AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
View PDF
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

AI-Based Advanced Approaches and Dry Eye Disease Detection Based on Multi-Source Evidence: Cases, Applications, Issues, and Future Directions

Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University/The First Affiliated Hospital of Faculty of Medicine Macau University of Science and Technology), Zhuhai 519000, China; with Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; with Faculty of Data Science, City University of Macau, Macau 999078, China; with Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Zhuhai 519000, China; and also with Perspective Technology Group, Zhuhai 519000, China
First Affiliated Hospital of Shandong First Medical University Shandong Provincial Qianfoshan Hospital, Jinan 250000, China
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
College of Staten Island, The City University of New York, NY 10314, USA
Department of Optoelectronic Engineering, Jinan University, Guangzhou 510000, China
Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University/The First Affiliated Hospital of Faculty of Medicine Macau University of Science and Technology), Zhuhai 519000, China
Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
Zhuhai Aier Eye Hospital, Zhuhai 519000, China
College of Artificial Intelligence, Chongqing Industry and Trade Polytechnic, Chongqing 400000, China
Faculty of Data Science, City University of Macau, Macau 999078, China
Centre for Science and Technology Exchange and Cooperation between China and Portuguese-Speaking Countries, Zhuhai 519000, China
School of Artificial Intelligence, Hezhou University, Hezhou 542899, China
Show Author Information

Abstract

This study explores the potential of Artificial Intelligence (AI) in early screening and prognosis of Dry Eye Disease (DED), aiming to enhance the accuracy of therapeutic approaches for eye-care practitioners. Despite the promising opportunities, challenges such as diverse diagnostic evidence, complex etiology, and interdisciplinary knowledge integration impede the interpretability, reliability, and applicability of AI-based DED detection methods. The research conducts a comprehensive review of datasets, diagnostic evidence, and standards, as well as advanced algorithms in AI-based DED detection over the past five years. The DED diagnostic methods are categorized into three groups based on their relationship with AI techniques: (1) those with ground truth and/or comparable standards, (2) potential AI-based methods with significant advantages, and (3) supplementary methods for AI-based DED detection. The study proposes suggested DED detection standards, the combination of multiple diagnostic evidence, and future research directions to guide further investigations. Ultimately, the research contributes to the advancement of ophthalmic disease detection by providing insights into knowledge foundations, advanced methods, challenges, and potential future perspectives, emphasizing the significant role of AI in both academic and practical aspects of ophthalmology.

References

[1]

J. P. Craig, K. K. Nichols, E. K. Akpek, B. Caffery, H. S. Dua, C. K. Joo, Z. Liu, J. D. Nelson, J. J. Nichols, K. Tsubota, et al., TFOS DEWS II definition and classification report, Ocul. Surf., vol. 15, no. 3, pp. 276–283, 2017.

[2]

J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, et al., TFOS DEWS II diagnostic methodology report, Ocul. Surf., vol. 15, no. 3, pp. 539–574, 2017.

[3]

R. O. Baratta, E. Schlumpf, B. J. Del Buono, S. DeLorey, and D. J. Calkins, Corneal collagen as a potential therapeutic target in dry eye disease, Surv. Ophthalmol., vol. 67, no. 1, pp. 60–67, 2022.

[4]

H. Wang and R. Zhou, Advanced diagnosis method analysis of the dry eye disease: A bibliographic study (2012–2022), (in Chinese), Clin. Med. Front., vol. 1, no. 1, pp. 1–8, 2022.

[5]

F. Stapleton, M. Alves, V. Y. Bunya, I. Jalbert, K. Lekhanont, F. Malet, K. S. Na, D. Schaumberg, M. Uchino, J. Vehof, et al., TFOS DEWS II epidemiology report, Ocul. Surf., vol. 15, no. 3, pp. 334–365, 2017.

[6]

D. B. Azzam, N. Nag, J. Tran, L. Chen, K. Visnagra, K. Marshall, and M. Wade, A novel epidemiological approach to geographically mapping population dry eye disease in the United States through Google Trends, Cornea, vol. 40, no. 3, pp. 282–291, 2021.

[7]

J. L. Gayton, Etiology, prevalence, and treatment of dry eye disease, Clin. Ophthalmol., vol. 3, pp. 405–412, 2009.

[8]

J. P. Craig, J. D. Nelson, D. T. Azar, C. Belmonte, A. J. Bron, S. K. Chauhan, C. S. de Paiva, J. A. P. Gomes, K. M. Hammitt, L. Jones, et al., TFOS DEWS II report executive summary, Ocul. Surf., vol. 15, no. 4, pp. 802–812, 2017.

[9]

L. Jones, L. E. Downie, D. Korb, J. M. Benitez-del-Castillo, R. Dana, S. X. Deng, P. N. Dong, G. Geerling, R. Y. Hida, Y. Liu, et al., TFOS DEWS II management and therapy report, Ocul. Surf., vol. 15, no. 3, pp. 575–628, 2017.

[10]

M. D. P. Willcox, P. Argüeso, G. A. Georgiev, J. M. Holopainen, G. W. Laurie, T. J. Millar, E. B. Papas, J. P. Rolland, T. A. Schmidt, U. Stahl, et al., TFOS DEWS II tear film report, Ocul. Surf., vol. 15, no. 3, pp. 366–403, 2017.

