AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

E-Commerce Fraud Detection Based on Machine Learning Techniques: Systematic Literature Review

NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, Lisboa 1070-312, Portugal
Show Author Information

Abstract

The e-commerce industry’s rapid growth, accelerated by the COVID-19 pandemic, has led to an alarming increase in digital fraud and associated losses. To establish a healthy e-commerce ecosystem, robust cyber security and anti-fraud measures are crucial. However, research on fraud detection systems has struggled to keep pace due to limited real-world datasets. Advances in artificial intelligence, Machine Learning (ML), and cloud computing have revitalized research and applications in this domain. While ML and data mining techniques are popular in fraud detection, specific reviews focusing on their application in e-commerce platforms like eBay and Facebook are lacking depth. Existing reviews provide broad overviews but fail to grasp the intricacies of ML algorithms in the e-commerce context. To bridge this gap, our study conducts a systematic literature review using the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) methodology. We aim to explore the effectiveness of these techniques in fraud detection within digital marketplaces and the broader e-commerce landscape. Understanding the current state of the literature and emerging trends is crucial given the rising fraud incidents and associated costs. Through our investigation, we identify research opportunities and provide insights to industry stakeholders on key ML and data mining techniques for combating e-commerce fraud. Our paper examines the research on these techniques as published in the past decade. Employing the PRISMA approach, we conducted a content analysis of 101 publications, identifying research gaps, recent techniques, and highlighting the increasing utilization of artificial neural networks in fraud detection within the industry.

References

[1]

S. Monteith, M. Bauer, M. Alda, J. Geddes, P. C. Whybrow, and T. Glenn, Increasing cybercrime since the pandemic: Concerns for psychiatry, Curr. Psychiatry Rep., vol. 23, no. 4, p. 18, 2021.

[2]

S. Kodate, R. Chiba, S. Kimura, and N. Masuda, Detecting problematic transactions in a consumer-to-consumer e-commerce network, Appl. Netw. Sci., vol. 5, no. 1, p. 90, 2020.

[3]
R. Samani and G. Davis, McAfee mobile threat report, https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf, 2019.
[4]

E. W. T. Ngai, Y. Hu, Y. H. Wong, Y. Chen, and X. Sun, The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature, Decis. Support Syst., vol. 50, no. 3, pp. 559–569, 2011.

[5]
Sam Smith and Juniper Research, Online payment fraud: Market forecasts, emerging threats & segment analysis 2022-2027, https://www.juniperresearch.com/press/losses-online-payment-fraud-exceed-362-billion/, 2024.
[6]

A. Abdallah, M. A. Maarof, and A. Zainal, Fraud detection system: A survey, J. Netw. Comput. Appl., vol. 68, pp. 90–113, 2016.

[7]

R. J. Bolton and D. J. Hand, Statistical fraud detection: A review, Statistical Science, vol. 17, no. 3, pp. 235–255, 2002.

[8]
C. Phua, V. Lee, K. Smith, and R. Gayler, A comprehensive survey of data mining-based fraud detection research, arXiv preprint arXiv: 1009.6119, 2010.
[9]

L. Akoglu, H. Tong, and D. Koutra, Graph based anomaly detection and description: A survey, Data Min. Knowl. Discov., vol. 29, no. 3, pp. 626–688, 2015,

[10]

D. Irani, S. Webb, and C. Pu, Study of static classification of social spam profiles in MySpace, Proc. Int. AAAI Conf. Web Soc. Med., vol. 4, no. 1, pp. 82–89, 2010.

[11]
A. Bhowmick and S. M. Hazarika, Machine learning for E-mail spam filtering: Review, techniques and trends, arXiv preprint arXiv: 1606.01042, 2016.
[12]

D. Savage, X. Zhang, X. Yu, P. Chou, and Q. Wang, Anomaly detection in online social networks, Soc. Netw., vol. 39, pp. 62–70, 2014.

[13]

A. Ali, S. Abd Razak, S. H. Othman, T. A. E. Eisa, A. Al-Dhaqm, M. Nasser, T. Elhassan, H. Elshafie, and A. Saif, Financial fraud detection based on machine learning: A systematic literature review, Appl. Sci., vol. 12, no. 19, p. 9637, 2022.

[14]

T. Pourhabibi, K. L. Ong, B. H. Kam, and Y. L. Boo, Fraud detection: A systematic literature review of graph-based anomaly detection approaches, Decis. Support Syst., vol. 133, p. 113303, 2020.

[15]
R. Banerjee, G. Bourla, S. Chen, M. Kashyap, and S. Purohit, Comparative analysis of machine learning algorithms through credit card fraud detection, in Proc. IEEE MIT Undergraduate Research Technology Conf., Cambridge, MA, USA, 2018, pp. 1–4.
[16]

N. Carneiro, G. Figueira, and M. Costa, A data mining based system for credit-card fraud detection in e-tail, Decis. Support Syst., vol. 95, pp. 91–101, 2017.

[17]

A. O. Adewumi and A. A. Akinyelu, A survey of machine-learning and nature-inspired based credit card fraud detection techniques, Int. J. Syst. Assur. Eng. Manag., vol. 8, no. S2, pp. 937–953, 2017.

[18]

M. Ahmed, A. N. Mahmood, and M. R. Islam, A survey of anomaly detection techniques in financial domain, Future Gener. Comput. Syst., vol. 55, pp. 278–288, 2016.

