Journal Home > Volume 4 , Issue 2

Synaptic plasticity is widely believed to be the cellular basis of learning and memory. It is influenced by various factors including development, sensory experiences, and brain disorders. Long-term synaptic plasticity is accompanied by protein synthesis and trafficking, leading to structural changes of the synapse. In this review, we focus on the synaptic structural plasticity, which has mainly been studied with in vivo two-photon laser scanning microscopy. We also discuss how a special type of synapses, the multi-contact synapses (including those formed by multi-synaptic boutons and multi-synaptic spines), are associated with experience and learning.


menu
Abstract
Full text
Outline
About this article

Changes of synaptic structures associated with learning, memory and diseases

Show Author's information Yang Yang1( )Ju Lu2Yi Zuo2
School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA

Abstract

Synaptic plasticity is widely believed to be the cellular basis of learning and memory. It is influenced by various factors including development, sensory experiences, and brain disorders. Long-term synaptic plasticity is accompanied by protein synthesis and trafficking, leading to structural changes of the synapse. In this review, we focus on the synaptic structural plasticity, which has mainly been studied with in vivo two-photon laser scanning microscopy. We also discuss how a special type of synapses, the multi-contact synapses (including those formed by multi-synaptic boutons and multi-synaptic spines), are associated with experience and learning.

Keywords: synaptic plasticity, spine, axonal bouton, sensory deprivation, learning, neurological disease, multi-synaptic bouton, multi-synaptic spine

References(180)

