Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The e-commerce industry’s rapid growth, accelerated by the COVID-19 pandemic, has led to an alarming increase in digital fraud and associated losses. To establish a healthy e-commerce ecosystem, robust cyber security and anti-fraud measures are crucial. However, research on fraud detection systems has struggled to keep pace due to limited real-world datasets. Advances in artificial intelligence, Machine Learning (ML), and cloud computing have revitalized research and applications in this domain. While ML and data mining techniques are popular in fraud detection, specific reviews focusing on their application in e-commerce platforms like eBay and Facebook are lacking depth. Existing reviews provide broad overviews but fail to grasp the intricacies of ML algorithms in the e-commerce context. To bridge this gap, our study conducts a systematic literature review using the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) methodology. We aim to explore the effectiveness of these techniques in fraud detection within digital marketplaces and the broader e-commerce landscape. Understanding the current state of the literature and emerging trends is crucial given the rising fraud incidents and associated costs. Through our investigation, we identify research opportunities and provide insights to industry stakeholders on key ML and data mining techniques for combating e-commerce fraud. Our paper examines the research on these techniques as published in the past decade. Employing the PRISMA approach, we conducted a content analysis of 101 publications, identifying research gaps, recent techniques, and highlighting the increasing utilization of artificial neural networks in fraud detection within the industry.
S. Monteith, M. Bauer, M. Alda, J. Geddes, P. C. Whybrow, and T. Glenn, Increasing cybercrime since the pandemic: Concerns for psychiatry, Curr. Psychiatry Rep., vol. 23, no. 4, p. 18, 2021.
S. Kodate, R. Chiba, S. Kimura, and N. Masuda, Detecting problematic transactions in a consumer-to-consumer e-commerce network, Appl. Netw. Sci., vol. 5, no. 1, p. 90, 2020.
E. W. T. Ngai, Y. Hu, Y. H. Wong, Y. Chen, and X. Sun, The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature, Decis. Support Syst., vol. 50, no. 3, pp. 559–569, 2011.
A. Abdallah, M. A. Maarof, and A. Zainal, Fraud detection system: A survey, J. Netw. Comput. Appl., vol. 68, pp. 90–113, 2016.
R. J. Bolton and D. J. Hand, Statistical fraud detection: A review, Statistical Science, vol. 17, no. 3, pp. 235–255, 2002.
L. Akoglu, H. Tong, and D. Koutra, Graph based anomaly detection and description: A survey, Data Min. Knowl. Discov., vol. 29, no. 3, pp. 626–688, 2015,
D. Irani, S. Webb, and C. Pu, Study of static classification of social spam profiles in MySpace, Proc. Int. AAAI Conf. Web Soc. Med., vol. 4, no. 1, pp. 82–89, 2010.
D. Savage, X. Zhang, X. Yu, P. Chou, and Q. Wang, Anomaly detection in online social networks, Soc. Netw., vol. 39, pp. 62–70, 2014.
A. Ali, S. Abd Razak, S. H. Othman, T. A. E. Eisa, A. Al-Dhaqm, M. Nasser, T. Elhassan, H. Elshafie, and A. Saif, Financial fraud detection based on machine learning: A systematic literature review, Appl. Sci., vol. 12, no. 19, p. 9637, 2022.
T. Pourhabibi, K. L. Ong, B. H. Kam, and Y. L. Boo, Fraud detection: A systematic literature review of graph-based anomaly detection approaches, Decis. Support Syst., vol. 133, p. 113303, 2020.
N. Carneiro, G. Figueira, and M. Costa, A data mining based system for credit-card fraud detection in e-tail, Decis. Support Syst., vol. 95, pp. 91–101, 2017.
A. O. Adewumi and A. A. Akinyelu, A survey of machine-learning and nature-inspired based credit card fraud detection techniques, Int. J. Syst. Assur. Eng. Manag., vol. 8, no. S2, pp. 937–953, 2017.
M. Ahmed, A. N. Mahmood, and M. R. Islam, A survey of anomaly detection techniques in financial domain, Future Gener. Comput. Syst., vol. 55, pp. 278–288, 2016.