[19]
V. Rodrigues, L. Policarpo, and D. E. da Silveira, Fraud detection and prevention in e-commerce: A systematic literature review, https://www.sciencedirect.com/science/article/pii/S1567422322000904?casa_token=UOjgVT_FXuwAAAAA:YgIpy5PUX5dEdF_dJ2Nd1Hz-664Vr32oHJPDq_ZbevxtOazQ38tP_I-PVDtKsCBFXXu_6-Ri6Q, 2022.
[20]
J. West and M. Bhattacharya, Intelligent financial fraud detection: A comprehensive review, Comput. Secur., vol. 57, pp. 47–66, 2016.
[21]

M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, et al., The PRISMA 2020 statement: An updated guideline for reporting systematic reviews, BMJ, vol. 372, p. n71, 2021.

[22]

S. Lei, K. Xu, Y. Huang, and X. Sha, An Xgboost based system for financial fraud detection, E3S Web Conf., vol. 214, p. 02042, 2020.

[23]
S. Unam, M. Godfrey, and O. Taiwo, Credit card fraud detection using machine learning algorithms.
[24]
A. Amir and G. Hamid, Fraudulent transactions detection in credit card by using data mining methods: A review, https://www.researchgate.net/publication/348732395_Fraudulent_Transactions_Detection_in_Credit_Card_by_using_Data_Mining_Methods_A_Review, 2022.
[25]

A. O. Adewumi and A. A. Akinyelu, A survey of machine-learning and nature-inspired based credit card fraud detection techniques, International Journal of System Assurance Engineering and Management, vol. 8, no. 2, pp. 937–953, 2017.

[26]
S. Sorournejad, Z. Zojaji, R. E. Atani, and A. H. Monadjemi, A survey of credit card fraud detection techniques: Data and technique oriented perspective, arXiv preprint arXiv: 1611.06439, 2016.
[27]

A. Aziz and H. Ghous, Fraudulent transactions detection in credit card by using data mining methods: A review, Int. J. Sci. Prog. Res., vol. 79, no. 1, pp. 31–48, 2021.

[28]
H. Paruchuri, Credit card fraud detection using machine learning: A systematic literature review, ABC J. Adv. Res. vol. 6, no. 2, pp. 113–120, 2017.
[29]
B. B. Sagar, P. Singh, and S. Mallika, Online transaction fraud detection techniques: A review of data mining approaches, in Proc. 3 rd Int. Conf. Computing for Sustainable Global Development (INDIACom), New Delhi, India, 2016, pp. 3756–3761.
[30]
A. G. Oketola, T. Gbadebo-Ogunmefun, and A. Agbeja, A review of credit card fraud detection using machine learning algorithms.
[31]
S. J. Omar, K. Fred, and K. K. Swaib, A state-of-the-art review of machine learning techniques for fraud detection research, in Proc. 2018 Int. Conf. Software Engineering in Africa, Gothenburg, Sweden, 2018, pp. 11–19.
[32]
I. Xournals, A review of credit card fraud detection techniques in e-commerce, https://www.academia.edu/39529497/A_review_of_Credit_card_Fraud_Detection_techniques_in_e_commerce, 2022.
[33]

K. S. Lim, L. H. Lee, and Y. W. Sim, A review of machine learning algorithms for fraud detection in credit card transaction, Int. J. Comput. Sci. Netw. Secur., vol. 21, no. 9, pp. 31–40, 2021.

[34]

L. M. Policarpo, D. E. da Silveira, R. da Rosa Righi, R. A. Stoffel, C. A. da Costa, J. L. V. Barbosa, R. Scorsatto, and T. Arcot, Machine learning through the lens of e-commerce initiatives: An up-to-date systematic literature review, Comput. Sci. Rev., vol. 41, p. 100414, 2021.

[35]
S. Yin and X. Luo, A review of learning-based E-commerce, in Proc. 16 th Int. Conf. Intelligent Systems and Knowledge Engineering, Chengdu, China, 2021, pp. 483–490.
[36]

H. Paul and A. Nikolaev, Fake review detection on online E-commerce platforms: A systematic literature review, Data Min. Knowl. Discov., vol. 35, no. 5, pp. 1830–1881, 2021.

[37]

P. Gamini, S. T. Yerramsetti, G. D. Darapu, V. K. Pentakoti, and P. R. Vegesena, A review on the performance analysis of supervised and unsupervised algorithms in credit card fraud detection, Int. J. Res. Eng. Sci. Manag., vol. 4, no. 8, pp. 23–26, 2021.

[38]
M. Petticrew and H. Roberts, Systematic Reviews in the Social Sciences : A Practical Guide. Oxford, UK: Wiley-Blackwell, 2006.
[39]

E. S. Gualberto, R. T. De Sousa, T. P. De B Vieira, J. P. C. L. Da Costa, and C. G. Duque, From feature engineering and topics models to enhanced prediction rates in phishing detection, IEEE Access, vol. 8, pp. 76368–76385, 2020.

[40]

M. E. Falagas, E. I. Pitsouni, G. A. Malietzis, and G. Pappas, Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses, FASEB J., vol. 22, no. 2, pp. 338–342, 2008.

[41]

N. J. van Eck and L. Waltman, Software survey: VOSviewer, a computer program for bibliometric mapping, Scientometrics, vol. 84, no. 2, pp. 523–538, 2010.

[42]

A. Perianes-Rodriguez, L. Waltman, and N. J. Van Eck, Constructing bibliometric networks: A comparison between full and fractional counting, J. Informetr., vol. 10, no. 4, pp. 1178–1195, 2016.