[1]
M Foster, CS Sherrington. A Textbook of Physiology. 7th ed. London: Macmillan, 1897.
[2]
GM Shepherd, SD Erulkar. Centenary of the synapse: From Sherrington to the molecular biology of the synapse and beyond. Trends Neurosci 1997, 20(9): 385-392.
[3]
JP Revel, MJ Karnovsky. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 1967, 33(3): C7-C12.
[4]
JD Robertson. The occurrence of a subunit pattern in the unit membranes of club endings in Mauthner cell synapses in goldfish brains. J Cell Biol 1963, 19(1): 201-221.
[5]
S Ramón y Cajal. Estructura de los centros nerviosos de las aves. Rev Trim Histol Norm Patol 1888, 1: 1-10.
[6]
S Ramón y Cajal. Les preuves objectives de l'unite anatomique des cellules nerveuses. Trav Lab Invest Biol 1934, 29: 1-137.
[7]
HT Chang. Cortical neurons with particular reference to the apical dendrites. Cold Spring Harb Symp Quant Biol 1952, 17: 189-202.
[8]
J Cartailler, T Kwon, R Yuste, D Holcman. Deconvolution of voltage sensor time series and electro-diffusion modeling reveal the role of spine geometry in controlling synaptic strength. Neuron 2018, 97(5): 1126-1136.
[9]
W Rall, J Rinzel. Dendritic spine function and synaptic attenuation calculations. Prog Abstr Soc Neurosci 1971, 1: 64
[10]
F Crick. Do dendritic spines twitch? Trends Neurosci 1982, 5: 44-46.
[11]
JI Arellano, R Benavides-Piccione, J Defelipe, R Yuste. Ultrastructure of dendritic spines: Correlation between synaptic and spine morphologies. Front Neurosci 2007, 1(1): 131-143.
[12]
M Matsuzaki, GCR Ellis-Davies, T Nemoto, Y Miyashita, M Iino, H Kasai. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 2001, 4(11): 1086-1092.
[13]
GW Knott, A Holtmaat, L Wilbrecht, E Welker, K Svoboda. Spine growth precedes synapse formation in the adult neocortex in vivo. Nat Neurosci 2006, 9(9): 1117-1124.
[14]
K Zito, V Scheuss, G Knott, T Hill, K Svoboda. Rapid functional maturation of nascent dendritic spines. Neuron 2009, 61(2): 247-258.
[15]
EH Buhl, G Tamás, T Szilágyi, C Stricker, O Paulsen, P Somogyi. Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. J Physiol 1997, 500: 689-713.
[16]
G Benshalom, EL White. Quantification of thalamocortical synapses with spiny stellate neurons in layer IV of mouse somatosensory cortex. J Comp Neurol 1986, 253(3): 303-314.
[17]
SM Hersch, EL White. Quantification of synapses formed with apical dendrites of Golgi-impregnated pyramidal cells: variability in thalamocortical inputs, but consistency in the ratios of asymmetrical to symmetrical synapses. Neuroscience 1981, 6(6): 1043-1051.
[18]
EL White, MP Rock. Three-dimensional aspects and synaptic relationships of a Golgi-impregnated spiny stellate cell reconstructed from serial thin sections. J Neurocytol 1980, 9(5): 615-636.
[19]
ER Kandel. The biology of memory: a forty-year perspective. J Neurosci 2009, 29(41): 12748-12756.
[20]
RA Nicoll. A brief history of long-term potentiation. Neuron 2017, 93(2): 281-290.
[21]
W James. The Principles of Psychology. New York: Henry Holt and Company, 1890.
[22]
G Berlucchi, HA Buchtel. Neuronal plasticity: historical roots and evolution of meaning. Exp Brain Res 2009, 192(3): 307-319.
[23]
Y Ramón, S Cajal. La fine structure des centres nerveux. Proc Roy Soc London 1894, 55: 444-468.
[24]
W McDougall. Physiological Psychology. London: The Temple Primers, 1905.
[25]
WB Pillsbury. The Essentials of Psychology. New York: The Macmillan Company, 1911.
[26]
DO Hebb. The Organization of Behavior: A Neuropsychological Theory. New York: John Wiley and Sons, Inc., 1949.
[27]
TVP Bliss, T Lømo. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 1973, 232(2): 331-356.
[28]
M Ito, M Sakurai, P Tongroach. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 1982, 324(1): 113-134.
[29]
M Ito, M Kano. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 1982, 33(3): 253-258.
[30]
A Artola, S Bröcher, W Singer. Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 1990, 347(6288): 69-72.
[31]
RM Mulkey, RC Malenka. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 1992, 9(5): 967-975.
[32]
SM Dudek, MF Bear. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci USA 1992, 89(10): 4363-4367.
[33]
WB Levy, O Steward. Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 1983, 8(4): 791-797.
[34]