M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, et al., The PRISMA 2020 statement: An updated guideline for reporting systematic reviews, BMJ, vol. 372, p. n71, 2021.
S. Lei, K. Xu, Y. Huang, and X. Sha, An Xgboost based system for financial fraud detection, E3S Web Conf., vol. 214, p. 02042, 2020.
A. O. Adewumi and A. A. Akinyelu, A survey of machine-learning and nature-inspired based credit card fraud detection techniques, International Journal of System Assurance Engineering and Management, vol. 8, no. 2, pp. 937–953, 2017.
A. Aziz and H. Ghous, Fraudulent transactions detection in credit card by using data mining methods: A review, Int. J. Sci. Prog. Res., vol. 79, no. 1, pp. 31–48, 2021.
K. S. Lim, L. H. Lee, and Y. W. Sim, A review of machine learning algorithms for fraud detection in credit card transaction, Int. J. Comput. Sci. Netw. Secur., vol. 21, no. 9, pp. 31–40, 2021.
L. M. Policarpo, D. E. da Silveira, R. da Rosa Righi, R. A. Stoffel, C. A. da Costa, J. L. V. Barbosa, R. Scorsatto, and T. Arcot, Machine learning through the lens of e-commerce initiatives: An up-to-date systematic literature review, Comput. Sci. Rev., vol. 41, p. 100414, 2021.
H. Paul and A. Nikolaev, Fake review detection on online E-commerce platforms: A systematic literature review, Data Min. Knowl. Discov., vol. 35, no. 5, pp. 1830–1881, 2021.
P. Gamini, S. T. Yerramsetti, G. D. Darapu, V. K. Pentakoti, and P. R. Vegesena, A review on the performance analysis of supervised and unsupervised algorithms in credit card fraud detection, Int. J. Res. Eng. Sci. Manag., vol. 4, no. 8, pp. 23–26, 2021.
E. S. Gualberto, R. T. De Sousa, T. P. De B Vieira, J. P. C. L. Da Costa, and C. G. Duque, From feature engineering and topics models to enhanced prediction rates in phishing detection, IEEE Access, vol. 8, pp. 76368–76385, 2020.
M. E. Falagas, E. I. Pitsouni, G. A. Malietzis, and G. Pappas, Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses, FASEB J., vol. 22, no. 2, pp. 338–342, 2008.
N. J. van Eck and L. Waltman, Software survey: VOSviewer, a computer program for bibliometric mapping, Scientometrics, vol. 84, no. 2, pp. 523–538, 2010.
A. Perianes-Rodriguez, L. Waltman, and N. J. Van Eck, Constructing bibliometric networks: A comparison between full and fractional counting, J. Informetr., vol. 10, no. 4, pp. 1178–1195, 2016.
T. H. Pranto, K. T. A. M. Hasib, T. Rahman, A. B. Haque, A. K. M. N. Islam, and R. M. Rahman, Blockchain and machine learning for fraud detection: A privacy-preserving and adaptive incentive based approach, IEEE Access, vol. 10, pp. 87115–87134, 2022.
Y. Y. Festa and I. A. Vorobyev, A hybrid machine learning framework for e-commerce fraud detection, Model Assist. Stat. Appl., vol. 17, no. 1, pp. 41–49, 2022.
E. Ileberi, Y. Sun, and Z. Wang, A machine learning based credit card fraud detection using the GA algorithm for feature selection, J. Big Data, vol. 9, no. 1, p. 24, 2022.
M. H. Nasr, M. H. Farrag, and M. M. Nasr, A proposed fraud detection model based on e-Payments attributes a case study in Egyptian e-Payment gateway, Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 5, pp. 179–186, 2022.
D. H. Lim and H. Ahn, A study on fraud detection in the C2C used trade market using Doc2vec, J. Korea Soc. Comput. Inform., vol. 27, no. 3, pp. 173–182, 2022.
J. Mathew, C. K. Pang, M. Luo, and W. H. Leong, Classification of imbalanced data by oversampling in kernel space of support vector machines, IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 9, pp. 4065–4076, 2018.