[11]

C. Belmonte, J. J. Nichols, S. M. Cox, J. A. Brock, C. G. Begley, D. A. Bereiter, D. A. Dartt, A. Galor, P. Hamrah, and J. J. Ivanusic, TFOS DEWS II pain and sensation report, The ocular surface, vol. 404, no. 15, pp. 3–437, 2017.

[12]

T. Zhmud, N. Malachkova, R. Rejdak, C. Costagliola, M. Concilio, G. Drozhzhyna, D. Toro Mario, and S. Veretelnyk, Dry eye disease severity and impact on quality of life in type II diabetes mellitus, Front. Med., vol. 10, p. 1103400, 2023.

[13]

J. A. P. Gomes and R. M. Santo, The impact of dry eye disease treatment on patient satisfaction and quality of life: A review, Ocul. Surf., vol. 17, no. 1, pp. 9–19, 2019.

[14]

M. E. Baris, S. G. Yilmaz, and M. Palamar, Impact of prolonged face mask wearing on tear break-up time and dry eye symptoms in health care professionals, Int. Ophthalmol., vol. 42, no. 7, pp. 2141–2144, 2022.

[15]

K. H. Wan, G. C. Y. Lui, K. C. F. Poon, S. S. S. Ng, A. L. Young, D. S. C. Hui, C. C. Y. Tham, P. K. S. Chan, C. P. Pang, and K. K. L. Chong, Ocular surface disturbance in patients after acute COVID-19, Clin. Exp. Ophthalmol., vol. 50, no. 4, pp. 398–406, 2022.

[16]

T. Ayyildiz and F. M. Sezgin, The effect of ocular demodex colonization on schirmer test and OSDI scores in newly diagnosed dry eye patients, Eye Contact Lens, vol. 46, no. S1, pp. S39–S41, 2020.

[17]

M. M. Hom, K. M. Mastrota, and S. E. Schachter, Demodex, Optom. Vis. Sci., vol. 90, no. 7, pp. e198–e205, 2013.

[18]

A. R. C. Celebi and G. E. Mirza, Differences in central corneal thickness between spectral domain-optical coherence tomography and ultrasound pachymetry in patients with dry eye disease, J. Ophthalmol., vol. 2016, p. 2623719, 2016.

[19]

N. C. Tsim, J. Chin, R. Chan, C. L. Li, A. Law, L. Y. Yeung, K. Wong, A. L. Young, Kam-Lung, and K. Chong, Effect of systemic steroid and orbital radiotherapy on dry eye parameters in Thyroid Associated Orbitopathy (TAO), Invest. Ophthalmol. Vis. Sci., vol. 59, no. 9, p. 5615, 2018.

[20]

A. H. Vyas, M. A. Mehta, K. Kotecha, S. Pandya, M. Alazab, and T. R. Gadekallu, Tear film breakup time-based dry eye disease detection using convolutional neural network, Neural Comput. Appl., https://doi.org/10.1007/s00521-022-07652-0, 2022.

[21]

H. B. Mohamed, B. N. A. El-Hamid, D. Fathalla, and E. A. Fouad, Current trends in pharmaceutical treatment of dry eye disease: A review, Eur. J. Pharm. Sci., vol. 175, p. 106206, 2022.

[22]

H. Wang, A survey of AI to AMD and quantitative analysis of AMD pathology based on medical images, (in Chinese), Artif. Intell. Rob. Res., vol. 11, no. 2, pp. 143–157, 2022.

[23]
M. Wang, Z. Lin, J. Zhou, L. Xing, and P. Zeng, Applications of explainable artificial intelligent algorithms to age-related macular degeneration diagnosis: A case study based on CNN, attention, and CAM mechanism, in Proc. 2023 IEEE International Conference on Contemporary Computing and Communications (InC4 ).
DOI
[24]
H. Wang, K. K. L. Chong, and Z. Li, Applications of AI to age-related macular degeneration: A case study and a brief review, in Proc. 2022 Int. Conf. Computer Engineering and Artificial Intelligence, Shijiazhuang, China, 2022, pp. 586–589.
DOI
[25]
H. Wang and Z. Li, The application of machine learning and deep learning to Ophthalmology: A bibliometric study (2000−2021), in Proc. Human Interaction & Emerging Technologies (IHIET-AI 2022): Artificial Intelligence & Future Applications.
DOI
[26]

L. Xing, W. Liu, X. Liu, X. Li, and H. Wang, Use of deep learning in nano image processing through the CNN model, Advances in Nano Research, vol. 12, pp. 185–195, 2022.

[27]

L. Xing, W. Liu, X. Li, H. Wang, Z. Jiang, and L. Wang, Application of machine learning and deep neural network for wave propagation in lung cancer cell, Adv. Nano Res., vol. 13, no. 3, pp. 297–312, 2022.

[28]
H. Wang, Z. Li, L. Xing, K. K. L. Chong, X. Zhou, F. Wang, J. Zhou, and Z. Li, A bibliographic study of macular fovea detection: AI-based methods, applications, and issues, in Proc. of the World Conference on Intelligent and 3-D Technologies (WCI3DT 2022), R. Kountchev, K. Nakamatsu, W. Wang, and R. Kountcheva, eds. Singapore: Springer, 2023, pp. 273–284.
DOI
[29]

H. Wang, X. Zhou, W. Du, and L. Huang, The application of artificial intelligence to ophthalmology: A bibliometric study (2000–2021), Arch. Clin. Med. Microbiol., vol. 1, no. 1, pp. 41–50, 2022.