CC Bell, V Z Han, Y Sugawara, K Grant. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 1997, 387(6630): 278-281.
[35]
GQ Bi, MM Poo. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 1998, 18(24): 10464-10472.
[36]
V Egger, D Feldmeyer, B Sakmann. Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 1999, 2(12): 1098-1105.
[37]
JC Magee, D Johnston. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 1997, 275(5297): 209-213.
[38]
H Markram, J Lübke, M Frotscher, B Sakmann. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 1997, 275(5297): 213-215.
[39]
LI Zhang, HW Tao, CE Holt, WA Harris, MM Poo. A critical window for cooperation and competition among developing retinotectal synapses. Nature 1998, 395(6697): 37-44.
[40]
RJ Kelleher III, A Govindarajan, S Tonegawa. Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 2004, 44(1): 59-73.
[41]
M Bosch, J Castro, T Saneyoshi, H Matsuno, M Sur, Y Hayashi. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 2014, 82(2): 444-459.
[42]
Y Hayashi, SH Shi, JA Esteban, A Piccini, JC Poncer, R Malinow. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 2000, 287(5461): 2262-2267.
[43]
F Engert, T Bonhoeffer. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 1999, 399(6731): 66-70.
[44]
W Denk, JH Strickler, WW Webb. Two-photon laser scanning fluorescence microscopy. Science 1990, 248(4951): 73-76.
[45]
W Denk, K Svoboda. Photon upmanship: Why multiphoton imaging is more than a gimmick. Neuron 1997, 18(3): 351-357.
[46]
F Helmchen, W Denk. Deep tissue two-photon microscopy. Nat Methods 2005, 2(12): 932-940.
[47]
K Svoboda, R Yasuda. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 2006, 50(6): 823-839.
[48]
GP Feng, RH Mellor, M Bernstein, C Keller-Peck, QT Nguyen, M Wallace, JM Nerbonne, JW Lichtman, JR Sanes. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 2000, 28(1): 41-51.
[49]
NW Gray, RM Weimer, I Bureau, K Svoboda. Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol 2006, 4(11): e370.
[50]
M Mank, AF Santos, S Direnberger, TD Mrsic-Flogel, SB Hofer, V Stein, T Hendel, DF Reiff, C Levelt, A Borst, et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 2008, 5(9): 805-811.
[51]
T Dittgen, A Nimmerjahn, S Komai, P Licznerski, J Waters, TW Margrie, F Helmchen, W Denk, M Brecht, P Osten. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci USA 2004, 101(52): 18206-18211.
[52]
JT Trachtenberg, BE Chen, GW Knott, GP Feng, JR Sanes, E Welker, K Svoboda. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 2002, 420(6917): 788-794.
[53]
MM Poo, M Pignatelli, TJ Ryan, S Tonegawa, T Bonhoeffer, KC Martin, A Rudenko, LH Tsai, RW Tsien, G Fishell, et al. What is memory? The present state of the engram. BMC Biol 2016, 14: 40.
[54]
J Bourne, KM Harris. Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 2007, 17(3): 381-386.
[55]
Y Zuo, A Lin, P Chang, WB Gan. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 2005, 46(2): 181-189.
[56]
AJGD Holtmaat, JT Trachtenberg, L Wilbrecht, GM Shepherd, XQ Zhang, GW Knott, K Svoboda. Transient and persistent dendritic spines in the neocortex in vivo. Neuron 2005, 45(2): 279-291.
[57]
AK Majewska, JR Newton, M Sur. Remodeling of synaptic structure in sensory cortical areas in vivo. J Neurosci 2006, 26(11): 3021-3029.
[58]
M Tjia, XZ Yu, LS Jammu, J Lu, Y Zuo. Pyramidal neurons in different cortical layers exhibit distinct dynamics and plasticity of apical dendritic spines. Front Neural Circuits 2017, 11: 43.
[59]
WCA Lee, H Huang, GP Feng, JR Sanes, EN Brown, PT So, E Nedivi. Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex. PLoS Biol 2006, 4(2): e29.
[60]
JL Chen, GH Flanders, WCA Lee, WC Lin, E Nedivi. Inhibitory dendrite dynamics as a general feature of the adult cortical microcircuit. J Neurosci 2011, 31(35): 12437-12443.
[61]
Y Kawaguchi, F Karube, Y Kubota. Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. Cereb Cortex 2006, 16(5): 696-711.
[62]
M Perez-Rando, E Castillo-Gómez, R Guirado, JM Blasco-Ibañez, C Crespo, E Varea, J Nacher. NMDA receptors regulate the structural plasticity of spines and axonal boutons in hippocampal interneurons. Front Cell Neurosci 2017, 11: 166.
[63]
V De Paola, A Holtmaat, G Knott, S Song, L Wilbrecht, P Caroni, K Svoboda. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 2006, 49(6): 861-875.
[64]