G. Sasikala, M. Laavanya, B. Sathyasri, C. Supraja, V. Mahalakshmi, S. S. S. Mole, J. Mulerikkal, S. Chidambaranathan, C. Arvind, K. Srihari, et al., An innovative sensing machine learning technique to detect credit card frauds in wireless communications, Wirel. Commun. Mob. Comput., vol. 2022, p. 2439205, 2022.
P. Verma and P. Tyagi, Analysis of supervised machine learning algorithms in the context of fraud detection, ECS Trans., vol. 107, no. 1, pp. 7189–7200, 2022.
A. Baishya and S. Kakoty, A review on web content filtering, its technique and prospects, Int. J. Comput. Sci. Trends Technol., vol. 7, no. 3, pp. 37–40, 2019.
E. Ileberi, Y. Sun, and Z. Wang, Performance evaluation of machine learning methods for credit card fraud detection using SMOTE and AdaBoost, IEEE Access, vol. 9, pp. 165286–165294, 2021.
K. Kim, Y. Choi, and J. Park, Pricing fraud detection in online shopping malls using a finite mixture model, Electron. Commer. Res. Appl., vol. 12, no. 3, pp. 195–207, 2013.
A. Zamir, H. U. Khan, T. Iqbal, N. Yousaf, F. Aslam, A. Anjum, and M. Hamdani, Phishing web site detection using diverse machine learning algorithms, Electronic Library, vol. 38, no. 1, pp. 65–80, 2020.
S. Carta, G. Fenu, D. R. Recupero, and R. Saia, Fraud detection for E-commerce transactions by employing a prudential multiple consensus model, J. Inform. Secur. Appl., vol. 46, pp. 13–22, 2019.
A. Abbasi, Z. Zhang, D. Zimbra, H. Chen, and J. F. N. Jr, Detecting fake websites: The contribution of statistical learning theory, MIS Quart., vol. 34, no. 3, pp. 435–461, 2010.
Q. Sun, T. Tang, H. Chai, J. Wu, and Y. Chen, Boosting fraud detection in mobile payment with prior knowledge, Appl. Sci., vol. 11, no. 10, p. 4347, 2021.
S. Khan, A. Alourani, B. Mishra, A. Ali, and M. Kamal, Developing a credit card fraud detection model using machine learning approaches, Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 3, pp. 411–418, 2022.
K. N. Mishra and S. C. Pandey, Fraud prediction in smart societies using logistic regression and K-fold machine learning techniques, Wirel. Pers. Commun., vol. 119, no. 2, pp. 1341–1367, 2021.
S. Patil, V. Nemade, and P. K. Soni, Predictive modelling for credit card fraud detection using data analytics, Procedia Comput. Sci., vol. 132, pp. 385–395, 2018.
G. K. Nune and P. V. Sena, Novel artificial neural networks and logistic approach for detecting credit card deceit, Int. J. Comput. Sci. Netw. Secur., vol. 15, no. 9, pp. 21–27, 2015.
H. Zhou, G. Sun, S. Fu, W. Jiang, and J. Xue, A scalable approach for fraud detection in online e-commerce transactions with big data analytics, Computers, Materials and Continua, vol. 60, no. 1, pp. 179–192, 2019.
H. Zhou, G. Sun, S. Fu, W. Jiang, and J. Xue, A scalable approach for fraud detection in online e-commerce transactions with big data analytics, Comput. Mater. Contin., vol. 60, no. 1, pp. 179–192, 2019.
A. Barahim, A. Alhajri, N. Alasaibia, N. Altamimi, N. Aslam, and I. U. Khan, Enhancing the credit card fraud detection through ensemble techniques, J. Comput. Theor. Nanosci., vol. 16, no. 11, pp. 4461–4468, 2019.
A. S. Saputra and S. Suharjito, Fraud detection using machine learning in e-commerce, Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 9, pp. 332–339, 2019.
S. K. Kalhotra, S. V. Dongare, A. Kasthuri, and D. Kaur, Data mining and machine learning techniques for credit card fraud detection, ECS Trans., vol. 107, no. 1, pp. 4977–4985, 2022.
