AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Sampling with Prior Knowledge for High-dimensional Gravitational Wave Data Analysis

CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190, China
Department of Astronomy, Beijing Normal University, Beijing 100875, China
Department of Networked Intelligence, Peng Cheng Laboratory, Shenzhen 518055, China
Show Author Information

Abstract

Extracting knowledge from high-dimensional data has been notoriously difficult, primarily due to the so-called "curse of dimensionality" and the complex joint distributions of these dimensions. This is a particularly profound issue for high-dimensional gravitational wave data analysis where one requires to conduct Bayesian inference and estimate joint posterior distributions. In this study, we incorporate prior physical knowledge by sampling from desired interim distributions to develop the training dataset. Accordingly, the more relevant regions of the high-dimensional feature space are covered by additional data points, such that the model can learn the subtle but important details. We adapt the normalizing flow method to be more expressive and trainable, such that the information can be effectively extracted and represented by the transformation between the prior and target distributions. Once trained, our model only takes approximately 1 s on one V100 GPU to generate thousands of samples for probabilistic inference purposes. The evaluation of our approach confirms the efficacy and efficiency of gravitational wave data inferences and points to a promising direction for similar research. The source code, specifications, and detailed procedures are publicly accessible on GitHub.

References

[1]
P. Indyk and R. Motwani, Approximate nearest neighbors: Towards removing the curse of dimensionality, in Proc. 30th Annu. ACM Symp. Theory of Computing, Dallas, TX, USA, 1998, pp. 604-613.
[2]
S. Wold, K. Esbensen, and P. Geladi, Principal component analysis, Chemometr. Intell. Lab. Syst., vol. 2, nos. 1-3, pp. 37-52, 1987.
[3]
A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin, Bayesian Data Analysis. 3rd ed. Boca Raton, FL, USA: CRC Press, 2013.
[4]
M. Dax, S. R. Green, J. Gair, J. H. Macke, A. Buonanno, and B. Schölkopf, Real-time gravitational-wave science with neural posterior estimation, arXiv preprint arXiv: 2106.12594, 2021.
[5]
J. Alsing and W. Handley, Nested sampling with any prior you like, Mon. Not. Roy. Astron. Soc.: Lett., vol. 505, no. 1, pp. L95-L99, 2021.
[6]
J. Hammersley, Monte Carlo Methods. Dordrecht, the Netherlands: Springer, 1964.
[7]
H. Gabbard, C. Messenger, I. S. Heng, F. Tonolini, and R. Murray-Smith, Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy, arXiv preprint arXiv: 1909.06296, 2020.
[8]
S. R. Green, C. Simpson, and J. Gair, Gravitational-wave parameter estimation with autoregressive neural network flows, Phys. Rev. D, vol. 102, no. 10, p. 104057, 2020.
[9]
A. Delaunoy, A. Wehenkel, T. Hinderer, S. Nissanke, C. Weniger, A. R. Williamson, and G. Louppe, Lightning-fast gravitational wave parameter inference through neural amortization, arXiv preprint arXiv: 2010.12931, 2020.
[10]
S. R. Green and J. Gair, Complete parameter inference for GW150914 using deep learning, Mach. Learn.: Sci. Technol., vol. 2, no. 3, p. 03LT01, 2021.
[11]
J. Veitch, V. Raymond, B. Farr, W. Farr, P. Graff, S. Vitale, B. Aylott, K. Blackburn, N. Christensen, M. Coughlin, et al., Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library, Phys. Rev. D, vol. 91, no. 4, p. 042003, 2015.
[12]
G. E. Batista, A. L. C. Bazzan, and M. C. Monard, Balancing training data for automated annotation of keywords: A case study, in Proc. of II Brazilian Workshop on Bioinformatics, Macaé, Brazil, 2003, pp. 10-18.
[13]
G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, A study of the behavior of several methods for balancing machine learning training data, ACM SIGKDD Explor. Newsl., vol. 6, no. 1, pp. 20-29, 2004.