[43]

T. H. Pranto, K. T. A. M. Hasib, T. Rahman, A. B. Haque, A. K. M. N. Islam, and R. M. Rahman, Blockchain and machine learning for fraud detection: A privacy-preserving and adaptive incentive based approach, IEEE Access, vol. 10, pp. 87115–87134, 2022.

[44]

Y. Y. Festa and I. A. Vorobyev, A hybrid machine learning framework for e-commerce fraud detection, Model Assist. Stat. Appl., vol. 17, no. 1, pp. 41–49, 2022.

[45]

E. Ileberi, Y. Sun, and Z. Wang, A machine learning based credit card fraud detection using the GA algorithm for feature selection, J. Big Data, vol. 9, no. 1, p. 24, 2022.

[46]

M. H. Nasr, M. H. Farrag, and M. M. Nasr, A proposed fraud detection model based on e-Payments attributes a case study in Egyptian e-Payment gateway, Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 5, pp. 179–186, 2022.

[47]

D. H. Lim and H. Ahn, A study on fraud detection in the C2C used trade market using Doc2vec, J. Korea Soc. Comput. Inform., vol. 27, no. 3, pp. 173–182, 2022.

[48]
M. Gao, Account takeover detection on E-commerce platforms, in Proc. IEEE Int. Conf. Smart Computing, Helsinki, Finland, 2022, pp. 196–197.
[49]

J. Mathew, C. K. Pang, M. Luo, and W. H. Leong, Classification of imbalanced data by oversampling in kernel space of support vector machines, IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 9, pp. 4065–4076, 2018.

[50]

G. Sasikala, M. Laavanya, B. Sathyasri, C. Supraja, V. Mahalakshmi, S. S. S. Mole, J. Mulerikkal, S. Chidambaranathan, C. Arvind, K. Srihari, et al., An innovative sensing machine learning technique to detect credit card frauds in wireless communications, Wirel. Commun. Mob. Comput., vol. 2022, p. 2439205, 2022.

[51]

P. Verma and P. Tyagi, Analysis of supervised machine learning algorithms in the context of fraud detection, ECS Trans., vol. 107, no. 1, pp. 7189–7200, 2022.

[52]

A. Baishya and S. Kakoty, A review on web content filtering, its technique and prospects, Int. J. Comput. Sci. Trends Technol., vol. 7, no. 3, pp. 37–40, 2019.

[53]

E. Ileberi, Y. Sun, and Z. Wang, Performance evaluation of machine learning methods for credit card fraud detection using SMOTE and AdaBoost, IEEE Access, vol. 9, pp. 165286–165294, 2021.

[54]
N. Prabha and S. Manimekalai, Imbalanced data classification in credit card fraudulent activities detection using multi-class neural network, in Proc. 2 nd Int. Conf. Artificial Intelligence and Smart Energy, Coimbatore, India, 2022, pp. 131–138.
[55]
P. S. Lokhande and B. B. Meshram, E-commerce applications: Vulnerabilities, attacks and countermeasures, https://www.researchgate.net/publication/235697382_E-Commerce_Applications_Vulnerabilities_Attacks_and_CountermeasUres, 2022.
[56]
T. Mauritsius, S. Alatas, F. Binsar, R. Jayadi, and N. Legowo, Promo abuse modeling in e-commerce using machine learning approach, in Proc. 8 th Int. Conf. Orange Technology, Daegu, Republic of Korea, 2020, pp. 1–6.
[57]

K. Kim, Y. Choi, and J. Park, Pricing fraud detection in online shopping malls using a finite mixture model, Electron. Commer. Res. Appl., vol. 12, no. 3, pp. 195–207, 2013.

[58]
A. G. Marakhtanov, E. O. Parenchenkov, and N. V. Smirnov, Detection of fictitious accounts registration, in Proc. Int. Russian Automation Conf., Sochi, Russia, 2021, pp. 226–230.
[59]
I. Saha, D. Sarma, R. J. Chakma, M. N. Alam, A. Sultana, and S. Hossain, Phishing attacks detection using deep learning approach, in Proc. 3 rd Int. Conf. Smart Systems and Inventive Technology, Tirunelveli, India, 2020, pp. 1180–1185.
[60]

A. Zamir, H. U. Khan, T. Iqbal, N. Yousaf, F. Aslam, A. Anjum, and M. Hamdani, Phishing web site detection using diverse machine learning algorithms, Electronic Library, vol. 38, no. 1, pp. 65–80, 2020.

[61]
F. Hasan, S. K. Mondal, M. R. Kabir, M. A. Al Mamun, N. S. Rahman, and M. S. Hossen, E-commerce merchant fraud detection using machine learning approach, in Proc. 7 th Int. Conf. Communication and Electronics Systems, Coimbatore, India, 2022, pp. 1123–1127.
[62]

S. Carta, G. Fenu, D. R. Recupero, and R. Saia, Fraud detection for E-commerce transactions by employing a prudential multiple consensus model, J. Inform. Secur. Appl., vol. 46, pp. 13–22, 2019.

[63]
L. Beltzung, A. Lindley, O. Dinica, N. Hermann, and R. Lindner, Real-time detection of fake-shops through machine learning, in Proc. IEEE Int. Conf. Big Data, Atlanta, GA, USA, 2020, pp. 2254–2263.
[64]

A. Abbasi, Z. Zhang, D. Zimbra, H. Chen, and J. F. N. Jr, Detecting fake websites: The contribution of statistical learning theory, MIS Quart., vol. 34, no. 3, pp. 435–461, 2010.

[65]

Q. Sun, T. Tang, H. Chai, J. Wu, and Y. Chen, Boosting fraud detection in mobile payment with prior knowledge, Appl. Sci., vol. 11, no. 10, p. 4347, 2021.