[30]

L. L. Foo, G. Y. S. Lim, C. Lanca, C. W. Wong, Q. V. Hoang, X. J. Zhang, J. C. Yam, L. Schmetterer, A. Chia, T. Y. Wong, et al., Deep learning system to predict the 5-year risk of high myopia using fundus imaging in children, npj digit. Med., vol. 6, no. 1, p. 10, 2023.

[31]

C. M. P. Jacoba, D. Doan, R. P. Salongcay, L. A. C. Aquino, J. P. Y. Silva, C. M. G. Salva, D. Zhang, G. P. Alog, K. Zhang, K. L. R. B. Locaylocay, et al., Performance of automated machine learning for diabetic retinopathy image classification from multi-field handheld retinal images, Ophthalmol. Retina, vol. 7, no. 8, pp. 703–712, 2023.

[32]

M. H. Wang, K. K. L. Chong, Z. Lin, X. Yu, and Y. Pan, An explainable artificial intelligence-based robustness optimization approach for age-related macular degeneration detection based on medical IOT systems, Electronics, vol. 12, no. 12, p. 2697, 2023.

[33]

R. Fan, K. Alipour, C. Bowd, M. Christopher, N. Brye, J. A. Proudfoot, M. H. Goldbaum, A. Belghith, C. A. Girkin, M. A. Fazio, et al., Detecting glaucoma from fundus photographs using deep learning without convolutions: Transformer for improved generalization, Ophthalmol. Sci., vol. 3, no. 1, p. 100233, 2023.

[34]

Y. Kumar and B. Gupta, Retinal image blood vessel classification using hybrid deep learning in cataract diseased fundus images, Biomed. Signal Process. Control, vol. 84, p. 104776, 2023.

[35]

Z. Zhang, X. Lin, X. Yu, Y. Fu, X. Chen, W. Yang, and Q. Dai, Meibomian gland density: An effective evaluation index of meibomian gland dysfunction based on deep learning and transfer learning, J. Clin. Med., vol. 11, no. 9, p. 2396, 2022.

[36]

X. Guo, Y. Yang, X. Dong, R. Han, J. Liu, J. Hong, D. Zhang, and X. Ma, Clinical application rules of acupuncture and moxibustion in treating dry eye based on data mining technology, (in Chinese), Chin. J. Inf. TCM, vol. 29, no. 1, pp. 26–32, 2022.

[37]

M. Kaido, M. Kawashima, N. Yokoi, M. Fukui, Y. Ichihashi, H. Kato, M. Yamatsuji, M. Nishida, K. Fukagawa, S. Kinoshita, et al., Advanced dry eye screening for visual display terminal workers using functional visual acuity measurement: The Moriguchi study, Br. J. Ophthalmol., vol. 99, no. 11, pp. 1488–1492, 2015.

[38]

L. Jiang, S. Sun, J. Chen, and Z. Sun, Random forest algorithm-based ultrasonic image in the diagnosis of patients with dry eye syndrome and its relationship with tear osmotic pressure, Comput. Math. Methods Med., vol. 2022, p. 9437468, 2022.

[39]

C. Chase, A. Elsawy, T. Eleiwa, E. Ozcan, M. Tolba, and M. Abou Shousha, Comparison of autonomous AS-OCT deep learning algorithm and clinical dry eye tests in diagnosis of dry eye disease, Clin. Ophthalmol., vol. 15, pp. 4281–4289, 2021.

[40]

D. Jing, Y. Liu, Y. Chou, X. Jiang, X. Ren, L. Yang, J. Su, and X. Li, Change patterns in the corneal sub-basal nerve and corneal aberrations in patients with dry eye disease: An artificial intelligence analysis, Exp. Eye Res., vol. 215, p. 108851, 2022.

[41]

Q. Zheng, L. Wang, H. Wen, Y. Ren, S. Huang, F. Bai, N. Li, J. P. Craig, L. Tong, and W. Chen, Impact of incomplete blinking analyzed using a deep learning model with the keratograph 5M in dry eye disease, Transl. Vis. Sci. Technol., vol. 11, no. 3, p. 38, 2022.

[42]

I. Sher, A. Tzameret, A. M. Szalapak, T. Carmeli, E. Derazne, N. Avni-Zauberman, A. L. Marcovich, G. B. Simon, and Y. Rotenstreich, Multimodal assessment of corneal erosions using optical coherence tomography and automated grading of fluorescein staining in a rabbit dry eye model, Transl. Vis. Sci. Technol., vol. 8, no. 1, p. 27, 2019.

[43]

H. Wang, A review of artificial intelligence in ophthalmology field — taking the fundus diagnosis based on OCT images as an example, (in Chinese), Artif. Intell. Rob. Res., vol. 10, no. 4, pp. 306–312, 2021.

[44]

K. Asiedu, S. Kyei, S. N. Mensah, S. Ocansey, L. S. Abu, and E. A. Kyere, Ocular surface disease index (OSDI) versus the standard patient evaluation of eye dryness (SPEED): a study of a nonclinical sample, Cornea, vol. 175, no. 35, pp. 2–180, 2016.