[14]
G. Lemaître, F. Nogueira, and C. K. Aridas, Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning, J. Mach. Learn. Res., vol. 18, no. 1, pp. 559-563, 2017.
[15]
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, SMOTE: Synthetic minority over-sampling technique, J. Artif. Intell. Res., vol. 16, pp. 321-357, 2002.
[16]
I. Tomek, Two modifications of CNN, IEEE Trans. Syst. Man Cybern., vol. SMC-6, no. 11, pp. 769-772, 1976.
[17]
B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, V. B. Adya, C. Affeldt, M. Agathos, et al., A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals, Class. Quantum Grav., vol. 37, no. 5, p. 055002, 2020.
[18]
W. H. A. Schilders, H. A. Van der Vorst, and J. Rommes, Model Order Reduction: Theory, Research Aspects and Applications. Berlin, Germany: Springer, 2008.
[19]
P. Canizares, S. E. Field, J. R. Gair, and M. Tiglio, Gravitational wave parameter estimation with compressed likelihood evaluations, Phys. Rev. D, vol. 87, no. 12, p. 124005, 2013.
[20]
R. Smith, S. E. Field, K. Blackburn, C. J. Haster, M. Pürrer, V. Raymond, and P. Schmidt, Fast and accurate inference on gravitational waves from precessing compact binaries, Phys. Rev. D, vol. 94, no. 4, p. 044031, 2016.
[21]
I. Kobyzev, S. J. D. Prince, and M. A. Brubaker, Normalizing flows: An introduction and review of current methods, IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 11, pp. 3964-3979, 2021.
[22]
G. Papamakarios, T. Pavlakou, and I. Murray, Masked autoregressive flow for density estimation, arXiv preprint arXiv: 1705.07057, 2018.
[23]
C. W. Huang, D. Krueger, A. Lacoste, and A. Courville, Neural autoregressive flows, in Proc. 35th Int. Conf. Machine Learning, Stockholm, Sweden, 2018, pp. 2078-2087.
[24]
L. Dinh, J. Sohl-Dickstein, and S. Bengio, Density estimation using real NVP, arXiv preprint arXiv: 1605.08803, 2017.
[25]
D. P. Kingma and P. Dhariwal, Glow: Generative flow with invertible 1×1 convolutions, arXiv preprint arXiv: 1807.03039, 2018.
[26]
C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, Neural spline flows, in Proc. of the 33rd Conf. Neural Information Processing Systems, Vancouver, Canada, 2019, pp. 7511-7522.
[27]
L. Dinh, D. Krueger, and Y. Bengio, Nice: Non-linear independent components estimation, arXiv preprint arXiv: 1410.8516, 2015.
[28]
T. Müller, B. McWilliams, F. Rousselle, M. Gross, and J. Novák, Neural importance sampling, ACM Trans. Graph., vol. 38, no. 5, p. 145, 2019.
[29]
C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, Cubic-spline flows, arXiv preprint arXiv: 1906.02145, 2019.
[30]
K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, Identity mappings in deep residual networks, in Proc. 14th European Conf. Computer Vision, Amsterdam, the Netherlands, 2016, pp. 630-645.
[31]
B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, et al., GW150914: The advanced LIGO detectors in the era of first discoveries, Phys. Rev. Lett., vol. 116, no. 13, p. 131103, 2016.
[32]
B. Farr, E. Ochsner, W. M. Farr, and R. O’shaughnessy, A more effective coordinate system for parameter estimation of precessing compact binaries from gravitational waves, Phys. Rev. D, vol. 90, no. 2, p. 024018, 2014.
[33]
B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, et al., GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X, vol. 9, no. 3, p. 031040, 2019.
[34]
I. M. Romero-Shaw, C. Talbot, S. Biscoveanu, V. D’emilio, G. Ashton, C. P. L. Berry, S. Coughlin, S. Galaudage, C. Hoy, M. Hübner, et al., Bayesian inference for compact binary coalescences with BILBY: Validation and application to the first LIGO-Virgo gravitational-wave transient catalogue, Mon. Not. Roy. Astron. Soc., vol. 499, no. 3, pp. 3295-3319, 2020.
[35]
G. Ashton, M. Hübner, P. D. Lasky, C. Talbot, K. Ackley, S. Biscoveanu, Q. Chu, A. Divakarla, P. J. Easter, B. Goncharov, et al., BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy, Astrophys. J. Suppl. Ser., vol. 241, no. 2, p. 27, 2019.
