References(32)
[1]
A. K. Singh, A. Singh, A. Shaikh, R. Singh, and A. Misra, Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries, Diabetes Metab. Syndr. Clin. Res. Rev., vol. 14, no. 3, pp. 241-246, 2020.
[2]
J. Y. Yang, A. Roy, and Y. Zhang, Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment, Bioinformatics, vol. 29, no. 20, pp. 2588-2595, 2013.
[3]
Y. F. Cui, Q. W. Dong, D. C. Hong, and X. Wang, Predicting protein-ligand binding residues with deep convolutional neural networks, BMC Bioinformatics, vol. 20, no. 1, p. 93, 2019.
[4]
S. Wang, S. Q. Sun, Z. Li, R. Y. Zhang, and J. B. Xu, Accurate de novo prediction of protein contact map by ultra-deep learning model, PLoS Comput. Biol., vol. 13, no. 1, p. e1005324, 2017.
[5]
J. Y. Yang, A. Ro, and Y. Zhang, BioLiP: A semi-manually curated database for biologically relevant ligand-protein interactions, Nucl. Acids Res., vol. 41, no. D1, pp. D1096-D1103, 2012.
[6]
D. Mothay and K. V. Ramesh, Binding site analysis of potential protease inhibitors of COVID-19 using AutoDock, VirusDis., vol. 31, no. 2, pp. 194-199, 2020.
[7]
L. Huang, R. Han, T. Ai, P. X. Yu, H. Kang, Q. Tao, and L. M. Xia, Serial quantitative chest CT assessment of COVID-19: Deep-learning approach, Radiol. Cardiothorac. Imaging, vol. 2, no. 2, p. e200075, 2020.
[8]
L. Li, L. X. Qin, Z. G. Xu, Y. B. Yin, X. Wang, B. Kong, J. J Bai, Y. Lu, Z. H. Fang, Q. Song, et al., Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT, , 2020.
[9]
I. D. Apostolopoulos and T. A. Mpesiana, Covid-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks, Phys. Eng. Sci. Med., vol. 431, pp. 635-640, 2020.
[10]
C. Butt, J. Gill, D. Chun, and B. A. Babu, Deep learning system to screen coronavirus disease 2019 pneumonia, Appl. Intell., .
[11]
C. S. Zheng, X. B. Deng, Q. Fu, Q. Zhou, J. P. Feng, H. Ma, W. Y. Liu, and X. G. Wang, Deep learning-based detection for COVID-19 from chest CT using weak label, , 2020.
[12]
D. S. Li, D. W. Wang, J. P. Dong, N. N. Wang, H. Huang, H. W. Xu, and C. Xia, False-negative results of real-time reverse-transcriptase polymerase chain reaction for severe acute respiratory syndrome coronavirus 2: Role of deep-learning-based CT diagnosis and insights from two cases, Korean J. Radiol., vol. 21, no. 4, pp. 505-508, 2020.
[13]
H. P. Zhang, K. M. Saravanan, Y. Yang, M. T. Hossain, J. X. Li, X. H. Ren, Y. Pan, and Y. J. Wei, Deep learning based drug screening for novel coronavirus 2019-nCov, Interdiscip. Sci. Comput. Life Sci., .
[14]
M. Torrisi, G. Pollastri, and Q. Le, Deep learning methods in protein structure prediction, Comput. Structural Biotechnol. J., vol. 18, pp. 1301-1310, 2020.
[15]
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Nature, vol. 323, no. 6088, pp. 533-536, 1986.
[16]
A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. L. Qin, A. Žídek, A. W. R. Nelson, A. Bridgland, et al., Improved protein structure prediction using potentials from deep learning, Nature, vol. 577, no. 7792, pp. 706-710, 2020.
[17]
J. L. Elman, Finding structure in time, Cogn. Sci., vol. 14, no. 2, pp. 179-211, 1990.
[18]
S. Wang, J. Peng, J. Z. Ma, and J. B. Xu, Protein secondary structure prediction using deep convolutional neural fields, Sci. Rep., vol. 6, no. 1, p. 18 962, 2016.
[19]
Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol. 521, no. 7553, pp. 436-444, 2015.
[20]
H. J. Hinz, Thermodynamics of protein-ligand interactions: Calorimetric approaches, Annu. Rev. Biophys. Bioeng., vol. 12, no. 1, pp. 285-317, 1983.
[21]
T. Simonson, G. Archontis, and M. Karplus, Free energy simulations come of age: Protein-ligand recognition, Acc. Chem. Res., vol. 35, no. 6, pp. 430-437, 2002.
[22]
R. Perozzo, G. Folkers, and L. Scapozza, Thermodynamics of protein-ligand interactions: History, presence, and future aspects, J. Recept. Signal Transduct. Res., vol. 24, nos. 1&2, pp. 1-52, 2004.
[23]
M. Hendlich, A. Bergner, J. Günther, and G. Klebe, Relibase: Design and development of a database for comprehensive analysis of protein-ligand interactions, J. Mol. Biol., vol. 326, no. 2, pp. 607-620, 2003.
[24]
L. Y. Lian, I. L. Barsukov, M. J. Sutcliffe, K. H. Sze, and G. C. Roberts, Protein-ligand interactions: Exchange processes and determination of ligand conformation and protein-ligand contacts, Meth. Enzymol., vol. 239, pp. 657-700, 1994.
[25]
G. Mirceva and A. Kulakov, Improvement of protein binding sites prediction by selecting amino acid residues’ features, J. Struct. Biol., vol. 189, no. 1, pp. 9-19, 2015.
[26]
C. H. Yan and Y. F. Wang, A graph kernel method for DNA-binding site prediction, BMC Syst. Biol., vol. 8, no. S4, p. S10, 2014.
[27]
S. C. Izidoro, R. C. de Melo-Minardi, and G. L. Pappa, GASS: Identifying enzyme active sites with genetic algorithms, Bioinformatics, vol. 31, no. 6, pp. 864-870, 2015.
[28]
B. Park, J. Im, N. Tuvshinjargal, W. Lee, and K. Han, Sequence-based prediction of protein-binding sites in DNA: Comparative study of two SVM models, Comp. Methods Programs Biomed., vol. 117, no. 2, pp. 158-167, 2014.
[29]
G. J. Bartlett, C. T. Porter, N. Borkakoti, and J. M. Thornton, Analysis of catalytic residues in enzyme active sites, J. Mol. Biol., vol. 324, no. 1, pp. 105-121, 2002.
[30]
M. J. J. M. Zvelebil and M. J. E. Sternberg, Analysis and prediction of the location of catalytic residues in enzymes, Protein Eng. Des. Sel., vol. 2, no. 2, pp. 127-138, 1988.
[31]
C. Taroni, S. Jones, and J. M. Thornton, Analysis and prediction of carbohydrate binding sites, Protein Eng. Des. Sel., vol. 13, no. 2, pp. 89-98, 2000.
[32]
M. AlQuraishi, ProteinNet: A standardized data set for machine learning of protein structure, BMC Bioinform., vol. 20, no. 1, p. 311, 2019.