AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Multi-Task Learning for Alzheimer’s Disease Diagnosis and Mini-Mental State Examination Score Prediction

Jin Liu1,2( )Xu Tian1Hanhe Lin3Hong-Dong Li1Yi Pan4( )
Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
Xinjiang Engineering Research Center of Big Data and Intelligent Software, School of Software, Xinjiang University, Urumqi 830091, China
School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Show Author Information

Abstract

Accurately diagnosing Alzheimer’s disease is essential for improving elderly health. Meanwhile, accurate prediction of the mini-mental state examination score also can measure cognition impairment and track the progression of Alzheimer’s disease. However, most of the existing methods perform Alzheimer’s disease diagnosis and mini-mental state examination score prediction separately and ignore the relation between these two tasks. To address this challenging problem, we propose a novel multi-task learning method, which uses feature interaction to explore the relationship between Alzheimer’s disease diagnosis and mini-mental state examination score prediction. In our proposed method, features from each task branch are firstly decoupled into candidate and non-candidate parts for interaction. Then, we propose feature sharing module to obtain shared features from candidate features and return shared features to task branches, which can promote the learning of each task. We validate the effectiveness of our proposed method on multiple datasets. In Alzheimer’s disease neuroimaging initiative 1 dataset, the accuracy in diagnosis task and the root mean squared error in prediction task of our proposed method is 87.86% and 2.5, respectively. Experimental results show that our proposed method outperforms most state-of-the-art methods. Our proposed method enables accurate Alzheimer’s disease diagnosis and mini-mental state examination score prediction. Therefore, it can be used as a reference for the clinical diagnosis of Alzheimer’s disease, and can also help doctors and patients track disease progression in a timely manner.

References

[1]

A. Brugnolo, B. Orso, N. Girtler, P. M. Ferraro, D. Arnaldi, P. Mattioli, F. Massa, F. Famà, L. Argenti, G. Biffa, et al., Tracking the progression of Alzheimer’s disease: Insights from metabolic patterns of SOMI stages, Cortex, vol. 171, pp. 413–422, 2024.

[2]

X. Yang, J. Gan, and Y. Ji, Association between cerebrospinal fluid pressure and cognition in patients with Alzheimer’s disease and Lewy body dementia, BMC Neurol., vol. 24, no. 1, p. 35, 2024.

[3]

M. Coccia, Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms, Technol. Anal. Strateg. Manag., vol. 29, no. 9, pp. 1048–1061, 2017.

[4]

P. Scheltens, B. De Strooper, M. Kivipelto, H. Holstege, G. Chételat, C. E. Teunissen, J. Cummings, and W. M. van der Flier, Alzheimer’s disease, Lancet, vol. 397, no. 10284, pp. 1577–1590, 2021.

[5]

A. Jannati, C. Toro-Serey, J. Gomes-Osman, R. Banks, M. Ciesla, J. Showalter, D. Bates, S. Tobyne, and A. Pascual-Leone, Digital cock and recall is superior to the mini-mental state examination for the detection of mild cognitive impairment and mild dementia, Alzheimers Res. Ther., vol. 16, no. 1, p. 2, 2024.

[6]

M. Coccia, Problem-driven innovations in drug discovery: Co-evolution of the patterns of radical innovation with the evolution of problems, Health Policy Technol., vol. 5, no. 2, pp. 143–155, 2016.

[7]

Y. J. Kim, K. Y. So, H. M. Lee, C. Hahn, S. H. Song, Y. S. Lee, S. W. Kim, H. C. Park, J. Ryu, J. S. Lee, et al., Changes in dementia treatment patterns associated with changes in the National Policy in South Korea among patients with newly diagnosed Alzheimer’s disease between 2011 and 2017: Results from the multicenter. retrospective CAPTAIN study, BMC Public Health, vol. 24, no. 1, p. 168, 2024.

[8]

Q. Li, J. Zhan, Y. Feng, Z. Liao, and X. Li, The association of body mass index with cognition and Alzheimer’s disease biomarkers in the elderly with different cognitive status: A study from the Alzheimer’s disease neuroimaging initiative database, J. Alzheimers. Dis. Rep., vol. 8, no. 1, pp. 9–24, 2024.