[36]
M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F. Ohme, G. Pratten, and M. Pürrer, Simple model of complete precessing black-hole-binary gravitational waveforms, Phys. Rev. Lett., vol. 113, no. 15, p. 151101, 2014.
[37]
S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. J. Forteza, and A. Bohé, Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era, Phys. Rev. D, vol. 93, no. 4, p. 044007, 2016.
[38]
A. Bohé, M. Hannam, S. Husa, F. Ohme, M. Pürrer, and P. Schmidt, PhenomPv2-technical notes for the LAL implementation, LIGO Technical Document, LIGO-T1500602-v4, 2016.
[39]
D. Shoemaker, Advanced LIGO anticipated sensitivity curves OBSOLETE, LIGO Document T0900288-v3, https://dcc.ligo.org/LIGO-T0900288/public, 2010.
[40]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. M. Lin, N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance deep learning library, in Proc. 33rd Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2019, pp. 8026-8037.
[41]
C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, nflows: Normalizing flows in PyTorch (v0.14), https://doi.org/10.5281/zenodo.4296287, 2020.
[42]
S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in Proc. 32nd Int. Conf. Machine Learning, Lille, France, 2015, pp. 448-456.
[43]
D. A. Clevert, T. Unterthiner, and S. Hochreiter, Fast and accurate deep network learning by exponential linear units (ELUs), arXiv preprint arXiv: 1511.07289, 2016.
[44]
I. Loshchilov and F. Hutter, SGDR: Stochastic gradient descent with warm restarts, arXiv preprint arXiv: 1608.03983, 2017.
[45]
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv: 1412.6980, 2015.
[46]
J. Lin, Divergence measures based on the Shannon entropy, IEEE Trans. Inform. Theory, vol. 37, no. 1, pp. 145-151, 1991.
[47]
S. Brooks, A. Gelman, G. Jones, and X. L. Meng, Handbook of Markov Chain Monte Carlo. Boca Raton, FL, USA: CRC Press, 2011.
[48]
J. Skilling, Nested sampling for general Bayesian computation, Bayesian Anal., vol. 1, no. 4, pp. 833-859, 2006.
[49]
J. Buchner, Nested sampling methods, arXiv preprint arXiv: 2101.09675, 2021.
[50]
B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, et al., GW170608: Observation of a 19 solar-mass binary black hole coalescence, Astrophys. J. Lett., vol. 851, no. 2, p. L35, 2017.
[51]
D. Foreman-Mackey, corner.py: Scatterplot matrices in Python, J. Open Source Softw., vol. 1, no. 2, p. 24, 2016.
[52]
S. Van Der Walt, S. C. Colbert, and G. Varoquaux, The NumPy array: A structure for efficient numerical computation, Comput. Sci. Eng., vol. 13, no. 2, pp. 22-30, 2011.
[53]
P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al., SciPy 1.0: Fundamental algorithms for scientific computing in Python, Nat. Methods, vol. 17, no. 3, pp. 261-272, 2020.
[54]
W. McKinney, pandas: A foundational Python library for data analysis and statistics, Python for High Performance and Scientific Computing, vol. 14, no. 9, pp. 1-9, 2011.
[55]
J. S. Speagle, dynesty: A dynamic nested sampling package for estimating Bayesian posteriors and evidences, Mon. Not. Roy. Astron. Soc., vol. 493, no. 3, pp. 3132-3158, 2020.
[56]
J. D. Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Eng., vol. 9, no. 3, pp. 90-95, 2007.
[57]
J. D. Garrett and H. H. Peng, garrettj403/SciencePlots, http://doi.org/10.5281/zenodo.4106649, 2021.
Big Data Mining and Analytics
Pages 53-63
Cite this article:
Wang H, Cao Z, Zhou Y, et al. Sampling with Prior Knowledge for High-dimensional Gravitational Wave Data Analysis. Big Data Mining and Analytics, 2022, 5(1): 53-63. https://doi.org/10.26599/BDMA.2021.9020018

1282

Views

748

Downloads

6

Crossref

7

Web of Science

7

Scopus

1

CSCD

Altmetrics

Received: 22 July 2021
Revised: 13 October 2021
Accepted: 14 October 2021
Published: 27 December 2021
© The author(s) 2022.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return