[45]

R. K. Saha, A. M. M. Chowdhury, K. S. Na, G. D. Hwang, Y. Eom, J. Kim, H. G. Jeon, H. S. Hwang, and E. Chung, Automated quantification of meibomian gland dropout in infrared meibography using deep learning, Ocul. Surf., vol. 26, pp. 283–294, 2022.

[46]

Y. Wang, X. Jia, S. Wei, and X. Li, A deep learning model established for evaluating lid margin signs with colour anterior segment photography, Eye, vol. 37, no. 7, pp. 1377–1382, 2023.

[47]

L. Wang, M. Shen, C. Shi, Y. Zhou, Y. Chen, J. Pu, and H. Chen, EE-Net: An edge-enhanced deep learning network for jointly identifying corneal micro-layers from optical coherence tomography, Biomed. Signal Process. Control, vol. 71, p. 103213, 2022.

[48]
Dry eye disease in medical students: Research analysis of change in usage of various devices during Covid-19 Lockdown, https://www.kaggle.com/datasets/shankar24397/dry-eye-disease-in-medical-students, 2020.
[49]

A. S. Saleh, Beware the IBM SPSS statistics® in multiple ROC curves analysis, Intern. Emerg. Med., vol. 18, no. 4, pp. 1239–1241, 2023.

[50]

F. R. A. N. K. Schoonjans, A. Zalata, C. E. Depuydt, and F. H. Comhaire, MedCalc: a new computer program for medical statistics, Computer Methods and Programs in Biomedicine, vol. 48, no. 3, pp. 25–262, 1995.

[51]

A. Mihalache, M. M. Popovic, and R. H. Muni, Performance of an artificial intelligence chatbot in ophthalmic knowledge assessment, JAMA Ophthalmology, vol. 141, no. 6, pp. 589–597, 2023.

[52]

M. P. Perme and D. Manevski, Confidence intervals for the Mann-Whitney test, Stat. Methods Med. Res., vol. 28, no. 12, pp. 3755–3768, 2019.

[53]

P. Versura, V. Profazio, and E. C. Campos, Performance of tear osmolarity compared to previous diagnostic tests for dry eye diseases, Curr. Eye Res., vol. 35, no. 7, pp. 553–564, 2010.

[54]

R. van der Vaart, M. A. Weaver, C. Lefebvre, and R. M. Davis, The association between dry eye disease and depression and anxiety in a large population-based study, Am. J. Ophthalmol., vol. 159, no. 3, pp. 470–474, 2015.

[55]

D. Wirta, P. Vollmer, J. Paauw, K. H. Chiu, E. Henry, K. Striffler, J. Nau, and the ONSET-2 Study Group, Efficacy and safety of OC-01 (varenicline solution) nasal spray on signs and symptoms of dry eye disease: The ONSET-2 phase 3 randomized trial, Ophthalmology., vol. 129, no. 4, pp. 379–387, 2020.

[56]

J. G. Greener, S. M. Kandathil, L. Moffat, and D. T. Jones, A guide to machine learning for biologists, Nat. Rev. Mol. Cell Biol., vol. 23, no. 1, pp. 40–55, 2022.

[57]

K. Yabusaki, R. Arita, and T. Yamauchi, Automated classification of dry eye type analyzing interfering fringe color images of tear film using machine learning technologies, Invest. Ophthalmol. Vis. Sci., vol. 59, no. 9, p. 4860, 2018.

[58]

C. Cartes, D. López, D. Salinas, C. Segovia, C. Ahumada, N. Pérez, F. Valenzuela, N. Lanza, R. O. L. Solís, V. L. Perez, et al., Dry eye is matched by increased intrasubject variability in tear osmolarity as confirmed by machine learning approach, Arch. Soc. Esp. Oftalmol., vol. 94, no. 7, pp. 337–342, 2019.

[59]

W. J. Yang, L. Wu, Z. M. Mei, and Y. Xiang, The application of artificial neural networks and logistic regression in the evaluation of risk for dry eye after vitrectomy, J. Ophthalmol., vol. 2020, p. 1024926, 2020.

[60]

L. Di Cello, M. Pellegrini, A. Vagge, M. Borselli, L. Ferro Desideri, V. Scorcia, C. E. Traverso, and G. Giannaccare, Advances in the noninvasive diagnosis of dry eye disease, Appl. Sci., vol. 11, no. 21, p. 10384, 2021.

[61]

Z. Zhang, R. Kuang, Z. Wei, L. Wang, G. Su, H. Ou, and Q. Liang, Detection of the spontaneous blinking pattern of dry eye patients using the machine learning method, (in Chinese), Chin. J. Ophthalmol., vol. 58, no. 2, pp. 120–129, 2022.

[62]

F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, A comprehensive survey on transfer learning, Proc. IEEE, vol. 109, no. 1, pp. 43–176, 2021.

[63]

H. Abdelmotaal, R. Hazarbasanov, S. Taneri, A. Al-Timemy, A. Lavric, H. Takahashi, and S. Yousefi, Detecting dry eye from ocular surface videos based on deep learning, Ocul. Surf., vol. 28, pp. 90–98, 2023.

