[1]
X. P. Wu, C. Zhan, Y. K. Lai, M. M. Cheng, and J. F. Yang, IP102: A large-scale benchmark dataset for insect pest recognition, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019, pp. 8779-8788.
[2]
L. M. Deng, Y. J. Wang, Z. Z. Han, and R. S. Yu, Research on insect pest image detection and recognition based on bio-inspired methods, Biosystems Engineering, vol. 169, pp. 139-148, 2018.
[3]
K. Dimililer and S. Zarrouk, ICSPI: Intelligent classification system of pest insects based on image processing and neural arbitration, Applied Engineering in Agriculture, vol. 33, no. 4, pp. 453-460, 2017.
[4]
F. J. Ren, W. J. Liu, and G. Q. Wu, Feature reuse residual networks for insect pest recognition, IEEE Access, vol. 7, pp. 122 758-122 768, 2019.
[5]
A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Communications of the ACM, vol. 60, no. 6, pp. 84-90, 2017.
[6]
K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, Deep residual learning for image recognition, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 770-778.
[7]
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, Densely connected convolutional networks, in Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 2261-2269.
[8]
Z. Q. Shen, Z. Liu, J. G. Li, Y. G. Jiang, Y. R. Chen, and X. Y. Xue, DSOD: Learning deeply supervised object detectors from scratch, in Proc. 2017 IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 1937-1945.
[9]
S. Zagoruyko and N. Komodakis, Wide residual networks, arXiv preprint arXiv:1605.07146, 2016.
[10]
D. Feng and F. J. Ren, Dynamic facial expression recognition based on two-stream-CNN with LBP-TOP, presented at 2018 5th IEEE Int. Conf. Cloud Computing and Intelligence Systems (CCIS), Nanjing, China, 2018, pp. 355-359.
[11]
F. J. Ren and J. W. Deng, Background knowledge based multi-stream neural network for text classification, Applied Sciences, vol. 8, no. 12, p. 2472, 2018.
[12]
Y. Kim, Convolutional neural networks for sentence classification, arXiv preprint arXiv:1408.5882, 2014.
[13]
R. Y. Zhang, F. R. Meng, Y. Zhou, and B. Liu, Relation classification via recurrent neural network with attention and tensor layers, Big Data Mining and Analytics, vol. 1, no. 3, pp. 234-244, 2018.
[14]
F. J. Ren, Y. D. Dong, and W. Wang, Emotion recognition based on physiological signals using brain asymmetry index and echo state network, Neural Computing and Applications, vol. 31, no. 9, pp. 4491-4501, 2019.
[15]
X. Kang, F. J. Ren, and Y. N. Wu, Exploring latent semantic information for textual emotion recognition in blog articles, IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 1, pp. 204-216, 2018.
[16]
M. Bouazizi and T. Ohtsuki, Multi-class sentiment analysis on twitter: Classification performance and challenges, Big Data Mining and Analytics, vol. 2, no. 3, pp. 181-194, 2019.
[17]
S. Bell, C. L. Zitnick, K. Bala, and R. Girshick, Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 2874-2883.
[18]
S. Milz, G. Arbeiter, C. Witt, B. Abdallah, and S. Yogamani, Visual SLAM for automated driving: Exploring the applications of deep learning, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 2018, pp. 360-370.
[19]
X. H. Cao, T. H. Li, H. L. Li, S. R. Xia, F. J. Ren, Y. Sun, and X. Y. Xu, A robust parameter-free thresholding method for image segmentation, IEEE Access, vol. 7, pp. 3448-3458, 2018.
[20]
N. N. Ma, X. Y. Zhang, H. T. Zheng, and J. Sun, ShuffleNet v2: Practical guidelines for efficient CNN architecture design, in Proc. European Conf. Computer Vision (ECCV), Munich, Germany, 2018, pp. 122-138.
[21]
K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, Identity mappings in deep residual networks, presented at European Conf. Computer Vision, Amsterdam, The Netherlands, 2016, pp. 630-645.
[22]
P. C. Ng and S. Henikoff, SIFT: Predicting amino acid changes that affect protein function, Nucleic Acids Research, vol. 31, no. 13, pp. 3812-3814, 2003.
[23]
N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, presented at 2005 IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 2005, pp. 886-893.
[24]
R. K. Samanta and I. Ghosh, Tea insect pests classification based on artificial neural networks, International Journal of Computer Engineering Science (IJCES), vol. 2, no. 6, pp. 1-13, 2012.
[25]
M. Manoja and J. Rajalakshmi, Early detection of pest on leaves using support vector machine, International Journal of Electrical and Electronics Research, vol. 2, no. 4, pp. 187-194, 2014.
[26]
C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 1-9.
[27]
R. Li, R. J. Wang, J. Zhang, C. J. Xie, L. Liu, F. Y. Wang, H. B. Chen, T. J. Chen, H. Y. Hu, X. F. Jia, et al., An effective data augmentation strategy for CNN-based pest localization and recognition in the field, IEEE Access, vol. 7, pp. 160 274-160 283, 2019.
[28]
K. Dimililer and S. Zarrouk, ICSPI: Intelligent classification system of pest insects based on image processing and neural arbitration, Applied Engineering in Agriculture, vol. 33, no. 4, pp. 453-460, 2017.
[29]
F. L. Shen, R. Gan, and G. Zeng, Weighted residuals for very deep networks, presented at 2016 3rd Int. Conf. Systems and Informatics (ICSAI), Shanghai, China, 2016, pp. 936-941.
[30]
G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, Deep networks with stochastic depth, presented at European Conf. Computer Vision, Amsterdam, The Netherlands, 2016, pp. 646-661.
[31]
D. Han, J. Kim, and J. Kim, Deep pyramidal residual networks, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 6307-6315.
[32]
K. Zhang, M. Sun, T. X. Han, X. F. Yuan, L. R. Guo, and T. Liu, Residual networks of residual networks: Multilevel residual networks, IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 6, pp. 1303-1314, 2018.
[33]
G. Huang, S. C. Liu, L. Van der Maaten, and K. Q. Weinberger, CondenseNet: An efficient densenet using learned group convolutions, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 2752-2761.
[34]
K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification, in Proc. 2015 IEEE Int. Conf. Computer Vision, Santiago, Chile, 2015, pp. 1026-1034.
[35]
H. Y. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, Mixup: Beyond empirical risk minimization, arXiv preprint arXiv:1710.09412, 2017.
[36]
A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Communications of the ACM, vol. 60, no. 6, pp. 84-90, 2017.
[37]
K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, 2014.