K. Shin, T. Ishikawa, Y. L. Liu, and D. L. Shepard, Learning DOM trees of web pages by subpath kernel and detecting fake e-commerce sites, Mach. Learn. Knowl. Extr., vol. 3, no. 1, pp. 95–122, 2021.
Y. Dong, Z. Jiang, A. Mamoun, and P. M. Kumar, Real-time fraud detection in e-market using machine learning algorithms, J. Mult.-Valued Log. Soft Comput., vol. 36, nos. 1−3, pp. 191–209, 2021.
A. Mitra and M. Siddhant, Credit card fraud detection using autoencoders, YMER, vol. 21, no. 6, pp. 337–342, 2022.
H. Huang, B. Liu, X. Xue, J. Cao, and X. Chen, Imbalanced credit card fraud detection data: A solution based on hybrid neural network and clustering-based undersampling technique, Applied Soft Computing, vol. 154, p. 111368, 2024.
J. Forough and S. Momtazi, Ensemble of deep sequential models for credit card fraud detection, Appl. Soft Comput., vol. 99, p. 106883, 2021.
J. Wang and C. Wu, Camouflage is NOT easy: Uncovering adversarial fraudsters in large online app review platform, Measurement and Control, vol. 53, nos. 9&10, pp. 2137–2145, 2020.
B. J. Ford, H. Xu, and I. Valova, A real-time self-adaptive classifier for identifying suspicious bidders in online auctions, Comput. J., vol. 56, no. 5, pp. 646–663, 2013.
S. Alqethami, B. Almutanni, and M. Alghamdi, Fraud detection in E-commerce, Int. J. Comput. Sci. Netw. Secur., vol. 21, no. 6, pp. 200–206, 2021.
V. H. Khang, C. T. Anh, N. D. Thuan, and H. C. M. City, Detecting fraud transaction using ripper algorithm combines with ensemble learning model, International Journal of Advanced Computer Science and Applications, vol. 14, no. 4, p. 2023, 2023.
Z. Li, M. Huang, G. Liu, and C. Jiang, A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection, Expert Systems with Applications, vol. 175, pp. 114750, 2021.
V. H. Khang, C. T. Anh, and N. D. Thuan, Detecting fraud transaction using ripper algorithm combines with ensemble learning model, Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 4, pp. 336–345, 2023.
L. Zheng, G. Liu, C. Yan, C. Jiang, M. Zhou, and M. Li, Improved TrAdaBoost and its application to transaction fraud detection, IEEE Trans. Comput. Soc. Syst., vol. 7, no. 5, pp. 1304–1316, 2020.
Y. J. Lee, Y. R. Yeh, and Y. C. F. Wang, Anomaly detection via online oversampling principal component analysis, IEEE Trans. Knowl. Data Eng., vol. 25, no. 7, pp. 1460–1470, 2013.
G. A. Montazer and S. ArabYarmohammadi, Detection of phishing attacks in Iranian e-banking using a fuzzy-rough hybrid system, Appl. Soft Comput., vol. 35, pp. 482–492, 2015.
D. Trisanto, N. Rismawati, M. F. Mulya, and F. I. Kurniadi, Effectiveness undersampling method and feature reduction in credit card fraud detection, Int. J. Intell. Eng. Syst., vol. 13, no. 2, pp. 173–181, 2020.
S. Subbulakshmi and D. J. Evanjaline, An efficient analytics in credit card fraud detection using resolution classification (Rc) technique, Int. J. Sci. Technol. Res., vol. 9, no. 2, pp. 3284–3289, 2020.
H. Chi, Y. Lu, B. Liao, L. Xu, and Y. Liu, An optimized quantitative argumentation debate model for fraud detection in E-commerce transactions, IEEE Intell. Syst., vol. 36, no. 2, pp. 52–63, 2021.
K. N. Mishra, V. P. Mishra, S. Saket, and S. P. Mishra, Hybrid approach for deception tracing in smart cities using LR and n-fold intelligent machine learning techniques, Int. J. Manag. Pract., vol. 15, no. 4, pp. 460–487, 2022.