[64]

F. Xu, Y. Qin, W. He, G. Huang, J. Lv, X. Xie, C. Diao, F. Tang, L. Jiang, R. Lan, et al., A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images, PLoS One, vol. 16, no. 6, p. e0252653, 2021.

[65]

S. K. Zhou, H. N. Le, K. Luu, H. V. Nguyen, and N. Ayache, Deep reinforcement learning in medical imaging: A literature review, Med. Image Anal., vol. 73, p. 102193, 2021.

[66]

Z. Liu, C. Yao, H. Yu, and T. Wu, Deep reinforcement learning with its application for lung cancer detection in medical Internet of Things, Future Gener. Comput. Syst., vol. 97, pp. 1–9, 2019.

[67]

A. Kishor, C. Chakraborty, and W. Jeberson, Reinforcement learning for medical information processing over heterogeneous networks, Multimed. Tools Appl., vol. 80, no. 16, pp. 23983–24004, 2021.

[68]
X. Liao, W. Li, Q. Xu, X. Wang, B. Jin, X. Zhang, Y. Wang, and Y. Zhang, Iteratively-refined interactive 3D medical image segmentation with multi-agent reinforcement learning, in Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020, pp. 9394–9402.
DOI
[69]

T. K. Yoo, J. Y. Choi, H. K. Kim, I. H. Ryu, and J. K. Kim, Adopting low-shot deep learning for the detection of conjunctival melanoma using ocular surface images, Comput. Methods Programs Biomed., vol. 205, p. 106086, 2021.

[70]

C. Wu, H. Zhang, J. Chen, Z. Gao, P. Zhang, K. Muhammad, and J. Del Ser, Vessel-GAN: Angiographic reconstructions from myocardial CT perfusion with explainable generative adversarial networks, Future Gener. Comput. Syst., vol. 130, pp. 128–139, 2022.

[71]

Z. K. Khan, A. I. Umar, S. H. Shirazi, A. Rasheed, A. Qadir, and S. Gul, Image based analysis of meibomian gland dysfunction using conditional generative adversarial neural network, BMJ Open Ophthalmol., vol. 6, no. 1, p. e000436, 2021.

[72]

H. K. Yang, S. A. Che, J. Y. Hyon, and S. B. Han, Integration of artificial intelligence into the approach for diagnosis and monitoring of dry eye disease, Diagnostics, vol. 12, no. 12, p. 3167, 2022.

[73]
M. L. Giudice, N. Mammone, C. Ieracitano, M. Campolo, A. R. Bruna, V. Tomaselli, and F. C. Morabito, Visual explanations of deep convolutional neural network for eye blinks detection in EEG-based BCI applications, in Proc. 2022 Int. Joint Conf. Neural Networks, Padua, Italy, 2022, pp. 1–8.
DOI
[74]

N. Rieke, J. Hancox, W. Li, F. Milletarì, H. R. Roth, S. Albarqouni, S. Bakas, M. N. Galtier, B. A. Landman, K. Maier-Hein, et al., The future of digital health with federated learning, npj Digit. Med., vol. 3, no. 1, p. 119, 2020.

[75]

M. J. Sheller, B. Edwards, G. A. Reina, J. Martin, S. Pati, A. Kotrotsou, M. Milchenko, W. Xu, D. Marcus, R. R. Colen, et al., Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data, Sci. Rep., vol. 10, no. 1, p. 12598, 2020.

[76]

J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang, Federated learning for healthcare informatics, Journal of Healthcare Informatics Research, vol. 5, pp. 1–19, 2021.

[77]

A. Bessadok, M. A. Mahjoub, and I. Rekik, Graph neural networks in network neuroscience, IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 5, pp. 5833–5848, 2023.

[78]

A. A. Salam, M. Mahadevappa, A. Das, and M. S. Nair, DRG-NET: A graph neural network for computer-aided grading of diabetic retinopathy, Signal Image Video Process., vol. 16, no. 7, pp. 1869–1875, 2022.

[79]
K. R. Chowdhary, Natural language processing, in Fundamentals of Artificial Intelligence, K. R. Chowdhary, ed. New Delhi, India: Springer, 2020, pp. 603–649.
DOI
[80]

S. Sheikhalishahi, R. Miotto, J. T. Dudley, A. Lavelli, F. Rinaldi, and V. Osmani, Natural language processing of clinical notes on chronic diseases: Systematic review, JMIR Med. Inf., vol. 7, no. 2, p. e12239, 2019.

[81]

Y. Juhn and H. Liu, Artificial intelligence approaches using natural language processing to advance EHR-based clinical research, J. Allergy Clin. Immunol., vol. 145, no. 2, pp. 463–469, 2020.

[82]

S. Zhang, B. Joshi, C. Pandian, A. Shaw, W. Isenburg, C. Oh, D. V. Owen, K. Brazzell, and K. K. Nichols, Gathering non-traditional, 15 year, real-world patient insights into dry eye flares, Invest. Ophthalmol. Vis. Sci., vol. 62, no. 8, p. 1270, 2021.

[83]

N. Maganti, H. Tan, L. M. Niziol, S. Amin, A. Hou, K. Singh, D. Ballouz, and M. A. Woodward, Natural language processing to quantify microbial keratitis measurements, Ophthalmology, vol. 126, no. 12, pp. 1722–1724, 2019.

