3): 873-887.
[3]
Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA. Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 2010, 464(7289): 763-767.
[4]
Ahnaou A, Moechars D, Raeymaekers L, Biermans R, Manyakov NV, Bottelbergs A, Wintmolders C, Van Kolen K, Van De Casteele T, Kemp JA, Drinkenburg WH. Emergence of early alterations in network oscillations and functional connectivity in a tau seeding mouse model of Alzheimer's disease pathology. Sci Rep 2017, 7: 14189.
[5]
Trimper JB, Galloway CR, Jones AC, Mandi K, Manns JR. Gamma oscillations in rat hippocampal subregions dentate gyrus, CA3, CA1, and subiculum underlie associative memory encoding. Cell Rep 2017, 21(9): 2419-2432.
[6]
Yartsev MM, Ulanovsky N. Representation of three-dimensional space in the hippocampus of flying bats. Science 2013, 340(6130): 367-372.
[7]
Johnson MJ, Alloway KD. Sensory modulation of synchronous thalamocortical interactions in the somatosensory system of the cat. Exp Brain Res 1994, 102(2): 181-197.
[8]
Sellers KK, Yu CX, Zhou ZC, Stitt I, Li YH, Radtke-Schuller S, Alagapan S, Fröhlich F. Oscillatory dynamics in the frontoparietal attention network during sustained attention in the ferret. Cell Rep 2016, 16(11): 2864-2874.
[9]
Takeuchi D, Hirabayashi T, Tamura K, Miyashita Y. Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex. Science 2011, 331(6023): 1443-1447.
[10]
Zanos S, Rembado I, Chen DF, Fetz EE. Phase-locked stimulation during cortical beta oscillations produces bidirectional synaptic plasticity in awake monkeys. Curr Biol 2018, 28(16): 2515-2526.
[11]
Hari R, Salmelin R. Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci 1997, 20(1): 44-49.
[12]
Jensen O, Kaiser J, Lachaux JP. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci 2007, 30(7): 317-324.
[13]
Kawasaki M, Yamada Y, Ushiku Y, Miyauchi E, Yamaguchi Y. Inter-brain synchronization during coordination of speech rhythm in human-to-human social interaction. Sci Rep 2013, 3: 1692.
[14]
Clouter A, Shapiro KL, Hanslmayr S. Theta phase synchronization is the glue that binds human associative memory. Curr Biol 2017, 27(20): 3143-3148.
[15]
Jiang HD, Schuele S, Rosenow J, Zelano C, Parvizi J, Tao JX, Wu SS, Gottfried JA. Theta oscillations rapidly convey odor-specific content in human piriform cortex. Neuron 2017, 94(1): 207-219.
[16]
Zhang HH, Watrous AJ, Patel A, Jacobs J. Theta and alpha oscillations are traveling waves in the human neocortex. Neuron 2018, 98(6): 1269-1281.
[17]
Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, Moser EI. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 2009, 462(7271): 353-357.
[18]
Plenz D, Thiagarajan TC. The organizing principles of neuronal avalanches: cell assemblies in the cortex? Trends Neurosci 2007, 30(3): 101-110.
[19]
De Zeeuw CI, Hoebeek FE, Schonewille M. Causes and consequences of oscillations in the cerebellar cortex. Neuron 2008, 58(5): 655-658.
[20]
Lansner A. Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. Trends Neurosci 2009, 32(3): 178-186.
[21]
Liebe S, Hoerzer GM, Logothetis NK, Rainer G. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nat Neurosci 2012, 15(3): 456-462.
[22]
Panagiotaropoulos TI, Deco G, Kapoor V, Logothetis NK. Neuronal discharges and gamma oscillations explicitly reflect visual consciousness in the lateral prefrontal cortex. Neuron 2012, 74(5): 924-935.
[23]
Sparta DR, Smithuis J, Stamatakis AM, Jennings JH, Kantak PA, Ung RL, Stuber GD. Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the acquisition of contextual fear. Front Behav Neurosci 2014, 8: 129.
[24]
Ketz NA, Jensen O, O'Reilly RC. Thalamic pathways underlying prefrontal cortex-medial temporal lobe oscillatory interactions. Trends Neurosci 2015, 38(1): 3-12.
[25]
Ray S, Maunsell JHR. Do gamma oscillations play a role in cerebral cortex? Trends Cogn Sci 2015, 19(2): 78-85.
[26]
Basu J, Zaremba JD, Cheung SK, Hitti FL, Zemelman BV, Losonczy A, Siegelbaum SA. Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition. Science 2016, 351(6269): aaa5694.