[9]

J. Liu, H. Du, R. Guo, H. X. Bai, H. Kuang, and J. Wang, MMGK: Multimodality multiview graph representations and knowledge embedding for mild cognitive impairment diagnosis, IEEE Trans. Comput. Soc. Syst., vol. 11, no. 1, pp. 389–398, 2024.

[10]

J. Zhu, J. Wei, J. Mao, K. Liu, H. He, and J. Liu, Applications of deep learning in magnetic resonance imaging-based diagnosis of brain diseases, Chinese Journal of Engineering, vol. 46, no. 2, pp. 306–316, 2024.

[11]

X. Chen, G. Ren, Y. Li, W. Chao, S. Chen, X. Li, and S. Xue, Level of LncRNA GAS5 and hippocampal volume are associated with the progression of Alzheimer’s disease, Clin. Interv. Aging, vol. 17, pp. 745–753, 2022.

[12]

R. Guo, X. Tian, H. Lin, S. McKenna, H. D. Li, F. Guo, and J. Liu, Graph-based fusion of imaging, genetic and clinical data for degenerative disease diagnosis, IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 21, no. 1, pp. 57–68, 2024.

[13]

M. Liu, J. Zhang, C. Lian, and D. Shen, Weakly supervised deep learning for brain disease prognosis using MRI and incomplete clinical scores, IEEE Trans. Cybern., vol. 50, no. 7, pp. 3381–3392, 2020.

[14]

J. Liu, J. Wang, Z. Tang, B. Hu, F. X. Wu, and Y. Pan, Improving Alzheimer’s disease classification by combining multiple measures, IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 15, no. 5, pp. 1649–1659, 2018.

[15]
J. Duan, F. Wei, J. Liu, H. Li, T. Liu, and J. Wang, CDA: A contrastive data augmentation method for Alzheimer’s disease detection, in Findings of the Association for Computational Linguistics : ACL 2023, A. Rogers, J. Boyd-Graber, and N. Okazaki, eds. Toronto, Canada: Association for Computational Linguistics, 2023, pp. 1819–1826.
[16]

P. Yi, L. Jin, T. Xu, L. Wei, and G. Rui, Hippocampal segmentation in brain MRI images using machine learning methods: A survey, Chin. J. Electron., vol. 30, no. 5, pp. 793–814, 2021.

[17]

R. Sharma, T. Goel, M. Tanveer, C. T. Lin, and R. Murugan, Deep-learning-based diagnosis and prognosis of Alzheimer’s disease: A comprehensive review, IEEE Trans. Cogn. Dev. Syst., vol. 15, no. 3, pp. 1123–1138, 2023.

[18]
J. Liu, X. Tian, J. Wang, R. Guo, and H. Kuang, MTFIL-Net: Automated Alzheimer’s disease detection and MMSE score prediction based on feature interactive learning, in Proc. IEEE Int. Conf. Bioinformatics and Biomedicine (BIBM), Houston, TX, USA, 2021, pp. 1002–1007.
[19]

Z. Wu, J. Zheng, J. Liu, C. Lin, and H. D. Li, DeepRetention: A deep learning approach for intron retention detection, Big Data Mining and Analytics, vol. 6, no. 2, pp. 115–126, 2023.

[20]

S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans, D. Dai, and L. Van Gool, Multi-task learning for dense prediction tasks: A survey, IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 7, pp. 3614–3633, 2022.

[21]
J. Liu, D. Zeng, L. Li, H. Lin, and X. Tian, Source-free domain adaptation for millimeter wave radar based human activity recognition, in Proc. ICASSP 2024—2024 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 2024, pp. 7120–7124.
[22]

R. Ma, R. Xie, Y. Huang, W. Xi, Y. Wei, and Y. Pan, Data augmentation study in structural magnetic resonance imaging based autism spectrum disorder classification, Journal of Integration Technology, vol. 12, no. 6, pp. 33–42, 2023.

[23]

A. Khalid, E. M. Senan, K. Al-Wagih, M. M. A. Al-Azzam, and Z. M. Alkhraisha, Automatic analysis of MRI images for early prediction of Alzheimer’s disease stages based on hybrid features of CNN and handcrafted features, Diagnostics, vol. 13, no. 9, p. 1654, 2023.