[84]

L. W. Y. Yang, W. Y. Ng, L. L. Foo, Y. Liu, M. Yan, X. Lei, X. Zhang, and D. S. W. Ting, Deep learning-based natural language processing in ophthalmology: Applications, challenges and future directions, Curr. Opin. Ophthalmol., vol. 32, no. 5, pp. 397–405, 2021.

[85]

T. A. Koleck, C. Dreisbach, P. E. Bourne, and S. Bakken, Natural language processing of symptoms documented in free-text narratives of electronic health records: A systematic review, J. Am. Med. Inf. Assoc., vol. 26, no. 4, pp. 364–379, 2019.

[86]
P. Ghavami, Big Data Analytics Methods : Analytics Techniques in Data Mining, Deep Learning and Natural Language Processing, 2nd ed. Boston, MA, USA: De Gruyter, 2020.
DOI
[87]
S. Ruder, M. E. Peters, S. Swayamdipta, and T. Wolf, Transfer learning in natural language processing, in Proc. 2019 Conf. North American Chapter of the Association for Computational Linguistics: Tutorials, Minneapolis, MN, USA, 2019, pp. 15–18.
DOI
[88]

A. Galassi, M. Lippi, and P. Torroni, Attention in natural language processing, IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 10, pp. 4291–4308, 2021.

[89]

L. Wu, Y. Chen, K. Shen, X. Guo, H. Gao, S. Li, J. Pei, and B. Long, Graph neural networks for natural language processing: A survey, Found. Trends® Mach. Learn., vol. 16, no. 2, pp. 119–328, 2023.

[90]

S. M. Nam, T. A. Peterson, A. J. Butte, K. Y. Seo, and H. W. Han, Explanatory model of dry eye disease using health and nutrition examinations: Machine learning and network-based factor analysis from a national survey, JMIR Med. Inf., vol. 8, no. 2, p. e16153, 2020.

[91]

F. Curia, Features and explainable methods for cytokines analysis of dry eye disease in HIV infected patients, Healthcare Anal., vol. 1, p. 100001, 2021.

[92]

M. H. Wang, R. Zhou, Z. Lin, Y. Yu, P. Zeng, X. Fang, G. Hou, Y. Li, X. Yu, and K. K.-L. Chong, Can explainable artificial intelligence optimize the data quality of machine learning model? Ttaking meibomian gland dysfunction detections as a case study, Journal of Physics: Conference Series, vol. 2650, no. 1, p. 012025, 2002.

[93]

T. F. Tan, Y. Li, J. S. Lim, D. V. Gunasekeran, Z. L. Teo, W. Y. Ng, and D. S. Ting, Metaverse and virtual health care in ophthalmology: Opportunities and challenges, Asia-Pac. J. Ophthalmol., vol. 11, no. 3, pp. 237–246, 2022.

[94]

D. Yang, J. Zhou, Y. Song, M. Sun, and C. Bai, Metaverse in medicine, Clin. eHealth, vol. 5, pp. 39–43, 2022.

[95]

S. Sandrone, Medical education in the metaverse, Nat. Med., vol. 28, no. 12, pp. 2456–2457, 2022.

[96]

F. Amparo, H. Wang, J. Yin, A. Marmalidou, and R. Dana, Evaluating corneal fluorescein staining using a novel automated method, Invest. Ophthalmol. Vis. Sci., vol. 58, no. 6, pp. BIO168–BIO173, 2017.

[97]

B. Karasu and A. R. C. Celebi, Predictive value of ectopic inner foveal layer without internal limiting membrane peeling for idiopathic epiretinal membrane surgery, Int. Ophthalmol., vol. 42, no. 6, pp. 1885–1896, 2022.

[98]

C. S. De Paiva and S. C. Pflugfelder, Corneal epitheliopathy of dry eye induces hyperesthesia to mechanical air jet stimulation, Am. J. Ophthalmol., vol. 137, no. 1, pp. 109–115, 2004.

[99]

A. M. Storås, I. Strümke, M. A. Riegler, J. Grauslund, H. L. Hammer, A. Yazidi, P. Halvorsen, K. G. Gundersen, T. P. Utheim, and C. J. Jackson, Artificial intelligence in dry eye disease, Ocul. Surf., vol. 23, pp. 74–86, 2022.

[100]

N. Li, X. G. Deng, and M. F. He, Comparison of the Schirmer I test with and without topical anesthesia for diagnosing dry eye, Int. J. Ophthalmol., vol. 5, no. 4, pp. 478–481, 2012.

[101]

M. Chen, A. Wei, J. Xu, X. Zhou, and J. Hong, Application of keratograph and Fourier-domain optical coherence tomography in measurements of tear meniscus height, J. Clin. Med., vol. 11, no. 5, p. 1343, 2022.

[102]

R. Arita, K. Yabusaki, T. Hirono, T. Yamauchi, T. Ichihashi, S. Fukuoka, and N. Morishige, Automated measurement of tear meniscus height with the kowa DR-1α tear interferometer in both healthy subjects and dry eye patients, Invest. Ophthalmol. Vis. Sci., vol. 60, no. 6, pp. 2092–2101, 2019.

[103]

Y. Yang, Q. Wu, Y. Tang, H. Wu, Z. Luo, W. Gao, Z. Hu, L. Hou, M. Wang, and Z. Yang, Short-term application of diquafosol ophthalmic solution benefits children with dry eye wearing orthokeratology lens, Front. Med., vol. 10, p. 1130117, 2023.