C Portera-Cailliau, RM Weimer, V De Paola, P Caroni, K Svoboda. Diverse modes of axon elaboration in the developing neocortex. PLoS Biol 2005, 3(8): e272.
[65]
R Mostany, JE Anstey, KL Crump, B Maco, G Knott, C Portera-Cailliau. Altered synaptic dynamics during normal brain aging. J Neurosci 2013, 33(9): 4094-4104.
[66]
FW Grillo, S Song, LM Teles-Grilo Ruivo, L Huang, G Gao, GW Knott, B Maco, V Ferretti, D Thompson, et al. Increased axonal bouton dynamics in the aging mouse cortex. Proc Natl Acad Sci USA 2013, 110(16): E1514-E1523.
[67]
M Matsuzaki, N Honkura, GCR Ellis-Davies, H Kasai. Structural basis of long-term potentiation in single dendritic spines. Nature 2004, 429(6993): 761-766.
[68]
R Eavri, J Shepherd, CA Welsh, GH Flanders, MF Bear, E Nedivi. Interneuron simplification and loss of structural plasticity as markers of aging-related functional decline. J Neurosci 2018, 38(39): 8421-8432.
[69]
G Mongillo, S Rumpel, Y Loewenstein. Intrinsic volatility of synaptic connections—A challenge to the synaptic trace theory of memory. Curr Opin Neurobiol 2017, 46: 7-13.
[70]
M Sajo, G Ellis-Davies, H Morishita. Lynx1 limits dendritic spine turnover in the adult visual cortex. J Neurosci 2016, 36(36): 9472-9478.
[71]
A Majewska, M Sur. Motility of dendritic spines in visual cortex in vivo: changes during the critical period and effects of visual deprivation. Proc Natl Acad Sci USA 2003, 100(26): 16024-16029.
[72]
S Oray, A Majewska, M Sur. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron 2004, 44(6): 1021-1030.
[73]
YM Zhou, BL Lai, WB Gan. Monocular deprivation induces dendritic spine elimination in the developing mouse visual cortex. Sci Rep 2017, 7(1): 4977.
[74]
D Tropea, AK Majewska, R Garcia, M Sur. Structural dynamics of synapses in vivo correlate with functional changes during experience-dependent plasticity in visual cortex. J Neurosci 2010, 30(33): 11086-11095.
[75]
SB Hofer, TD Mrsic-Flogel, T Bonhoeffer, M Hübener. Prior experience enhances plasticity in adult visual cortex. Nat Neurosci 2006, 9(1): 127-132.
[76]
SB Hofer, TD Mrsic-Flogel, T Bonhoeffer, M Hübener. Experience leaves a lasting structural trace in cortical circuits. Nature 2009, 457(7227): 313-317.
[77]
JL Chen, KL Villa, JW Cha, PTC So, Y Kubota, E Nedivi. Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron 2012, 74(2): 361-373.
[78]
KL Villa, KP Berry, J Subramanian, JW Cha, WC Oh, HB Kwon, Y Kubota, PTC So, E Nedivi. Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo. Neuron 2016, 90(3): 662-664.
[79]
RP Sammons, C Clopath, SJ Barnes. Size-dependent axonal bouton dynamics following visual deprivation in vivo. Cell Rep 2018, 22(3): 576-584.
[80]
B Lendvai, EA Stern, B Chen, K Svoboda. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 2000, 404(6780): 876-881.
[81]
L Ma, Q Qiao, JW Tsai, G Yang, W Li, WB Gan. Experience-dependent plasticity of dendritic spines of layer 2/3 pyramidal neurons in the mouse cortex. Dev Neurobiol 2016, 76(3): 277-286.
[82]
A Miquelajauregui, S Kribakaran, R Mostany, A Badaloni, GG Consalez, C Portera-Cailliau. Layer 4 pyramidal neurons exhibit robust dendritic spine plasticity in vivo after input deprivation. J Neurosci 2015, 35(18): 7287-7294.
[83]
SA Marik, H Yamahachi, JNJ McManus, G Szabo, CD Gilbert. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex. PLoS Biol 2010, 8(6): e1000395.
[84]
Y Zuo, G Yang, E Kwon, WB Gan. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 2005, 436(7048): 261-265.
[85]
A Holtmaat, L Wilbrecht, GW Knott, E Welker, K Svoboda. Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 2006, 441(7096): 979-983.
[86]
L Wilbrecht, A Holtmaat, N Wright, K Fox, K Svoboda. Structural plasticity underlies experience-dependent functional plasticity of cortical circuits. J Neurosci 2010, 30(14): 4927-4932.
[87]
G Yang, F Pan, WB Gan. Stably maintained dendritic spines are associated with lifelong memories. Nature 2009, 462(7275): 920-924.
[88]
TH Xu, XZ Yu, AJ Perlik, WF Tobin, JA Zweig, K Tennant, T Jones, Y Zuo. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 2009, 462(7275): 915-919.
[89]
M Fu, XZ Yu, J Lu, Y Zuo. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 2012, 483(7387): 92-95.
[90]