[66]
Y. Guo, J. Shi, Z. Cao, C. Kang, G. Xiong, and Z. Li, Machine learning based cloudbot detection using multi-layer traffic statistics, in Proc. IEEE 21 st Int. Conf. High Performance Computing and Communications, IEEE 17 th Int. Conf. Smart City, IEEE 5 th Int. Conf. Data Science and Systems, Zhangjiajie, China, 2019, pp. 2428–2435.
[67]
J. C. Mathew, B. Nithya, C. R. Vishwanatha, P. Shetty, H. Priya, and G. Kavya, An analysis on fraud detection in credit card transactions using machine learning techniques, in Proc. 2 nd Int. Conf. Artificial Intelligence and Smart Energy, Coimbatore, India, 2022, pp. 265–272.
[68]

S. Khan, A. Alourani, B. Mishra, A. Ali, and M. Kamal, Developing a credit card fraud detection model using machine learning approaches, Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 3, pp. 411–418, 2022.

[69]
K. Abhirami, A. K. Pani, M. Manohar, and P. Kumar, An approach for detecting frauds in E-commerce transactions using machine learning techniques, in Proc. 2 nd Int. Conf. Smart Electronics and Communication, Trichy, India, 2021, pp. 826–831.
[70]
A. S, N. Sethumadhavan, and H. N. AG, Credit card fraud detection using apache spark analysis, in Proc. 5 th Int. Conf. Trends in Electronics and Informatics, Tirunelveli, India, 2021, pp. 998–1002.
[71]

K. N. Mishra and S. C. Pandey, Fraud prediction in smart societies using logistic regression and K-fold machine learning techniques, Wirel. Pers. Commun., vol. 119, no. 2, pp. 1341–1367, 2021.

[72]
S. V. J. B. Gracia, J. G. Ponsam, S. Preetha, and J. G. K. Subhiksha, Payment fraud detection using machine learning techniques, in Proc. 4 th Int. Conf. Computing and Communications Technologies, Chennai, India, 2021, pp. 623–626.
[73]

S. Patil, V. Nemade, and P. K. Soni, Predictive modelling for credit card fraud detection using data analytics, Procedia Comput. Sci., vol. 132, pp. 385–395, 2018.

[74]
R. F. Lima and A. C. M. Pereira, A fraud detection model based on feature selection and undersampling applied to web payment systems, in Proc. IEEE/WIC/ACM Int. Joint Conf. Web Intelligence and Intelligent Agent Technology, Singapore, 2015, pp. 219–222.
[75]

G. K. Nune and P. V. Sena, Novel artificial neural networks and logistic approach for detecting credit card deceit, Int. J. Comput. Sci. Netw. Secur., vol. 15, no. 9, pp. 21–27, 2015.

[76]

H. Zhou, G. Sun, S. Fu, W. Jiang, and J. Xue, A scalable approach for fraud detection in online e-commerce transactions with big data analytics, Computers, Materials and Continua, vol. 60, no. 1, pp. 179–192, 2019.

[77]
P. Tomar, S. Shrivastava, and U. Thakar, Ensemble learning based credit card fraud detection system, in Proc. 5 th Conf. Information and Communication Technology, Kurnool, India, 2021, pp. 1–5.
[78]
K. AbdulSattar and M. Hammad, Fraudulent transaction detection in FinTech using machine learning algorithms, in Proc. Int. Conf. Innovation and Intelligence for Informatics, Computing and Technologies (3ICT), Sakheer, Bahrain, 2020, pp. 1–6.
[79]

H. Zhou, G. Sun, S. Fu, W. Jiang, and J. Xue, A scalable approach for fraud detection in online e-commerce transactions with big data analytics, Comput. Mater. Contin., vol. 60, no. 1, pp. 179–192, 2019.

[80]
A. Roshan, A. Vyas, and U. Singh, Credit card fraud detection using choice tree technology, in Proc. 2 nd Int. Conf. Electronics, Communication and Aerospace Technology, Coimbatore, India, 2018, pp. 1613–1619.
[81]
F. Vanhoenshoven, G. Napoles, R. Falcon, K. Vanhoof, and M. Koppen, Detecting malicious URLs using machine learning techniques, in Proc. IEEE Symp. Series on Computational Intelligence, Athens, Greece, 2016, pp. 1–8.
[82]

A. Barahim, A. Alhajri, N. Alasaibia, N. Altamimi, N. Aslam, and I. U. Khan, Enhancing the credit card fraud detection through ensemble techniques, J. Comput. Theor. Nanosci., vol. 16, no. 11, pp. 4461–4468, 2019.

[83]

A. S. Saputra and S. Suharjito, Fraud detection using machine learning in e-commerce, Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 9, pp. 332–339, 2019.

[84]
W. Mostard, B. Zijlema, and M. Wiering, Combining visual and contextual information for fraudulent online store classification, in Proceedings IEEE/WIC/ACM International Conference on Web Intelligence.
[85]
R. Sailusha, V. Gnaneswar, R. Ramesh, and G. R. Rao, Credit card fraud detection using machine learning, in Proc. 4 th Int. Conf. Intelligent Computing and Control Systems, Madurai, India, 2020, pp. 1264–1270.
[86]
W. Mostard, B. Zijlema, and M. Wiering, Combining visual and contextual information for fraudulent online store classification, in Proc. IEEE/WIC/ACM Int. Conf. Web Intelligence, Thessaloniki, Greece, 2019, pp. 84–90.
[87]
S. Xuan, G. Liu, Z. Li, L. Zheng, S. Wang, and C. Jiang, Random forest for credit card fraud detection, in Proc. IEEE 15 th Int. Conf. Networking, Sensing and Control, Zhuhai, China, 2018, pp. 1–6.
[88]

S. K. Kalhotra, S. V. Dongare, A. Kasthuri, and D. Kaur, Data mining and machine learning techniques for credit card fraud detection, ECS Trans., vol. 107, no. 1, pp. 4977–4985, 2022.