[104]

S. D. Zhang, J. N. He, T. T. Niu, C. Y. Chan, C. Y. Ren, S. S. Liu, Y. Qu, K. L. Chong, H. L. Wang, J. Tao, et al., Bacteriological profile of ocular surface flora in meibomian gland dysfunction, Ocul. Surf., vol. 15, no. 2, pp. 242–247, 2017.

[105]

M. Markoulli, T. B. Duong, M. Lin, and E. Papas, Imaging the tear film: A comparison between the subjective keeler tearscope-plus™ and the objective oculus® keratograph 5M and LipiView® interferometer, Curr. Eye Res., vol. 43, no. 2, pp. 155–162, 2018.

[106]

J. V. García-Marqués, S. García-Lázaro, C. Talens-Estarelles, N. Martínez-Albert, and A. Cerviño, Diagnostic capability of a new objective method to assess meibomian gland visibility, Optom. Vis. Sci., vol. 98, no. 9, pp. 1045–1055, 2021.

[107]

R. Arita, K. Itoh, K. Inoue, and S. Amano, Noncontact infrared meibography to document age-related changes of the meibomian glands in a normal population, Ophthalmology, vol. 115, no. 5, pp. 911–915, 2008.

[108]

R. Arita, K. Itoh, S. Maeda, K. Maeda, A. Furuta, S. Fukuoka, A. Tomidokoro, and S. Amano, Proposed diagnostic criteria for obstructive meibomian gland dysfunction, Ophthalmology, vol. 116, no. 11, pp. 2058–2063. e1, 2009.

[109]

M. A. Shousha, J. Wang, G. Kontadakis, W. Feuer, A. P. Canto, R. Hoffmann, and V. L. Perez, Corneal epithelial thickness profile in dry-eye disease, Eye, vol. 34, no. 5, pp. 915–922, 2020.

[110]

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, et al., Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography, Invest. Ophthalmol. Vis. Sci., vol. 54, no. 8, pp. 5578–5583, 2013.

[111]

L. A. Deinema, A. J. Vingrys, H. R. Chinnery, and L. E. Downie, Optical coherence tomography reveals changes to corneal reflectivity and thickness in individuals with tear hyperosmolarity, Transl. Vis. Sci. Technol., vol. 6, no. 3, p. 6, 2017.

[112]

M. A. Lemp, A. J. Bron, C. Baudouin, J. M. B. del Castillo, D. Geffen, J. Tauber, G. N. Foulks, J. S. Pepose, B. D. Sullivan, Tear osmolarity in the diagnosis and management of dry eye disease, Am. J. Ophthalmol., vol. 151, no. 5, pp. 792–798. e1, 2011.

[113]

B. Tashbayev, T. P. Utheim, Ø. A. Utheim, S. Ræder, J. L. Jensen, M. Yazdani, N. Lagali, V. Vitelli, D. A. Dartt, and X. Chen, Utility of tear osmolarity measurement in diagnosis of dry eye disease, Sci. Rep., vol. 10, no. 1, p. 5542, 2020.

[114]

Z. Huang, C. X. Du, and X. D. Pan, The use of in-strip digestion for fast proteomic analysis on tear fluid from dry eye patients, PLoS One, vol. 13, no. 8, p. e0200702, 2018.

[115]

J. H. Jung, Y. W. Ji, H. S. Hwang, J. W. Oh, H. C. Kim, H. K. Lee, and K. P. Kim, Proteomic analysis of human lacrimal and tear fluid in dry eye disease, Sci. Rep., vol. 7, no. 1, p. 13363, 2017.

[116]

F. Hu, L. Li, X. Huang, X. Yan, and P. Huang, Symptom distribution regularity of insomnia: Network and spectral clustering analysis, JMIR Med. Inform., vol. 8, no. 4, p. e16749, 2020.

[117]

J. Xie, Y. Li, N. Wang, L. Xin, Y. Fang, and J. Liu, Feature selection and syndrome classification for rheumatoid arthritis patients with Traditional Chinese Medicine treatment, Eur. J. Integr. Med., vol. 34, p. 101059, 2020.

[118]

T. H. Yuan, Z. S. Yue, G. H. Zhang, L. Wang, and G. R. Dou, Beyond the liver: Liver-eye communication in clinical and experimental aspects, Front. Mol. Biosci., vol. 8, p. 823277, 2021.

[119]

B. S. Yilmaz and P. Gissen, Targeting the liver to treat the eye, EMBO Molecular Medicine, vol. 15, no. 4, pp. e17285, 2023.

[120]
X. Sun, Q. Peng, and X. Chen, Study on distribution law of TCM syndromes of dry eye, (in Chinese), in Proc. 9 th National Symp. Integrated Chinese and Western Medicine Diagnosis Hengyang, Hengyang, China, 2015, pp. 256–263.
[121]

D. Zou, Z. Tian, Y. Shi, Z. Yan, X. Du, S. Chen, H. Wang, and J. Cui, Regular pattern of acupoint selection in treatment of dry eye by acupuncture and moxibustion based on data mining technology, (in Chinese), China J. Chin. Ophthalmol., vol. 30, no. 6, pp. 415–418, 2020.