AC Frank, S Huang, MO Zhou, A Gdalyahu, G Kastellakis, TK Silva, E Lu, XM Wen, P Poirazi, JT Trachtenberg, et al. Hotspots of dendritic spine turnover facilitate clustered spine addition and learning and memory. Nat Commun 2018, 9: 422.
[91]
A Hayashi-Takagi, S Yagishita, M Nakamura, F Shirai, YI Wu, AL Loshbaugh, B Kuhlman, KM Hahn, H Kasai. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 2015, 525(7569): 333-338.
[92]
SX Chen, AN Kim, AJ Peters, T Komiyama. Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nat Neurosci 2015, 18(8): 1109-1115.
[93]
TF Roberts, KA Tschida, ME Klein, R Mooney. Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning. Nature 2010, 463(7283): 948-952.
[94]
B Joachimsthaler, D Brugger, A Skodras, C Schwarz. Spine loss in primary somatosensory cortex during trace eyeblink conditioning. J Neurosci 2015, 35(9): 3772-3781.
[95]
KE Moczulska, J Tinter-Thiede, M Peter, L Ushakova, T Wernle, B Bathellier, S Rumpel. Dynamics of dendritic spines in the mouse auditory cortex during memory formation and memory recall. Proc Natl Acad Sci USA 2013, 110(45): 18315-18320.
[96]
Y Yang, DQ Liu, W Huang, J Deng, YG Sun, Y Zuo, MM Poo. Selective synaptic remodeling of amygdalocortical connections associated with fear memory. Nat Neurosci 2016, 19(10): 1348-1355.
[97]
CSW Lai, A Adler, WB Gan. Fear extinction reverses dendritic spine formation induced by fear conditioning in the mouse auditory cortex. Proc Natl Acad Sci USA 2018, 115(37): 9306-9311.
[98]
CSW Lai, TF Franke, WB Gan. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 2012, 483(7387): 87-91.
[99]
NS Ward, MM Brown, AJ Thompson, RSJ Frackowiak. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 2003, 126: 2476-2496.
[100]
BJ Macintosh, SJ Graham. Magnetic resonance imaging to visualize stroke and characterize stroke recovery: a review. Front Neurol 2013, 4: 60.
[101]
CE Brown, P Li, JD Boyd, KR Delaney, TH Murphy. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. J Neurosci 2007, 27(15): 4101-4109.
[102]
CE Brown, K Aminoltejari, H Erb, IR Winship, TH Murphy. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J Neurosci 2009, 29(6): 1719-1734.
[103]
CE Brown, JD Boyd, TH Murphy. Longitudinal in vivo imaging reveals balanced and branch-specific remodeling of mature cortical pyramidal dendritic arbors after stroke. J Cereb Blood Flow Metab 2010, 30(4): 783-791.
[104]
R Mostany, C Portera-Cailliau. Absence of large-scale dendritic plasticity of layer 5 pyramidal neurons in peri-infarct cortex. J Neurosci 2011, 31(5): 1734-1738.
[105]
WC Risher, D Ard, JH Yuan, SA Kirov. Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra. J Neurosci 2010, 30(29): 9859-9868.
[106]
SX Zhang, J Boyd, K Delaney, TH Murphy. Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. J Neurosci 2005, 25(22): 5333-5338.
[107]
TH Murphy, P Li, K Betts, R Liu. Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines. J Neurosci 2008, 28(7): 1756-1772.
[108]
DG Johnston, M Denizet, R Mostany, C Portera-Cailliau. Chronic in vivo imaging shows no evidence of dendritic plasticity or functional remapping in the contralesional cortex after stroke. Cereb Cortex 2013, 23(4): 751-762.
[109]
J Tsai, J Grutzendler, K Duff, WB Gan. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 2004, 7(11): 1181-1183.
[110]
TL Spires, M Meyer-Luehmann, EA Stern, PJ McLean, J Skoch, PT Nguyen, BJ Bacskai, BT Hyman. Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 2005, 25(31): 7278-7287.
[111]
CY Zou, Y Shi, J Ohli, U Schüller, MM Dorostkar, J Herms. Neuroinflammation impairs adaptive structural plasticity of dendritic spines in a preclinical model of Alzheimer's disease. Acta Neuropathol 2016, 131(2): 235-246.
[112]
T Bittner, M Fuhrmann, S Burgold, CKE Jung, C Volbracht, H Steiner, G Mitteregger, HA Kretzschmar, C Haass, J Herms. γ-secretase inhibition reduces spine density in vivo via an amyloid precursor protein-dependent pathway. J Neurosci 2009, 29(33): 10405-10409.
[113]
S Filser, SV Ovsepian, M Masana, L Blazquez-Llorca, A Brandt Elvang, C Volbracht, MB Müller, CKE Jung, J Herms. Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions. Biol Psychiatry 2015, 77(8): 729-739.
[114]
T Blume, S Filser, A Jaworska, JF Blain, G Koenig, K Moschke, SF Lichtenthaler, J Herms. BACE1 inhibitor MK-8931 alters formation but not stability of dendritic spines. Front Aging Neurosci 2018, 10: 229.
[115]