[24]

J. Wen, E. Thibeau-Sutre, M. Diaz-Melo, J. Samper-González, A. Routier, S. Bottani, D. Dormont, S. Durrleman, N. Burgos, O. Colliot, et al., Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation, Med. Image Anal., vol. 63, p. 101694, 2020.

[25]

G. Mohi ud din dar, A. Bhagat, S. I. Ansarullah, M. T. B. Othman, Y. Hamid, H. K. Alkahtani, I. Ullah, and H. Hamam, A novel framework for classification of different Alzheimer’s disease stages using CNN model, Electronics, vol. 12, no. 2, p. 469, 2023.

[26]

M. Liu, J. Zhang, E. Adeli, and D. Shen, Landmark-based deep multi-instance learning for brain disease diagnosis, Med. Image Anal., vol. 43, pp. 157–168, 2018.

[27]
K. Aderghal, A. Khvostikov, A. Krylov, J. Benois-Pineau, K. Afdel, and G. Catheline, Classification of alzheimer disease on imaging modalities with deep CNNs using cross-modal transfer learning, in Proc. IEEE 31st Int. Symp. on Computer-Based Medical Systems (CBMS), Karlstad, Sweden, 2018, pp. 345–350.
[28]

F. Liu, S. Yuan, W. Li, Q. Xu, and B. Sheng, Patch-based deep multi-modal learning framework for Alzheimer’s disease diagnosis using multi-view neuroimaging, Biomed. Signal Process. Contr., vol. 80, p. 104400, 2023.

[29]

C. Lian, M. Liu, J. Zhang, and D. Shen, Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI, IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 4, pp. 880–893, 2020.

[30]

S. Qiu, P. S. Joshi, M. I. Miller, C. Xue, X. Zhou, C. Karjadi, G. H. Chang, A. S. Joshi, B. Dwyer, S. Zhu, et al., Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification, Brain, vol. 143, no. 6, pp. 1920–1933, 2020.

[31]

S. Q. Abbas, L. Chi, and Y. P. P. Chen, Transformed domain convolutional neural network for Alzheimer’s disease diagnosis using structural MRI, Pattern Recognit., vol. 133, p. 109031, 2023.

[32]

J. Li, Y. Wei, C. Wang, Q. Hu, Y. Liu, and L. Xu, 3-D CNN-based multichannel contrastive learning for Alzheimer’s disease automatic diagnosis, IEEE Trans. Instrum. Meas., vol. 71, p. 5008411, 2022.

[33]
Y. Honjo, K. Ide, K. Nagai, T. Yuri, H. Nakai, I. Kawasaki, S. Harada, and N. Ogawa, Attention to the domains of Revised Hasegawa Dementia Scale and Mini-Mental State Examination in patients with Alzheimer’s disease dementia, Psychogeriatrics, vol. 24, no. 3, pp. 582–588, 2024.
[34]
J. Chen, D. Park, S. Afzal, M. Cardin, M. Peltier, J. Hundal, and R. Stern, Cognitive and functional decline in a psychogeriatric population: A comparative longitudinal analysis of MMSE, MoCA, ADL, and IADL, Am. J. Geriatr. Psychiatry, vol. 32, no. 4, p. S128, 2024.
[35]

X. Li, Z. Chen, H. Jiao, B. Wang, H. Yin, L. Chen, H. Shi, Y. Yin, and D. Qin, Machine learning in the prediction of post-stroke cognitive impairment: A systematic review and meta-analysis, Front. Neurol., vol. 14, p. 1211733, 2023.

[36]

S. Tabarestani, M. Aghili, M. Eslami, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, and M. Adjouadi, A distributed multitask multimodal approach for the prediction of Alzheimer’s disease in a longitudinal study, NeuroImage, vol. 206, p. 116317, 2020.

[37]

J. D. Zhu, C. W. Huang, H. I. Chang, S. J. Tsai, S. H. Huang, S. W. Hsu, C. C. Lee, H. J. Chen, C. C. Chang, and A. C. Yang, Functional MRI and ApoE4 genotype for predicting cognitive decline in amyloid-positive individuals, Ther. Adv. Neurol. Disord., vol. 15, pp. 1–15, 2022.