B. Lebichot, T. Verhelst, Y. A. Le Borgne, L. He-Guelton, F. Oble, and G. Bontempi, Transfer learning strategies for credit card fraud detection, IEEE Access, vol. 9, pp. 114754–114766, 2021.
K. Huang, An optimized LightGBM model for fraud detection, J. Phys.: Conf. Ser., vol. 1651, no. 1, p. 012111, 2020.
Y. Lucas, P. E. Portier, L. Laporte, L. He-Guelton, O. Caelen, M. Granitzer, and S. Calabretto, Towards automated feature engineering for credit card fraud detection using multi-perspective HMMs, Future Gener. Comput. Syst., vol. 102, pp. 393–402, 2020.
Y. Fang, Y. Zhang, and C. Huang, Credit card fraud detection based on machine learning, Comput. Mater. Contin., vol. 61, no. 1, pp. 185–195, 2019.
R. Abiramy, K. Narayanan, R. Anandan, and C. S. Paul, Fraud detection for online retail using random forest, Int. J. Eng. Adv. Technol., vol. 8, no. 3S, pp. 1–6, 2019.
J. Lee, Y. C. Lee, and J. T. Kim, Fault detection based on one-class deep learning for manufacturing applications limited to an imbalanced database, J. Manuf. Syst., vol. 57, pp. 357–366, 2020.
V. N. Dornadula and S. Geetha, Credit card fraud detection using machine learning algorithms, Procedia Comput. Sci., vol. 165, pp. 631–641, 2019.
S. K. Hashemi, S. L. Mirtaheri, and S. Greco, Fraud detection in banking data by machine learning techniques, IEEE Access, vol. 11, pp. 3034–3043, 2023.
U. L. Chilaka, G. A. Chukwudebe, and A. Bashiru, A review of credit card fraud detection techniques in electronic finance and banking, Iconic Research and Engineering Journals, vol. 3, no. 2, pp. 456–467, 2019.
J. Liu, X. Gu, and C. Shang, Quantitative detection of financial fraud based on deep learning with combination of E-commerce big data, Complexity, vol. 2020, p. 6685888, 2020.
M. K. Khormuji, M. Bazrafkan, M. Sharifian, S. J. Mirabedini, and A. Harounabadi, Credit card fraud detection with a cascade artificial neural network and imperialist competitive algorithm, International Journal of Computer Applications, vol. 96, no. 25, pp. 1–9, 2014.
L. Zhou, J. Dang, and Z. Zhang, Research on fault diagnosis for on-board equipment of train control system based on imbalanced text classification, J. Appl. Sci. Eng., vol. 24, no. 2, pp. 167–175, 2021.
P. Pant, P. Srivastava, and A. Gupta, Provisional research on ensemble learning techniques for card fraud detection, Int. J. Eng. Adv. Technol., vol. 8, no. 6S, pp. 13–17, 2019.
W. H. Chang and J. S. Chang, A novel two-stage phased modeling framework for early fraud detection in online auctions, Expert Syst. Appl., vol. 38, no. 9, pp. 11244–11260, 2011.
J. S. Chang and W. H. Chang, Analysis of fraudulent behavior strategies in online auctions for detecting latent fraudsters, Electron. Commer. Res. Appl., vol. 13, no. 2, pp. 79–97, 2014.
Z. Faraji, A review of machine learning applications for credit card fraud detection with a case study, SEISENSE Journal of Management, vol. 5, no. 1, pp. 49–59, 2022.
G. Douzas and F. Bacao, Effective data generation for imbalanced learning using conditional generative adversarial networks, Expert Syst. Appl., vol. 91, pp. 464–471, 2018.
C. E. H. Chua and J. Wareham, Fighting internet auction fraud: An assessment and proposal, Computer, vol. 37, no. 10, pp. 31–37, 2004.
3834
Views
1148
Downloads
6
Crossref
2
Web of Science
5
Scopus
0
CSCD
Altmetrics
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).