KC Zhu, XY Xiang, S Filser, P Marinković, MM Dorostkar, S Crux, U Neumann, DR Shimshek, G Rammes, C Haass, et al. Beta-site amyloid precursor protein cleaving enzyme 1 inhibition impairs synaptic plasticity via seizure protein. Biol Psychiatry 2018, 83(5): 428-437.
[116]
H Kim, PA Kunz, R Mooney, BD Philpot, SL Smith. Maternal loss of Ube3a impairs experience-driven dendritic spine maintenance in the developing visual cortex. J Neurosci 2016, 36(17): 4888-4894.
[117]
RP Murmu, W Li, A Holtmaat, JY Li. Dendritic spine instability leads to progressive neocortical spine loss in a mouse model of Huntington's disease. J Neurosci 2013, 33(32): 12997-13009.
[118]
F Pan, GM Aldridge, WT Greenough, WB Gan. Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome. Proc Natl Acad Sci USA 2010, 107(41): 17768-17773.
[119]
A Cruz-Martin, M Crespo, C Portera-Cailliau. Delayed stabilization of dendritic spines in fragile X mice. J Neurosci 2010, 30(23): 7793-7803.
[120]
CX He, DA Cantu, SS Mantri, WA Zeiger, A Goel, C Portera-Cailliau. Tactile defensiveness and impaired adaptation of neuronal activity in the Fmr1 knock-out mouse model of autism. J Neurosci 2017, 37(27): 6475-6487.
[121]
JL Hodges, XZ Yu, A Gilmore, H Bennett, M Tjia, JF Perna, CC Chen, X Li, J Lu, Y Zuo. Astrocytic contributions to synaptic and learning abnormalities in a mouse model of fragile X syndrome. Biol Psychiatry 2017, 82(2): 139-149.
[122]
LL Guo, H Xiong, JI Kim, YW Wu, RR Lalchandani, YT Cui, Y Shu, TH Xu, JB Ding. Dynamic rewiring of neural circuits in the motor cortex in mouse models of Parkinson's disease. Nat Neurosci 2015, 18(9): 1299-1309.
[123]
M Isshiki, S Tanaka, T Kuriu, K Tabuchi, T Takumi, S Okabe. Enhanced synapse remodelling as a common phenotype in mouse models of autism. Nat Commun 2014, 5: 4742.
[124]
MH Jiang, RT Ash, SA Baker, B Suter, A Ferguson, J Park, J Rudy, SP Torsky, HT Chao, HY Zoghbi, et al. Dendritic arborization and spine dynamics are abnormal in the mouse model of MECP2 duplication syndrome. J Neurosci 2013, 33(50): 19518-19533.
[125]
G Della Sala, E Putignano, G Chelini, R Melani, E Calcagno, GM Ratto, E Amendola, CT Gross, M Giustetto, T Pizzorusso. Dendritic spine instability in a mouse model of CDKL5 disorder is rescued by insulin-like growth factor. Biol Psychiatry 2016, 80(4): 302-311.
[126]
EG Jones, TP Powell. Morphological variations in the dendritic spines of the neocortex. J Cell Sci 1969, 5(2): 509-529.
[127]
N Toni, PA Buchs, I Nikonenko, CR Bron, D Muller. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 1999, 402(6760): 421-425.
[128]
O Steward, SL Vinsant, L Davis. The process of reinnervation in the dentate gyrus of adult rats: An ultrastructural study of changes in presynaptic terminals as a result of sprouting. J Comp Neurol 1988, 267(2): 203-210.
[129]
Y Geinisman, RW Berry, JF Disterhoft, JM Power, EA van der Zee. Associative learning elicits the formation of multiple-synapse boutons. J Neurosci 2001, 21(15): 5568-5573.
[130]
MJ Friedlander, KA Martin, D Wassenhove-McCarthy. Effects of monocular visual deprivation on geniculocortical innervation of area 18 in cat. J Neurosci 1991, 11(10): 3268-3288.
[131]
Y Hara, CS Park, WGM Janssen, M Punsoni, PR Rapp, JH Morrison. Synaptic characteristics of dentate gyrus axonal boutons and their relationships with aging, menopause, and memory in female rhesus monkeys. J Neurosci 2011, 31(21): 7737-7744.
[132]
Y Hara, F Yuk, R Puri, WGM Janssen, PR Rapp, JH Morrison. Estrogen restores multisynaptic boutons in the dorsolateral prefrontal cortex while promoting working memory in aged rhesus monkeys. J Neurosci 2016, 36(3): 901-910.
[133]
DA Nicholson, Y Geinisman. Axospinous synaptic subtype-specific differences in structure, size, ionotropic receptor expression, and connectivity in apical dendritic regions of rat hippocampal CA1 pyramidal neurons. J Comp Neurol 2009, 512(3): 399-418.
[134]
KJ Lee, IS Park, H Kim, WT Greenough, DTS Pak, IJ Rhyu. Motor skill training induces coordinated strengthening and weakening between neighboring synapses. J Neurosci 2013, 33(23): 9794-9799.
[135]
KE Sorra, KM Harris. Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA. J Neurosci 1993, 13(9): 3736-3748.
[136]
SA Sorensen, TA Jones, JF Olavarria. Neonatal enucleation reduces the proportion of callosal boutons forming multiple synaptic contacts in rat striate cortex. Neurosci Lett 2003, 351(1): 17-20.