[89]
T. Vairam, S. Sarathambekai, S. Bhavadharani, A. Kavi Dharshini, N. Nithya Sri, and T. Sen, Evaluation of Naïve bayes and voting classifier algorithm for credit card fraud detection, in Proc. 8 th Int. Conf. Advanced Computing and Communication Systems, Coimbatore, India, 2022, pp. 602–608.
[90]
I. Ali, K. Aurangzeb, M. Awais, R. J. u. H. Khan, and S. Aslam, An efficient credit card fraud detection system using deep-learning based approaches, in Proc. IEEE 23 rd Int. Multi-Topic Conf., Bahawalpur, Pakistan, 2020, pp. 1–6.
[91]

K. Shin, T. Ishikawa, Y. L. Liu, and D. L. Shepard, Learning DOM trees of web pages by subpath kernel and detecting fake e-commerce sites, Mach. Learn. Knowl. Extr., vol. 3, no. 1, pp. 95–122, 2021.

[92]

Y. Dong, Z. Jiang, A. Mamoun, and P. M. Kumar, Real-time fraud detection in e-market using machine learning algorithms, J. Mult.-Valued Log. Soft Comput., vol. 36, nos. 1−3, pp. 191–209, 2021.

[93]
V. Mareeswari and G. Gunasekaran, Prevention of credit card fraud detection based on HSVM, in Proc. Int. Conf. Information Communication and Embedded Systems, Chennai, India, 2016, pp. 1–4.
[94]
G. P. Santiago, A. C. M. Pereira, and R. Hirata, A modeling approach for credit card fraud detection in electronic payment services, in Proc. 30 th Annu. ACM Symp. Applied Computing, Salamanca, Spain, 2015, pp. 2328–2331.
[95]

A. Mitra and M. Siddhant, Credit card fraud detection using autoencoders, YMER, vol. 21, no. 6, pp. 337–342, 2022.

[96]
G. M. Rao and K. Srinivas, RNN-BD: An approach for fraud visualisation and detection using deep learning, Int. J. Comput. Sci. Eng., vol. 25, no. 2, pp. 166–173, 2022.
[97]

H. Huang, B. Liu, X. Xue, J. Cao, and X. Chen, Imbalanced credit card fraud detection data: A solution based on hybrid neural network and clustering-based undersampling technique, Applied Soft Computing, vol. 154, p. 111368, 2024.

[98]

J. Forough and S. Momtazi, Ensemble of deep sequential models for credit card fraud detection, Appl. Soft Comput., vol. 99, p. 106883, 2021.

[99]
N. T. N. Anh, T. Q. Khanh, N. Q. Dat, E. Amouroux, and V. K. Solanki, Fraud detection via deep neural variational autoencoder oblique random forest, in Proceedings of 2020 IEEE-HYDCON International Conference on Engineering in the 4th Industrial Revolution, HYDCON 2020.
[100]
A. K. Rai and R. K. Dwivedi, Fraud detection in credit card data using machine learning techniques, in Proc. 2 nd Int. Conf. Machine Learning, Image Processing, Network Security and Data Sciences, Silchar, India, 2020, pp. 369–382.
[101]
N. T. N. Anh, T. Q. Khanh, N. Q. Dat, E. Amouroux, and V. K. Solanki, Fraud detection via deep neural variational autoencoder oblique random forest, in Proc. IEEE-HYDCON, Hyderabad, India, 2020, pp. 1–6.
[102]

J. Wang and C. Wu, Camouflage is NOT easy: Uncovering adversarial fraudsters in large online app review platform, Measurement and Control, vol. 53, nos. 9&10, pp. 2137–2145, 2020.

[103]
X. Liu, K. Yan, L. Burak Kara, and Z. Nie, CCFD-Net: A novel deep learning model for credit card fraud detection, in Proceedings IEEE 22nd International Conference on Information Reuse and Integration for Data Science.
[104]
M. Zamini and G. Montazer, Credit card fraud detection using autoencoder based clustering, in Proc. 9 th Int. Symp. Telecommunications, Tehran, Iran, 2018, pp. 486–491.
[105]
X. Liu, K. Yan, L. Burak Kara, and Z. Nie, CCFD-Net: A novel deep learning model for credit card fraud detection, in Proc. IEEE 22 nd Int. Conf. Information Reuse and Integration for Data Science, Las Vegas, NV, USA, 2021, pp. 9–16.
[106]
J. A. Smiles and T. Kamalakannan, Data mining based hybrid latent representation induced ensemble model towards fraud prediction, in Proc. 3 rd Int. Conf. Intelligent Sustainable Systems, Thoothukudi, India, 2020, pp. 376–382.
[107]
M. Zhao, Z. Li, B. An, H. Lu, Y. Yang, and C. Chu, Impression allocation for combating fraud in E-commerce via deep reinforcement learning with action norm penalty, in Proc. 27 th Int. Joint Conf. Artificial Intelligence.
[108]
A. Srivastava, M. Yadav, S. Basu, S. Salunkhe, and M. Shabad, Credit card fraud detection at merchant side using neural networks, in Proc. 3 rd Int. Conf. Computing for Sustainable Global Development, New Delhi, India, 2016, pp. 667–670.
[109]
T. K. Behera and S. Panigrahi, Credit card fraud detection: A hybrid approach using fuzzy clustering & neural network, in Proc. 2 nd Int. Conf. Advances in Computing and Communication Engineering.
[110]

B. J. Ford, H. Xu, and I. Valova, A real-time self-adaptive classifier for identifying suspicious bidders in online auctions, Comput. J., vol. 56, no. 5, pp. 646–663, 2013.