[27]
Cao B, Wang J, Shahed M, Jelfs B, Chan RHM, Li Y. Vagus nerve stimulation alters phase synchrony of the anterior cingulate cortex and facilitates decision making in rats. Sci Rep 2016, 6: 35135.
[28]
Chen H, Wang YJ, Yang L, Sui JF, Hu ZA, Hu B. Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior. Sci Rep 2016, 6: 20960.
[29]
Babapoor-Farrokhran S, Vinck M, Womelsdorf T, Everling S. Theta and beta synchrony coordinate frontal eye fields and anterior cingulate cortex during sensorimotor mapping. Nat Commun 2017, 8: 13967.
[30]
Bueno-Junior LS, Simon NW, Wegener MA, Moghaddam B. Repeated nicotine strengthens gamma oscillations in the prefrontal cortex and improves visual attention. Neuropsychopharmacology 2017, 42(8): 1590-1598.
[31]
Jacob SN, Hähnke D, Nieder A. Structuring of abstract working memory content by fronto-parietal synchrony in primate cortex. Neuron 2018, 99(3): 588-597.
[32]
Joglekar MR, Mejias JF, Yang GR, Wang XJ. Inter-areal balanced amplification enhances signal propagation in a large-scale circuit model of the primate cortex. Neuron 2018, 98(1): 222-234.
[33]
Minlebaev M, Colonnese MT, Tsintsadze T, Sirota A, Khazipov R. Early gamma oscillations synchronize developing thalamus and cortex. Science 2011, 334(6053): 226-229.
[34]
Fujisawa S, Buzsáki G. A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 2011, 72(1): 153-165.
[35]
Bocchio M, Capogna M. Oscillatory substrates of fear and safety. Neuron 2014, 83(4): 753-755.
[36]
Bazelot M, Bocchio M, Kasugai Y, Fischer D, Dodson PD, Ferraguti F, Capogna M. Hippocampal theta input to the amygdala shapes feedforward inhibition to gate heterosynaptic plasticity. Neuron 2015, 87(6): 1290-1303.
[37]
Karalis N, Dejean C, Chaudun F, Khoder S, Rozeske RR, Wurtz H, Bagur S, Benchenane K, Sirota A, Courtin J, Herry C. 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat Neurosci 2016, 19(4): 605-612.
[38]
Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 1969, 26(4): 407-418.
[39]
Crunelli V, Hughes SW. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 2010, 13(1): 9-17.
[40]
Pogosyan A, Gaynor LD, Eusebio A, Brown P. Boosting cortical activity at Beta-band frequencies slows movement in humans. Curr Biol 2009, 19(19): 1637-1641.
[41]
Meyer MAA, Corcoran KA, Chen HJ, Gallego S, Li GG, Tiruveedhula VV, Cook JM, Radulovic J. Neurobiological correlates of state-dependent context fear. Learn Mem 2017, 24(9): 385-391.
[42]
Uhlhaas PJ, Roux F, Rodriguez E, Rotarska-Jagiela A, Singer W. Neural synchrony and the development of cortical networks. Trends Cogn Sci 2010, 14(2): 72-80.
[43]
Chen G, Rasch MJ, Wang R, Zhang XH. Experience-dependent emergence of beta and gamma band oscillations in the primary visual cortex during the critical period. Sci Rep 2015, 5: 17847.
[44]
Kinreich S, Djalovski A, Kraus L, Louzoun Y, Feldman R. Brain-to-Brain Synchrony during Naturalistic Social Interactions. Sci Rep 2017, 7: 17060.
[45]
Beese C, Meyer L, Vassileiou B, Friederici AD. Temporally and spatially distinct theta oscillations dissociate a language-specific from a domain-general processing mechanism across the age trajectory. Sci Rep 2017, 7: 11202.
[46]
Fetz EE. Volitional control of cortical oscillations and synchrony. Neuron 2013, 77(2): 216-218.
[47]
Edagawa K, Kawasaki M. Beta phase synchronization in the frontal-temporal-cerebellar network during auditory-to-motor rhythm learning. Sci Rep 2017, 7: 42721.
[48]
Friese U, Daume J, Göschl F, König P, Wang P, Engel AK. Oscillatory brain activity during multisensory attention reflects activation, disinhibition, and cognitive control. Sci Rep 2016, 6: 32775.