[137]
KJ Lee, IS Park, H Kim, WT Greenough, DTS Pak, IJ Rhyu. Motor skill training induces coordinated strengthening and weakening between neighboring synapses. J Neurosci 2013, 33(23): 9794-9799.
[138]
TA Jones, CJ Chu, LA Grande, AD Gregory. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci 1999, 19(22): 10153-10163.
[139]
CK Meshul, JP Cogen, HW Cheng, C Moore, L Krentz, TH McNeill. Alterations in rat striatal glutamate synapses following a lesion of the cortico- and/or nigrostriatal pathway. Exp Neurol 2000, 165(1): 191-206.
[140]
CS Woolley, HJ Wenzel, PA Schwartzkroin. Estradiol increases the frequency of multiple synapse boutons in the hippocampal CA1 region of the adult female rat. J Comp Neurol 1996, 373(1): 108-117.
[141]
JC Fiala, M Feinberg, V Popov, KM Harris. Synaptogenesis via dendritic filopodia in developing hippocampal area CA. J Neurosci 1998, 18(21): 8900-8911.
[142]
LJ Petrak, KM Harris, SA Kirov. Synaptogenesis on mature hippocampal dendrites occurs via filopodia and immature spines during blocked synaptic transmission. J Comp Neurol 2005, 484(2): 183-190.
[143]
I Nikonenko, B Boda, S Steen, G Knott, E Welker, S Muller. PSD-95 promotes synaptogenesis and multiinnervated spine formation through nitric oxide signaling. J Cell Biol 2008, 183(6): 1115-1127.
[144]
K Radwanska, NI Medvedev, GS Pereira, O Engmann, N Thiede, MFD Moraes, A Villers, EE Irvine, NS Maunganidze, EM Pyza, et al. Mechanism for long-term memory formation when synaptic strengthening is impaired. Proc Natl Acad Sci USA 2011, 108(45): 18471-18475.
[145]
M Kuwajima, J Spacek, KM Harris. Beyond counts and shapes: studying pathology of dendritic spines in the context of the surrounding neuropil through serial section electron microscopy. Neuroscience 2013, 251: 75-89.
[146]
M Hruska, N Henderson, SJ Le Marchand, H Jafri, MB Dalva. Synaptic nanomodules underlie the organization and plasticity of spine synapses. Nat Neurosci 2018, 21(5): 671-682.
[147]
XZ Yu, G Wang, A Gilmore, AX Yee, X Li, TH Xu, SJ Smith, L Chen, Y Zuo. Accelerated experience-dependent pruning of cortical synapses in Ephrin-A2 knockout mice. Neuron 2013, 80(1): 64-71.
[148]
C Matter, M Pribadi, X Liu, JT Trachtenberg. δ-catenin is required for the maintenance of neural structure and function in mature cortex in vivo. Neuron 2009, 64(3): 320-327.
[149]
FV Akbik, SM Bhagat, PR Patel, WBJ Cafferty, SM Strittmatter. Anatomical plasticity of adult brain is titrated by Nogo Receptor. Neuron 2013, 77(5): 859-866.
[150]
H Dana, B Mohar, Y Sun, S Narayan, A Gordus, JP Hasseman, G Tsegaye, GT Holt, A Hu, D Walpita, et al. Sensitive red protein calcium indicators for imaging neural activity. eLife 2016, 5: e12727.
[151]
DE Wilson, DE Whitney, B Scholl, D Fitzpatrick. Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nat Neurosci 2016, 19(8): 1003-1009.
[152]
MF Iacaruso, IT Gasler, SB Hofer. Synaptic organization of visual space in primary visual cortex. Nature 2017, 547(7664): 449-452.
[153]
B Scholl, DE Wilson, D Fitzpatrick. Local order within global disorder: synaptic architecture of visual space. Neuron 2017, 96(5): 1127-1138.
[154]
S El-Boustani, JPK Ip, V Breton-Provencher, GW Knott, H Okuno, H Bito, M Sur. Locally coordinated synaptic plasticity of visual cortex neurons in vivo. Science 2018, 360(6395): 1349-1354.
[155]
DE Wilson, B Scholl, D Fitzpatrick. Differential tuning of excitation and inhibition shapes direction selectivity in ferret visual cortex. Nature 2018, 560(7716): 97-101.
[156]
TW Chen, TJ Wardill, Y Sun, SR Pulver, SL Renninger, A Baohan, ER Schreiter, RA Kerr, MB Orger, V Jayaraman, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 2013, 499(7458): 295-300.
[157]
O Barnstedt, P Keating, Y Weissenberger, AJ King, JC Dahmen. Functional microarchitecture of the mouse dorsal inferior colliculus revealed through in vivo two-photon calcium imaging. J Neurosci 2015, 35(31): 10927-10939.
[158]
X Chen, U Leischner, NL Rochefort, I Nelken, A Konnerth. Functional mapping of single spines in cortical neurons in vivo. Nature 2011, 475(7357): 501-505.
[159]
M Inoue, A Takeuchi, SI Horigane, M Ohkura, K Gengyo-Ando, H Fujii, S Kamijo, S Takemoto-Kimura, M Kano, J Nakai, et al. Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat Methods 2015, 12(1): 64-70.