[122]

H. Wang and X. Yu, A bibliographic study of “liver-eye” related research: A correlation function analytic research between age-related macular degeneration (AMD) and traditional chinese medicine (TCM) liver wind internal movement syndrome, Advances in Clinical Medicine, vol. 13, p. 6342, 2023.

[123]

A. A. Alshamrani, A. S. Almousa, A. A. Almulhim, A. A. Alafaleq, M. B. Alosaimi, A. M. Alqahtani, A. M. Almulhem, M. A. Alshamrani, A. H. Alhallafi, I. Z. Alqahtani, et al., Prevalence and risk factors of dry eye symptoms in a Saudi Arabian population, Middle East Afr. J. Ophthalmol., vol. 24, no. 2, pp. 67–73, 2017.

[124]

A. K. Setu, J. Horstmann, S. Schmidt, M. E. Stern, and P. Steven, Deep learning-based automatic meibomian gland segmentation and morphology assessment in infrared meibography, Sci. Rep., vol. 11, no. 1, p. 7649, 2021.

[125]

M. A. Lemp, Report of the National Eye Institute/Industry workshop on clinical trials in dry eyes, CLAO J., vol. 21, no. 4, pp. 221–232, 1995.

[126]

O. van Bijsterveld, Diagnostic tests in the Sicca syndrome, Arch. Ophthalmol., vol. 82, no. 1, pp. 10–14, 1969.

[127]

J. P. Whitcher, C. H. Shiboski, S. C. Shiboski, A. M. Heidenreich, K. Kitagawa, S. Zhang, S. Hamann, G. Larkin, N. A. McNamara, J. S. Greenspan, et al., A simplified quantitative method for assessing keratoconjunctivitis sicca from the Sjögren’s syndrome international registry, Am. J. Ophthalmol., vol. 149, no. 3, pp. 405–415, 2010.

[128]

Y. S. Chun and I. K. Park, Reliability of 4 clinical grading systems for corneal staining, Am. J. Ophthalmol., vol. 157, no. 5, pp. 1097–1102, 2014.

[129]

M. Pellegrini, F. Bernabei, F. Moscardelli, A. Vagge, R. Scotto, C. Bovone, V. Scorcia, and G. Giannaccare, Assessment of corneal fluorescein staining in different dry eye subtypes using digital image analysis, Transl. Vis. Sci. Technol., vol. 8, no. 6, p. 34, 2019.

[130]

C. Vital, S. Bombardieri, R. Jonsson, H. M. Moutsopoulos, E. L. Alexander, S. E. Carsons, T. E. Daniels, P. C. Fox, R. I. Fox, S. S. Kassan, et al., Classification criteria for Sjögren’s syndrome: A revised version of the European criteria proposed by the American-European Consensus Group, Ann. Rheum. Dis., vol. 61, no. 6, pp. 554–558, 2002.

[131]

C. Vitali and N. Del Papa, Classification criteria for Sjögren’s syndrome, Sjögren’s Syndrome, vol. 61, pp. 47–60, 2016.

[132]

Y. Ogawa and K. Tsubota, Dry eye disease and inflammation, Inflamm. Regen., vol. 33, no. 5, pp. 238–248, 2013.

[133]

J. Yang, S. Fong, H. Wang, Q. Hu, C. Lin, S. Huang, J. Shi, K. Lan, R. Tang, Y. Wu, et al., Artificial intelligence in ophthalmopathy and ultra-wide field image: A survey, Expert Syst. Appl., vol. 182, p. 115068, 2021.

[134]

W. Fan and F. Xiao, A complex Jensen-Shannon divergence in complex evidence theory with its application in multi-source information fusion, Eng. Appl. Artif. Intell., vol. 116, p. 105362, 2022.

[135]
Y. Li, M. E. H. Daho, P. H. Conze, H. Al Hajj, S. Bonnin, H. Ren, N. Manivannan, S. Magazzeni, R. Tadayoni, B. Cochener, et al., Multimodal information fusion for glaucoma and diabetic retinopathy classification, in Proc. 9 th Int. Workshop on Ophthalmic Medical Image Analysis, Singapore, 2022, pp. 53–62.
DOI
[136]

T. Dan, Y. Hu, C. Han, Z. Fan, Z. Huang, B. Zhang, G. Tao, B. Liu, H. Yu, and H. Cai, Fusion of multi-source retinal fundus images via automatic registration for clinical diagnosis, Neurocomputing, vol. 459, pp. 370–382, 2021.

[137]

H. Wang and L. Xing, A fusion-based AI approach for dry eye disease diagnosis using multiple sources of digital ophthalmic data: A bibliographic study, https://doi.org/10.20944/preprints202211.0044.v1, 2022.

DOI
Big Data Mining and Analytics
Pages 445-484
Cite this article:
Wang MH, Xing L, Pan Y, et al. AI-Based Advanced Approaches and Dry Eye Disease Detection Based on Multi-Source Evidence: Cases, Applications, Issues, and Future Directions. Big Data Mining and Analytics, 2024, 7(2): 445-484. https://doi.org/10.26599/BDMA.2023.9020024

300

Views

66

Downloads

1

Crossref

0

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 15 May 2023
Revised: 22 August 2023
Accepted: 30 August 2023
Published: 22 April 2024
© The author(s) 2023.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return