[49]
Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ, Mathys H, Seo J, Kritskiy O, Abdurrob F, Adaikkan C, Canter RG, Rueda R, Brown EN, Boyden ES, Tsai LH. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 2016, 540(7632): 230-235.
[50]
Knudsen EI. Neural circuits that mediate selective attention: a comparative perspective. Trends Neurosci 2018, . (in Press)
[51]
Ni B, Wu RJ, Yu T, Zhu HW, Li YJ, Liu ZX. Role of the hippocampus in distinct memory traces: timing of match and mismatch enhancement revealed by intracranial recording. Neurosci Bull 2017, 33(6): 664-674.
[52]
Rose NS, LaRocque JJ, Riggall AC, Gosseries O, Starrett MJ, Meyering EE, Postle BR. Reactivation of latent working memories with transcranial magnetic stimulation. Science 2016, 354(6316): 1136-1139.
[53]
Abel T, Havekes R, Saletin JM, Walker MP. Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol 2013, 23(17): R774-R788.
[54]
Lewis PA, Knoblich G, Poe G. How memory replay in sleep boosts creative problem-solving. Trends Cogn Sci 2018, 22(6): 491-503.
[55]
Mayford M, Siegelbaum SA, Kandel ER. Synapses and memory storage. Cold Spring Harb Perspect Biol 2012, 4(6): a005751.
[56]
Tonegawa S, Liu X, Ramirez S, Redondo R. Memory engram cells have come of age. Neuron 2015, 87(5): 918-931.
[57]
Liu X, Ramirez S, Redondo RL, Tonegawa S. Identification and manipulation of memory engram cells. Cold Spring Harb Symp Quant Biol 2014, 79: 59-65.
[58]
Cowansage KK, Shuman T, Dillingham BC, Chang A, Golshani P, Mayford M. Direct reactivation of a coherent neocortical memory of context. Neuron 2014, 84(2): 432-441.
[59]
Maren S, Phan KL, Liberzon I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 2013, 14(6): 417-428.
[60]
Xie H, Liu Y, Zhu YZ, Ding XL, Yang YH, Guan JS. In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain. Proc Natl Acad Sci USA 2014, 111(7): 2788- 2793.
[61]
da Silva F L. EEG and MEG: relevance to neuroscience. Neuron 2013, 80(5): 1112-1128.
[62]
Cohen MX. Where does EEG come from and what does it mean? Trends Neurosci 2017, 40(4): 208-218.
[63]
Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, Malach R. Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 2005, 309(5736): 951-954.
[64]
Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RAW. Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 2005, 309(5736): 948-951.
[65]
Chen G, Zhang Y, Li X, Zhao XC, Ye Q, Lin YX, Tao HW, Rasch MJ, Zhang XH. Distinct inhibitory circuits orchestrate cortical beta and gamma band oscillations. Neuron 2017, 96(6): 1403-1418.
[66]
Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 2007, 8(1): 45-56.
[67]
Mann EO, Paulsen O. Role of GABAergic inhibition in hippocampal network oscillations. Trends Neurosci 2007, 30(7): 343-349.
[68]
Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 2009, 459(7247): 663-667.
[69]
Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009, 459(7247): 698-702.
[70]
Veit J, Hakim R, Jadi MP, Sejnowski TJ, Adesnik H. Cortical gamma band synchronization through somatostatin interneurons. Nat Neurosci 2017, 20(7): 951-959.
[71]
Buzsáki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci 2012, 35(1): 203-225.
[72]
Tremblay R, Lee S, Rudy B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 2016, 91(2): 260-292.
[73]
Yavorska I, Wehr M. Somatostatin-expressing inhibitory interneurons in cortical circuits. Front Neural Circuits 2016, 10: 76.
[74]
Söhl G, Maxeiner S, Willecke K. Expression and functions of neuronal gap junctions. Nat Rev Neurosci 2005, 6(3): 191-200.
[75]
Vervaeke K, Lorincz A, Nusser Z, Silver RA. Gap junctions compensate for sublinear dendritic integration in an inhibitory network. Science 2012, 335(6076): 1624-1628.
[76]
Lindén H, Tetzlaff T, Potjans T, Pettersen K, Grün S, Diesmann M, Einevoll G. Modeling the spatial reach of the LFP. Neuron 2011, 72(5): 859-872.
[77]
Breakspear M. Dynamic models of large-scale brain activity. Nat Neurosci 2017, 20(3): 340-352.
[78]
Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 1972, 12(1): 1-24.