[111]
C. Liu, Q. W. Zhong, X. Ao, L. Sun, W. L. Lin, J. H. Feng, Q. He, and J. Y. Tang, Fraud transactions detection via behavior tree with local intention calibration, in Proc. 26 th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Virtual Event, 2020, pp. 3035–3043.
[112]

S. Alqethami, B. Almutanni, and M. Alghamdi, Fraud detection in E-commerce, Int. J. Comput. Sci. Netw. Secur., vol. 21, no. 6, pp. 200–206, 2021.

[113]
A. Maurya and A. Kumar, Credit card fraud detection system using machine learning technique, in Proc. IEEE Int. Conf. Cybernetics and Computational Intelligence, Malang, Indonesia, 2022, pp. 500–504.
[114]

V. H. Khang, C. T. Anh, N. D. Thuan, and H. C. M. City, Detecting fraud transaction using ripper algorithm combines with ensemble learning model, International Journal of Advanced Computer Science and Applications, vol. 14, no. 4, p. 2023, 2023.

[115]

Z. Li, M. Huang, G. Liu, and C. Jiang, A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection, Expert Systems with Applications, vol. 175, pp. 114750, 2021.

[116]

V. H. Khang, C. T. Anh, and N. D. Thuan, Detecting fraud transaction using ripper algorithm combines with ensemble learning model, Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 4, pp. 336–345, 2023.

[117]

L. Zheng, G. Liu, C. Yan, C. Jiang, M. Zhou, and M. Li, Improved TrAdaBoost and its application to transaction fraud detection, IEEE Trans. Comput. Soc. Syst., vol. 7, no. 5, pp. 1304–1316, 2020.

[118]
B. B. Jayasingh and G. B. Sri, Online transaction anomaly detection model for credit card usage using machine learning classifiers, in Proc. Int. Conf. Emerging Smart Computing and Informatics, Pune, India, 2023, pp. 1–5.
[119]
R. Raja, K. K. Nagwanshi, S. Kumar, and K. R. Laxmi, Data Mining and Machine Learning Applications. Beverly, MA, USA: Scrivener Publishing, 2022.
[120]

Y. J. Lee, Y. R. Yeh, and Y. C. F. Wang, Anomaly detection via online oversampling principal component analysis, IEEE Trans. Knowl. Data Eng., vol. 25, no. 7, pp. 1460–1470, 2013.

[121]
R. Saia, L. Boratto, and S. Carta, Multiple behavioral models: A divide and conquer strategy to fraud detection in financial data streams, in Proc. 7 th Int. Joint Conf. Knowledge Discovery, Knowledge Engineering and Knowledge Management, Lisbon, Portugal, 2015, pp. 496–503.
[122]

G. A. Montazer and S. ArabYarmohammadi, Detection of phishing attacks in Iranian e-banking using a fuzzy-rough hybrid system, Appl. Soft Comput., vol. 35, pp. 482–492, 2015.

[123]

D. Trisanto, N. Rismawati, M. F. Mulya, and F. I. Kurniadi, Effectiveness undersampling method and feature reduction in credit card fraud detection, Int. J. Intell. Eng. Syst., vol. 13, no. 2, pp. 173–181, 2020.

[124]
M. Shao, N. Gu, and X. Zhang, Credit card transactions data adversarial augmentation in the frequency domain, in Proc. 5 th IEEE Int. Conf. Big Data Analytics, Xiamen, China, 2020, pp. 238–245.
[125]
Z. Li, H. Wang, P. Zhang, P. Hui, J. Huang, J. Liao, J. Zhang, and J. Bu, Live-streaming fraud detection: A heterogeneous graph neural network approach, in Proc. 27 th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Singapore, 2021, pp. 3670–3678.
[126]

S. Subbulakshmi and D. J. Evanjaline, An efficient analytics in credit card fraud detection using resolution classification (Rc) technique, Int. J. Sci. Technol. Res., vol. 9, no. 2, pp. 3284–3289, 2020.

[127]

H. Chi, Y. Lu, B. Liao, L. Xu, and Y. Liu, An optimized quantitative argumentation debate model for fraud detection in E-commerce transactions, IEEE Intell. Syst., vol. 36, no. 2, pp. 52–63, 2021.

[128]

K. N. Mishra, V. P. Mishra, S. Saket, and S. P. Mishra, Hybrid approach for deception tracing in smart cities using LR and n-fold intelligent machine learning techniques, Int. J. Manag. Pract., vol. 15, no. 4, pp. 460–487, 2022.

[129]

B. Lebichot, T. Verhelst, Y. A. Le Borgne, L. He-Guelton, F. Oble, and G. Bontempi, Transfer learning strategies for credit card fraud detection, IEEE Access, vol. 9, pp. 114754–114766, 2021.