[38]

M. Liu, J. Zhang, E. Adeli, and D. Shen, Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis, IEEE Trans. Biomed. Eng., vol. 66, no. 5, pp. 1195–1206, 2019.

[39]

N. Zeng, H. Li, and Y. Peng, A new deep belief network-based multi-task learning for diagnosis of Alzheimer’s disease, Neural Comput. Appl., vol. 35, no. 16, pp. 11599–11610, 2023.

[40]

C. Lian, M. Liu, L. Wang, and D. Shen, Multi-task weakly-supervised attention network for dementia status estimation with structural MRI, IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 8, pp. 4056–4068, 2022.

[41]

K. Han, M. He, F. Yang, and Y. Zhang, Multi-task multi-level feature adversarial network for joint Alzheimer’s disease diagnosis and atrophy localization using sMRI, Phys. Med. Biol., vol. 67, no. 8, p. 085002, 2022.

[42]

S. El-Sappagh, T. Abuhmed, S. M. R. Islam, and K. S. Kwak, Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data, Neurocomputing, vol. 412, pp. 197–215, 2020.

[43]
L. Jin, Y. Oh, H. Kim, H. Jung, H. J. Jon, J. E. Shin, and E. Y. Kim, CONSEN: Complementary and simultaneous ensemble for Alzheimer’s disease detection and MMSE score prediction, in Proc. ICASSP 2023—2023 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023, pp. 1–2.
[44]

M. Jenkinson, C. F. Beckmann, T. E. J. Behrens, M. W. Woolrich, and S. M. Smith, FSL, NeuroImage, vol. 62, no. 2, pp. 782–790, 2012.

[45]
J. Hu, L. Shen, and G. Sun, Squeeze-and-excitation networks, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 7132–7141.
[46]
I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, Cross-stitch networks for multi-task learning, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 3994–4003.
[47]
Y. Gao, J. Ma, M. Zhao, W. Liu, and A. L. Yuille, NDDR-CNN: Layerwise feature fusing in multi-task CNNs by neural discriminative dimensionality reduction, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 3200–3209.
[48]
S. Vandenhende, S. Georgoulis, and L. Van Gool, MTI-Net: Multi-scale task interaction networks for multi-task learning, in Proc. European Conference on Computer Vision, Glasgow, UK, 2020, pp. 527–543.
[49]

S. P. Singh, L. Wang, S. Gupta, B. Gulyás, and P. Padmanabhan, Shallow 3D CNN for detecting acute brain hemorrhage from medical imaging sensors, IEEE Sens. J., vol. 21, no. 13, pp. 14290–14299, 2021.

[50]
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv: 1412.6980, 2014.
[51]

C. Yu, Y. Liu, J. Zhao, S. Wu, and Z. Hu, Feature interaction learning network for cross-spectral image patch matching, IEEE Trans. Image Process., vol. 32, pp. 5564–5579, 2023.

[52]

Q. Ma, J. Jiang, X. Liu, and J. Ma, Multi-task interaction learning for spatiospectral image super-resolution, IEEE Trans. Image Process., vol. 31, pp. 2950–2961, 2022.

[53]

A. M. Weinstein, S. Gujral, M. A. Butters, C. R. Bowie, C. E. Fischer, A. J. Flint, N. Herrmann, J. L. Kennedy, L. Mah, S. Ovaysikia, et al., Diagnostic precision in the detection of mild cognitive impairment: A comparison of two approaches, Am. J. Geriatr. Psychiatry, vol. 30, no. 1, pp. 54–64, 2022.

Big Data Mining and Analytics
Pages 828-842
Cite this article:
Liu J, Tian X, Lin H, et al. Multi-Task Learning for Alzheimer’s Disease Diagnosis and Mini-Mental State Examination Score Prediction. Big Data Mining and Analytics, 2024, 7(3): 828-842. https://doi.org/10.26599/BDMA.2024.9020025

168

Views

18

Downloads

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 13 January 2024
Revised: 30 March 2024
Accepted: 01 April 2024
Published: 28 August 2024
© The author(s) 2024.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return