[79]
Jadi MP, Sejnowski TJ. Cortical oscillations arise from contextual interactions that regulate sparse coding. Proc Natl Acad Sci USA, 2014, 111(18): 6780-6785.
[80]
Jadi MP, Sejnowski TJ. Regulating cortical oscillations in an inhibition-stabilized network. Proc IEEE 2014, 102(5): 830-842.
[81]
Feshchenko VA, Veselis RA, Reinsel RA. Comparison of the EEG effects of midazolam, thiopental, and propofol: the role of underlying oscillatory systems. Neuropsychobiology 1997, 35(4): 211-220.
[82]
Van Lier H, Drinkenburg WHIM, Van Eeten YJW, Coenen AML. Effects of diazepam and zolpidem on EEG beta frequencies are behavior-specific in rats. Neuropharmacology 2004, 47(2): 163-174.
[83]
Herreras O. Local field potentials: myths and misunderstandings. Front Neural Circuits 2016, 10: 101.
[84]
Jia XX, Xing DJ, Kohn A. No consistent relationship between gamma power and peak frequency in macaque primary visual cortex. J Neurosci 2013, 33(1): 17-25.
[85]
Xing DJ, Yeh CI, Burns S, Shapley RM. Laminar analysis of visually evoked activity in the primary visual cortex. Proc Natl Acad Sci USA 2012, 109(34): 13871-13876.
[86]
Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci 2012, 13(6): 407-420.
[87]
Anastassiou CA, Montgomery SM, Barahona M, Buzsáki G, Koch C. The effect of spatially inhomogeneous extracellular electric fields on neurons. J Neurosci 2010, 30(5): 1925-1936.
[88]
Mann EO, Paulsen O. Local field potential oscillations as a cortical soliloquy. Neuron 2010, 67(1): 3-5.
[89]
Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature 2006, 444(7119): 610-613.
[90]
Lin JY, Lin MZ, Steinbach P, Tsien RY. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 2009, 96(5): 1803-1814.
[91]
Hyafil A, Giraud AL, Fontolan L, Gutkin B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci 2015, 38(11): 725-740.
[92]
Haslinger R, Ulbert I, Moore CI, Brown EN, Devor A. Analysis of LFP phase predicts sensory response of barrel cortex. J Neurophysiol 2006, 96(3): 1658-1663.
[93]
Rutishauser U, Ross IB, Mamelak AN, Schuman EM. Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 2010, 464(7290): 903-907.
[94]
Hipp JF, Engel AK, Siegel M. Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 2011, 69(2): 387-396.
[95]
Rangaswamy M, Jones KA, Porjesz B, Chorlian DB, Padmanabhapillai A, Kamarajan C, Kuperman S, Rohrbaugh J, O'Connor SJ, Bauer LO, Schuckit MA, Begleiter H. Delta and theta oscillations as risk markers in adolescent offspring of alcoholics. Int J Psychophysiol 2007, 63(1): 3-15.
[96]
McNally JM, McCarley RW, Brown RE. Chronic ketamine reduces the peak frequency of gamma oscillations in mouse prefrontal cortex ex vivo. Front Psychiatry 2013, 4: 106.
[97]
Staresina BP, Bergmann TO, Bonnefond M, van der Meij R, Jensen O, Deuker L, Elger CE, Axmacher N, Fell J. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat Neurosci 2015, 18(11): 1679-1686.
[98]
Ekstrom AD, Caplan JB, Ho E, Shattuck K, Fried I, Kahana MJ. Human hippocampal theta activity during virtual navigation. Hippocampus 2005, 15(7): 881-889.
[99]
Colgin LL. Mechanisms and functions of theta rhythms. Annu Rev Neurosci 2013, 36(1): 295-312.
[100]
Haenschel C, Baldeweg T, Croft RJ, Whittington M, Gruzelier J. Gamma and beta frequency oscillations in response to novel auditory stimuli: A comparison of human electroencephalogram (EEG) data with in vitro models. Proc Natl Acad Sci USA 2000, 97(13): 7645-7650.
[101]
Zhang Y, Chen Y, Bressler SL, Ding M. Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience 2008, 156(1): 238-246.
[102]
Feingold J, Gibson DJ, DePasquale B, Graybiel AM. Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proc Natl Acad Sci USA 2015, 112(44): 13687-13692.
[103]
Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT. High gamma power is phase-locked to theta oscillations in human neocortex. Science 2006, 313(5793): 1626-1628.
[104]
Walker MP, Stickgold R. Sleep, memory, and plasticity. Annu Rev Psychol 2006, 57(1): 139-166.