[160]
S Tang, R Yasuda. Imaging ERK and PKA activation in single dendritic spines during structural plasticity. Neuron 2017, 93(6): 1315-1324.
[161]
T Fang, XT Lu, D Berger, C Gmeiner, J Cho, R Schalek, H Ploegh, J Lichtman. Nanobody immunostaining for correlated light and electron microscopy with preservation of ultrastructure. Nat Methods 2018, 15(12): 1029-1032.
[162]
F Drawitsch, A Karimi, KM Boergens, M Helmstaedter. FluoEM, virtual labeling of axons in three-dimensional electron microscopy data for long-range connectomics. eLife 2018, 7: e38976.
[163]
W Denk, H Horstmann. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2004, 2(11): e329.
[164]
C Bosch, A Martínez, N Masachs, CM Teixeira, I Fernaud, F Ulloa, E Pérez-Martínez, C Lois, JX Comella, J DeFelipe, Met al. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons. Front Neuroanat 2015, 9: 60.
[165]
KJ Hayworth, CS Xu, ZY Lu, GW Knott, RD Fetter, JC Tapia, JW Lichtman, HF Hess. Ultrastructurally smooth thick partitioning and volume stitching for large-scale connectomics. Nat Methods 2015, 12(4): 319-322.
[166]
G Knott, H Marchman, D Wall, B Lich. Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 2008, 28(12): 2959-2964.
[167]
B Maco, A Holtmaat, A Jorstad, P Fua, GW Knott. Correlative in vivo 2-photon imaging and focused ion beam scanning electron microscopy: 3D analysis of neuronal ultrastructure. Methods Cell Biol 2014, 124: 339-361.
[168]
KJ Hayworth, JL Morgan, R Schalek, DR Berger, DG Hildebrand, JW Lichtman. Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits. Front Neural Circuits 2014, 8: 68.
[169]
R Gala, D Lebrecht, DA Sahlender, A Jorstad, G Knott, A Holtmaat, A Stepanyants. Computer assisted detection of axonal bouton structural plasticity in in vivo time-lapse images. eLife 2017, 6: e29315.
[170]
QW Xie, X Chen, H Deng, DQ Liu, YY Sun, XJ Zhou, Y Yang, H Han. An automated pipeline for bouton, spine, and synapse detection of in vivo two-photon images. BioData Min 2017, 10: 40.
[171]
MS Smirnov, TR Garrett, R Yasuda. An open-source tool for analysis and automatic identification of dendritic spines using machine learning. PLoS One 2018, 13(7): e0199589.
[172]
B Staffler, M Berning, KM Boergens, A Gour, P van der Smagt, M Helmstaedter. SynEM, automated synapse detection for connectomics. eLife 2017, 6: e26414.
[173]
B Zingg, XL Chou, ZG Zhang, L Mesik, FX Liang, HW Tao, LI Zhang. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 2017, 93(1): 33-47.
[174]
DGR Tervo, BY Hwang, S Viswanathan, T Gaj, M Lavzin, KD Ritola, S Lindo, S Michael, E Kuleshova, D Ojala, et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 2016, 92(2): 372-382.
[175]
EM Callaway, LQ Luo. Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J Neurosci 2015, 35(24): 8979-8985.
[176]
EJ Kim, MW Jacobs, T Ito-Cole, EM Callaway. Improved monosynaptic neural circuit tracing using engineered rabies virus glycoproteins. Cell Rep 2016, 15(4): 692-699.
[177]
T Ragan, LR Kadiri, KU Venkataraju, K Bahlmann, J Sutin, J Taranda, I Arganda-Carreras, Y Kim, HS Seung, P Osten. Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat Methods 2012, 9(3): 255-258.
[178]
H Gong, DL Xu, J Yuan, XN Li, CD Guo, J Peng, YX Li, LA Schwarz, AN Li, BH Hu, et al. High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level. Nat Commun 2016, 7: 12142.
[179]
K Chung, K Deisseroth. CLARITY for mapping the nervous system. Nat Methods 2013, 10(6): 508-513.
[180]
AN Li, H Gong, B Zhang, QD Wang, C Yan, JP Wu, Q Liu, SQ Zeng, QM Luo. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 2010, 330(6009): 1404-1408.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 05 December 2018
Revised: 25 December 2018
Accepted: 30 December 2018
Published: 02 April 2019
Issue date: December 2018

Copyright

© The authors 2018

Acknowledgements

We thank the following funding agencies (Start-up funding from ShanghaiTech University and 2018YFC1005004 to YY, and the National Institute of Health R01MH104227, R01MH109475, R01NS104950 to YZ) to the support of the work.

Rights and permissions

This article is published with open access at journals.sagepub.com/home/BSA

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/ en-us/nam/open-access-at-sage).

Return