[130]

K. Huang, An optimized LightGBM model for fraud detection, J. Phys.: Conf. Ser., vol. 1651, no. 1, p. 012111, 2020.

[131]
P. Mrozek, J. Panneerselvam, and O. Bagdasar, Efficient resampling for fraud detection during anonymised credit card transactions with unbalanced datasets, in Proc. IEEE/ACM 13 th Int. Conf. Utility and Cloud Computing, Leicester, UK, 2020, pp. 426–433.
[132]
A. K. Rai and R. K. Dwivedi, Fraud detection in credit card data using unsupervised machine learning based scheme, in Proc. Int. Conf. Electronics and Sustainable Communication Systems, Coimbatore, India, 2020, pp. 421–426.
[133]

Y. Lucas, P. E. Portier, L. Laporte, L. He-Guelton, O. Caelen, M. Granitzer, and S. Calabretto, Towards automated feature engineering for credit card fraud detection using multi-perspective HMMs, Future Gener. Comput. Syst., vol. 102, pp. 393–402, 2020.

[134]

Y. Fang, Y. Zhang, and C. Huang, Credit card fraud detection based on machine learning, Comput. Mater. Contin., vol. 61, no. 1, pp. 185–195, 2019.

[135]

R. Abiramy, K. Narayanan, R. Anandan, and C. S. Paul, Fraud detection for online retail using random forest, Int. J. Eng. Adv. Technol., vol. 8, no. 3S, pp. 1–6, 2019.

[136]
R. Jhangiani, D. Bein, and A. Verma, Machine learning pipeline for fraud detection and prevention in E-commerce transactions, in Proc. IEEE 10 th Annu. Ubiquitous Computing, Electronics and Mobile Communication Conf., New York, NY, USA, 2019, pp. 135–140.
[137]
U. Fiore, A. De Santis, F. Perla, P. Zanetti, and F. Palmieri, Using generative adversarial networks for improving classification effectiveness in credit card fraud detection, Inf. Sci., vol. 479, pp. 448–455, 2019.
[138]
R. Saia and S. Carta, A frequency-domain-based pattern mining for credit card fraud detection, in Proc. of 2nd International Conference on Internet of Things, Big Data and Security (IoTBDS-2017).
[139]
A. Shaji, S. Binu, A. M. Nair, and J. George, Fraud detection in credit card transaction using ANN and SVM.
[140]
R. Saia, Unbalanced data classification in fraud detection by introducing a multidimensional space analysis, in Proc. 3 rd Int. Conf. Internet of Things, Big Data and Security, Funchal, Portugal, 2018, pp. 29–40.
[141]
A. Shaji, S. Binu, A. M. Nair, and J. George, Fraud detection in credit card transaction using ANN and SVM, in Proc. 4 th EAI Int. Conf. Ubiquitous Communications and Network Computing, Virtual Event, 2021, pp. 187–197.
[142]
M. A. Jawed, D. K. Sasmal, and M. U. Khan, Credit card fraud detection, http://localhost:8080/xmlui/handle/123456789/14658, 2022.
[143]

J. Lee, Y. C. Lee, and J. T. Kim, Fault detection based on one-class deep learning for manufacturing applications limited to an imbalanced database, J. Manuf. Syst., vol. 57, pp. 357–366, 2020.

[144]
M. A. Jawed, D. K. Sasmal, and M. U. Khan, Credit card fraud detection, http://localhost:8080/xmlui/handle/123456789/14658, 2021.
[145]
L. Zhinin-Vera, Credit card fraud detection using artificial intelligence. doi:10.13140/RG.2.2.13642.18885.
[146]
S. B. E. Raj and A. A. Portia, Analysis on credit card fraud detection methods in Proc. Int. Conf. Computer, Communication and Electrical Technology, Tirunelveli, India, 2011, pp. 152–156.
[147]
L. Moumeni, M. Saber, I. Slimani, I. Elfarissi, and Z. Bougroun, Machine learning for credit card fraud detection, in Proc. 6 th Int. Conf. Wireless Technologies, Embedded, and Intelligent Systems, Singapore, 2022, pp. 211–221.
[148]
A. S. Muttipati, S. Viswanadham, R. Dharavathu, and J. Nema, LightGBM model for credit card fraud discovery, in Proc. 6 th Int. Conf. Microelectronics, Electromagnetics and Telecommunications, Singapore, 2022, pp. 51–58.
[149]
A. Mohari, J. Dowerah, K. Das, F. Koucher, and D. J. Bora, Credit card fraud detection techniques: A review, in Soft Computing for Intelligent Systems, N. Marriwala, C. C. Tripathi, S. Jain, and S. Mathapathi, eds. Singapore: Springer, 2022, pp. 157–166.
[150]
V. N. Dornadula and S. Geetha, Credit card fraud detection using machine learning algorithms, Procedia Computer Science.
[151]
B. Al-Smadi, Credit card security system and fraud detection algorithm, PhD dissertation, Louisiana Tech University, Ruston, LA, USA, 2021.
[152]

V. N. Dornadula and S. Geetha, Credit card fraud detection using machine learning algorithms, Procedia Comput. Sci., vol. 165, pp. 631–641, 2019.

[153]
Y. Sahin and E. Duman, Detecting credit card fraud by ANN and logistic regression, in Proc. Int. Symp. Innovations in Intelligent Systems and Applications, Istanbul, Turkey, 2011, pp. 315–319.
[154]
S. L. Marie-Sainte, M. B. Alamir, D. Alsaleh, G. Albakri, and J. Zouhair, Enhancing credit card fraud detection using deep neural network, in Proc. 2020 Computing Conf. Intelligent Computing, Switzerland, 2020, pp. 301–313.
[155]
M. Puh and L. Brkic, Detecting credit card fraud using selected machine learning algorithms, in Proc. 42 nd Int. Convention on Information and Communication Technology, Electronics and Microelectronics, Opatija, Croatia, 2019, pp. 1250–1255.
[156]

S. K. Hashemi, S. L. Mirtaheri, and S. Greco, Fraud detection in banking data by machine learning techniques, IEEE Access, vol. 11, pp. 3034–3043, 2023.