[105]
Kramis R, Vanderwolf CH, Bland BH. Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Exp Neurol 1975, 49(1): 58-85.
[106]
Karashima A, Nakao M, Honda K, Iwasaki N, Katayama N, Yamamoto M. Theta wave amplitude and frequency are differentially correlated with pontine waves and rapid eye movements during REM sleep in rats. Neurosci Res 2004, 50(3): 283-289.
[107]
Tort AB, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H. Theta–gamma coupling increases during the learning of item–context associations. Proc Natl Acad Sci USA 2009, 106(49): 20942-20947.
[108]
Roopun AK, Middleton SJ, Cunningham MO, LeBeau FEN, Bibbig A, Whittington MA, Traub RD. A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proc Natl Acad Sci USA 2006, 103(42): 15646-15650.
[109]
Pritchett DL, Siegle JH, Deister CA, Moore CI. For things needing your attention: the role of neocortical gamma in sensory perception. Curr Opin Neurobiol 2015, 31: 254-263.
[110]
Skosnik PD, Krishnan GP, D'Souza DC, Hetrick WP, O'Donnell BF. Disrupted gamma-band neural oscillations during coherent motion perception in heavy cannabis users. Neuropsychopharmacology 2014, 39(13): 3087-3099.
[111]
Jiang J, Wang GY, Luo W, Xie H, Guan JS. Mammillary body regulates state-dependent fear by alternating cortical oscillations. Sci Rep 2018, 8: 13471.
[112]
Jovasevic V, Corcoran KA, Leaderbrand K, Yamawaki N, Guedea AL, Chen HJ, Shepherd GMG, Radulovic J. GABAergic mechanisms regulated by miR-33 encode state-dependent fear. Nat Neurosci 2015, 18(9): 1265-1271.
[113]
Guan JS, Jiang J, Xie H, Liu KY. How does the sparse memory "Engram" neurons encode the memory of a spatial-temporal event? Front Neural Circuits 2016, 10: 61.
[114]
Han SH, Jiang Y, Mao LH, Humphreys GW, Qin JG. Attentional modulation of perceptual grouping in human visual cortex: ERP studies. Hum Brain Mapp 2005, 26(3): 199-209.
[115]
Zhang XL, Li ZP, Zhou TG, Fang F. Neural activities in v1 create a bottom-up saliency map. Neuron 2012, 73(1): 183-192.
[116]
Gao Y, Wang Q, Ding Y, Wang CM, Li HF, Wu XH, Qu TS, Li L. Selective attention enhances beta-band cortical oscillation to speech under "Cocktail-Party" listening conditions. Front Hum Neurosci 2017, 11: 34.
[117]
Jia JR, Liu L, Fang F, Luo H. Sequential sampling of visual objects during sustained attention. PLoS Biol 2017, 15: e2001903.
[118]
Zhang GL, Li H, Song Y, Yu C. ERP C1 is top-down modulated by orientation perceptual learning. J Vis 2015, 15(10): 8.
[119]
Luo H, Poeppel D. Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron 2007, 54(6): 1001-1010.
[120]
Politzer-Ahles S, Fiorentino R, Jiang XM, Zhou XL. Distinct neural correlates for pragmatic and semantic meaning processing: an event-related potential investigation of scalar implicature processing using picture-sentence verification. Brain Res 2013, 1490: 134-152.
[121]
Mu Y, Fan Y, Mao LH, Han SH. Event-related theta and alpha oscillations mediate empathy for pain. Brain Res 2008, 1234: 128-136.
[122]
Geng HY, Qi YQ, Li YF, Fan SL, Wu YH, Zhu Y. Neurophysiological correlates of memory illusion in both encoding and retrieval phases. Brain Res 2007, 1136: 154-168.
[123]
Li HH, Kong LZ, Wu XH, Li L. Primitive auditory memory is correlated with spatial unmasking that is based on direct-reflection integration. PloS One 2013, 8: e63106.
[124]
Mao XR, Wang YJ, Wu YH, Guo CY. Self-referential information alleviates retrieval inhibition of directed forgetting effects-an ERP evidence of source memory. Front Behav Neurosci 2017, 11: 187.
[125]
Pan YF, Li XC, Chen X, Ku YX, Dong YJ, Dou Z, He L, Hu Y, Li WD, Zhou XL. ERPs and oscillations during encoding predict retrieval of digit memory in superior mnemonists. Brain Cogn 2017, 117: 17-25.
[126]
Song K, Luo H. Temporal organization of sound information in auditory memory. Front Psychol 2017, 8: 999.
[127]
Tanaka KZ, He HS, Tomar A, Niisato K, Huang AJY, McHugh TJ. The hippocampal engram maps experience but not place. Science 2018, 361(6400): 392-397.
[128]
Bocchio M, Nabavi S, Capogna M. Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron 2017, 94(4): 731-743.
[129]
Choi JH, Koch KP, Poppendieck W, Lee M, Shin HS. High resolution electroencephalography in freely moving mice. J Neurophysiol 2010, 104(3): 1825-1834.
[130]
Dzirasa K, Fuentes R, Kumar S, Potes JM, Nicolelis MAL. Chronic in vivo multi-circuit neurophysiological recordings in mice. J Neurosci Methods 2011, 195(1): 36-46.
[131]
Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. Adv Mater 2014, 26(12): 1846-1885.
[132]
Torrence C, Compo GP. A practical guide to wavelet analysis. Bull Amer Meteor Soc 1998, 79(1): 61-78.
[133]
Lachaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain signals. Hum Brain Mapp 1999, 8(4): 194-208.
[134]
Place R, Farovik A, Brockmann M, Eichenbaum H. Bidirectional prefrontal-hippocampal interactions support context-guided memory. Nat Neurosci 2016, 19(8): 992-994.
[135]
Del Val LP, Cantero JL, Atienza M. Atrophy of amygdala and abnormal memory-related alpha oscillations over posterior cingulate predict conversion to Alzheimer's disease. Sci Rep 2016, 6: 31859.
[136]
Tamura M, Spellman TJ, Rosen AM, Gogos JA, Gordon JA. Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task. Nat Commun 2017, 8: 2182.
[137]
Taub AH, Perets R, Kahana E, Paz R. Oscillations synchronize amygdala-to-prefrontal primate circuits during aversive learning. Neuron 2018, 97(2): 291-298.
[138]
Singer W. Dynamic formation of functional networks by synchronization. Neuron 2011, 69(2): 191-193.
[139]
van Atteveldt N, Murray MM, Thut G, Schroeder CE. Multisensory integration: flexible use of general operations. Neuron 2014, 81(6): 1240-1253.
[140]
Maris E, Fries P, van Ede F. Diverse phase relations among neuronal rhythms and their potential function. Trends Neurosci 2016, 39(2): 86-99.
[141]
Buzsáki G. Large-scale recording of neuronal ensembles. Nat Neurosci 2004, 7(5): 446-451.
[142]
Battaglia FP, McNaughton BL. Polyrhythms of the brain. Neuron 2011, 72(1): 6-8.
[143]
Siegel M, Donner TH, Engel AK. Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci 2012, 13(2): 121-134.
[144]
Buzsáki G, Moser EI. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 2013, 16(2): 130-138.
[145]
Sirota A, Montgomery S, Fujisawa S, Isomura Y, Zugaro M, Buzsáki G. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 2008, 60(4): 683-697.
[146]
Gruber T, Keil A, Müller MM. Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. Neurosci Lett 2001, 316(1): 29-32.
[147]
Sato N, Yamaguchi Y. Theta synchronization networks emerge during human object–place memory encoding. Neuroreport 2007, 18(5): 419-424.
[148]
Summerfield C, Mangels JA. Coherent theta-band EEG activity predicts item-context binding during encoding. NeuroImage 2005, 24(3): 692-703.
[149]
Leutgeb S, Mizumori SJY. Excitotoxic septal lesions result in spatial memory deficits and altered flexibility of hippocampal single-unit representations. J Neurosci 1999, 19(15): 6661-6672.
[150]
Lipponen A, Woldemichael BT, Gurevicius K, Tanila H. Artificial theta stimulation impairs encoding of contextual fear memory. PLoS One 2012, 7: e48506.
[151]
Hanslmayr S, Staresina BP, Bowman H. Oscillations and episodic memory: addressing the synchronization/ desynchronization conundrum. Trends Neurosci 2016, 39(1): 16-25.
Publication history
Copyright
Rights and permissions

Publication history

Received: 11 September 2018
Revised: 28 September 2018
Accepted: 12 October 2018
Published: 25 November 2018
Issue date: September 2018

Copyright

© The authors 2018

Rights and permissions

This article is published with open access at journals.sagepub.com/home/BSA

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/ en-us/nam/open-access-at-sage).

Return