[157]
B. Chugh and N. Malik, Machine learning classifiers for detecting credit card fraudulent transactions, in Information and Communication Technology for Competitive Strategies, A. Joshi, M. Mahmud, and R. G. Ragel, eds. Singapore: Springer, 2023, pp. 223–231.
[158]

U. L. Chilaka, G. A. Chukwudebe, and A. Bashiru, A review of credit card fraud detection techniques in electronic finance and banking, Iconic Research and Engineering Journals, vol. 3, no. 2, pp. 456–467, 2019.

[159]

J. Liu, X. Gu, and C. Shang, Quantitative detection of financial fraud based on deep learning with combination of E-commerce big data, Complexity, vol. 2020, p. 6685888, 2020.

[160]
F. S. Nezhad and H. R. Shahriari, Fuzzy logic and Takagi-Sugeno Neural-Fuzzy to Deutsche bank fraud transactions, in Proc. 7 th Int. Conf. e-Commerce in Developing Countries : With Focus on e-Security, Kish Island, Iran, 2013, pp. 1–15.
[161]

M. K. Khormuji, M. Bazrafkan, M. Sharifian, S. J. Mirabedini, and A. Harounabadi, Credit card fraud detection with a cascade artificial neural network and imperialist competitive algorithm, International Journal of Computer Applications, vol. 96, no. 25, pp. 1–9, 2014.

[162]

L. Zhou, J. Dang, and Z. Zhang, Research on fault diagnosis for on-board equipment of train control system based on imbalanced text classification, J. Appl. Sci. Eng., vol. 24, no. 2, pp. 167–175, 2021.

[163]
J. Wang, R. Wen, C. Wu, Y. Huang, and J. Xiong, FDGars: Fraudster detection via graph convolutional networks in online app review system, in Proc. Web Conference 2019 - Companion of the World Wide Web Conference, WWW 2019.
[164]
J. Wang, R. Wen, C. Wu, Y. Huang, and J. Xiong, FdGars: Fraudster detection via graph convolutional networks in online app review system, in Proc. World Wide Web Conf., San Francisco, CA, USA, 2019, pp. 310–316.
[165]
R. Kawase, F. Diana, M. Czeladka, M. Schüler, and M. Faust, Internet fraud: The case of account takeover in online marketplace, in Proc. 30 th ACM Conf. Hypertext and Social Media, Hof, Germany, 2019, pp. 181–190.
[166]

P. Pant, P. Srivastava, and A. Gupta, Provisional research on ensemble learning techniques for card fraud detection, Int. J. Eng. Adv. Technol., vol. 8, no. 6S, pp. 13–17, 2019.

[167]

W. H. Chang and J. S. Chang, A novel two-stage phased modeling framework for early fraud detection in online auctions, Expert Syst. Appl., vol. 38, no. 9, pp. 11244–11260, 2011.

[168]

J. S. Chang and W. H. Chang, Analysis of fraudulent behavior strategies in online auctions for detecting latent fraudsters, Electron. Commer. Res. Appl., vol. 13, no. 2, pp. 79–97, 2014.

[169]
S. S. Bhakta, S. Ghosh, and B. Sadhukhan, Credit card fraud detection using machine learning: A comparative study of ensemble learning algorithms, in Proc. 9th Int. Conf. Smart Computing and Communications (ICSCC), Kochi, India, 2023, pp. 296–301.
[170]

Z. Faraji, A review of machine learning applications for credit card fraud detection with a case study, SEISENSE Journal of Management, vol. 5, no. 1, pp. 49–59, 2022.

[171]

G. Douzas and F. Bacao, Effective data generation for imbalanced learning using conditional generative adversarial networks, Expert Syst. Appl., vol. 91, pp. 464–471, 2018.

[172]
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, SMOTE: Synthetic minority over-sampling technique, J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002.
[173]
V. F. Rodrigues, L. M. Policarpo, D. E. da Silveira, R. da Rosa Righi, C. A. da Costa, J. L. V. Barbosa, R. S. Antunes, R. Scorsatto, and T. Arcot, Fraud detection and prevention in e-commerce: A systematic literature review, Electron. Commer. Res. Appl., vol. 56, p. 101207, 2022.
[174]
C. Ludl, S. McAllister, E. Kirda, and C. Kruegel, On the effectiveness of techniques to detect phishing sites, in Proc. 4 th Int. Conf. Detection of Intrusions and Malware, and Vulnerability Assessment, Lucerne, Switzerland, 2007, pp. 20–39.
[175]

C. E. H. Chua and J. Wareham, Fighting internet auction fraud: An assessment and proposal, Computer, vol. 37, no. 10, pp. 31–37, 2004.

Big Data Mining and Analytics
Pages 419-444
Cite this article:
Mutemi A, Bacao F. E-Commerce Fraud Detection Based on Machine Learning Techniques: Systematic Literature Review. Big Data Mining and Analytics, 2024, 7(2): 419-444. https://doi.org/10.26599/BDMA.2023.9020023

3834

Views

1148

Downloads

6

Crossref

2

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 13 May 2023
Revised: 15 July 2023
Accepted: 22 August 2023
Published: 22 April 2024
© The author(s) 2023.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return