Journal Home > Volume 2 , issue 4

Circular RNAs (circRNAs) play important roles in various biological processes, as essential non-coding RNAs that have effects on transcriptional and posttranscriptional gene expression regulation. Recently, many studies have shown that circRNAs can be regarded as micro RNA (miRNA) sponges, which are known to be associated with certain diseases. Therefore efficient computation methods are needed to explore miRNA-circRNA interactions, but only very few computational methods for predicting the associations between miRNAs and circRNAs exist. In this study, we adopt an improved random walk computational method, named KRWRMC, to express complicated associations between miRNAs and circRNAs. Our major contributions can be summed up in two points. First, in the conventional Random Walk Restart Heterogeneous (RWRH) algorithm, the computational method simply converts the circRNA/miRNA similarity network into the transition probability matrix; in contrast, we take the influence of the neighbor of the node in the network into account, which can suggest or stress some potential associations. Second, our proposed KRWRMC is the first computational model to calculate large numbers of miRNA-circRNA associations, which can be regarded as biomarkers to diagnose certain diseases and can thus help us to better understand complicated diseases. The reliability of KRWRMC has been verified by Leave One Out Cross Validation (LOOCV) and 10-fold cross validation, the results of which indicate that this method achieves excellent performance in predicting potential miRNA-circRNA associations.


menu
Abstract
Full text
Outline
About this article

Prediction of miRNA-circRNA Associations Based on k-NN Multi-Label with Random Walk Restart on a Heterogeneous Network

Show Author's information Zengqiang FangXiujuan Lei( )
College of Computer Science, Shaanxi Normal University, Xi’an 710119, China.

Abstract

Circular RNAs (circRNAs) play important roles in various biological processes, as essential non-coding RNAs that have effects on transcriptional and posttranscriptional gene expression regulation. Recently, many studies have shown that circRNAs can be regarded as micro RNA (miRNA) sponges, which are known to be associated with certain diseases. Therefore efficient computation methods are needed to explore miRNA-circRNA interactions, but only very few computational methods for predicting the associations between miRNAs and circRNAs exist. In this study, we adopt an improved random walk computational method, named KRWRMC, to express complicated associations between miRNAs and circRNAs. Our major contributions can be summed up in two points. First, in the conventional Random Walk Restart Heterogeneous (RWRH) algorithm, the computational method simply converts the circRNA/miRNA similarity network into the transition probability matrix; in contrast, we take the influence of the neighbor of the node in the network into account, which can suggest or stress some potential associations. Second, our proposed KRWRMC is the first computational model to calculate large numbers of miRNA-circRNA associations, which can be regarded as biomarkers to diagnose certain diseases and can thus help us to better understand complicated diseases. The reliability of KRWRMC has been verified by Leave One Out Cross Validation (LOOCV) and 10-fold cross validation, the results of which indicate that this method achieves excellent performance in predicting potential miRNA-circRNA associations.

Keywords:

miRNA-circRNA associations, heterogeneous network, multi-label, random walk restart
Received: 25 November 2018 Revised: 16 April 2019 Accepted: 17 April 2019 Published: 05 August 2019 Issue date: December 2019
References(63)
[1]
K. Andreeva and N. G. F. Cooper, Circular RNAs: New players in gene regulation, Adv. Biosci. Biotechnol., vol. 6, no. 6, pp. 433-441, 2015.
[2]
H. L. Sanger, G. Klotz, D. Riesner, H. J. Gross, and A. K. Kleinschmidt, Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures, Proc. Natl. Acad. Sci. USA, vol. 73, no. 11, pp. 3852-3856, 1976.
[3]
J. Salzman, C. Gawad, P. L. Wang, N. Lacayo, and P. O. Brown, Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types, PLoS One, vol. 7, no. 2, p. e30733, 2012.
[4]
S. B. Qu, X. S. Yang, X. L. Li, J. L. Wang, Y. Gao, R. Z. Shang, W. Sun, K. F. Dou, and H. M. Li, Circular RNA: A new star of noncoding RNAs, Cancer Lett., vol. 365, no. 2, pp. 141-148, 2015.
[5]
W. R. Jeck and N. E. Sharpless, Detecting and characterizing circular RNAs, Nat. Biotechnol., vol. 32, no. 5, pp. 453-461, 2014.
[6]
P. L. Wang, Y. Bao, M. C. Yee, S. P. Barrett, G. J. Hogan, M. N. Olsen, J. R. Dinneny, P. O. Brown, and J. Salzman, Circular RNA is expressed across the eukaryotic tree of life, PLoS One, vol. 9, no. 4, p. e95116, 2014.
[7]
Y. C. Liu, Y. J. Chiu, J. R. Li, C. H. Sun, C. C. Liu, and H. D. Huang, Biclustering of transcriptome sequencing data reveals human tissue-specific circular RNAs, BMC Genomics, vol. 19, no. S1, p. 958, 2018.
[8]
T. Y. Xu, J. Wu, P. Han, Z. M. Zhao, and X. F. Song, Circular RNA expression profiles and features in human tissues: A study using RNA-seq data, BMC Genomics, vol. 18, no. S6, p. 680, 2017.
[9]
T. B. Hansen, T. I. Jensen, B. H. Clausen, J. B. Bramsen, B. Finsen, C. K. Damgaard, and J. Kjems, Natural RNA circles function as efficient microRNA sponges, Nature, vol. 495, no. 7441, pp. 384-388, 2013.
[10]
L. F. Thomas and P. Sætrom, Circular RNAs are depleted of polymorphisms at microRNA binding sites, Bioinformatics, vol. 30, no. 16, pp. 2243-2246, 2014.
[11]
F. R. Kulcheski, A. P. Christoff, and R. Margis, Circular RNAs are miRNA sponges and can be used as a new class of biomarker, J. Biotechnol., vol. 238, pp. 42-51, 2016.
[12]
S. Memczak, M. Jens, A. Elefsinioti, F. Torti, J. Krueger, A. Rybak, L. Maier, S. D. Mackowiak, L. H. Gregersen, M. Munschauer, et al., Circular RNAs are a large class of animal RNAs with regulatory potency, Nature, vol. 495, no. 7441, pp. 333-338, 2013.
[13]
Y. Zhang, X. O. Zhang, T. Chen, J. F. Xiang, Q. F. Yin, Y. H. Xing, S. S. Zhu, L. Yang, and L. L. Chen, Circular intronic long noncoding RNAs, Mol. Cell, vol. 51, no. 6, pp. 792-806, 2013.
[14]
Z. Y. Li, C. Huang, C. Bao, L. Chen, M. Lin, X. L. Wang, G. L. Zhong, B. Yu, W. C. Hu, L. M. Dai, et al., Exon-intron circular RNAs regulate transcription in the nucleus, Nat. Struct. Mol. Biol., vol. 22, no. 3, pp. 256-264, 2015.
[15]
R. Ashwal-Fluss, M. Meyer, N. R. Pamudurti, A. Ivanov, O. Bartok, M. Hanan, N. Evantal, S. Memczak, N. Rajewsky, and S. Kadener, circRNA biogenesis competes with pre-mRNA splicing, Mol. Cell, vol. 56, no. 1, pp. 55-66, 2014.
[16]
A. M. Cheng, M. W. Byrom, J. Shelton, and L. P. Ford, Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis, Nucl. Acids Res., vol. 33, no. 4, pp. 1290-1297, 2005.
[17]
A. C. Mallory, D. V. Dugas, D. P. Bartel, and B. Bartel, MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs, Curr. Biol., vol. 14, no. 12, pp. 1035-1046, 2004.
[18]
Y. M. Cai, X. M. Yu, S. N. Hu, and J. Yu, A brief review on the mechanisms of miRNA regulation, Genomics Proteomics Bioinformatics, vol. 7, no. 4, pp. 147-154, 2009.
[19]
N. Yanaihara, N. Caplen, E. Bowman, M. Seike, K. Kumamoto, M. Yi, R. M. Stephens, A. Okamoto, J. Yokota, T. Tanaka, et al., Unique microRNA molecular profiles in lung cancer diagnosis and prognosis, Cancer Cell, vol. 9, no. 3, pp. 189-198, 2006.
[20]
D. D. Taylor and C. Gercel-Taylor, MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer, Gynecol. Oncol., vol. 110, no. 1, pp. 13-21, 2008.
[21]
L. Zhang, J. Huang, N. Yang, J. Greshock, M. S. Megraw, A. Giannakakis, S. Liang, T. L. Naylor, A. Barchetti, M. R. Ward, et al., microRNAs exhibit high frequency genomic alterations in human cancer, Proc. Natl. Acad. Sci. USA, vol. 103, no. 24, pp. 9136-9141, 2006.
[22]
E. J. Lee, Y. Gusev, J. M. Jiang, G. J. Nuovo, M. R. Lerner, W. L. Frankel, D. L. Morgan, R. G. Postier, D. J. Brackett, and T. D. Schmittgen, Expression profiling identifies microRNA signature in pancreatic cancer, Int. J. Cancer, vol. 120, no. 5, pp. 1046-1054, 2007.
[23]
S. Köhler, S. Bauer, D. Horn, and P. N. Robinson, Walking the interactome for prioritization of candidate disease genes, Am. J. Hum. Genet., vol. 82, no. 4, pp. 949-958, 2008.
[24]
H. Yang, P. N. Robinson, and K. Wang, Phenolyzer: Phenotype-based prioritization of candidate genes for human diseases, Nat. Methods, vol. 12, no. 9, pp. 841-843, 2015.
[25]
D. Shriner, T. M. Baye, M. A. Padilla, S. J. Zhang, L. K. Vaughan, and A. E. Loraine, Commonality of functional annotation: A method for prioritization of candidate genes from genome-wide linkage studies, Nucl. Acids Res., vol. 36, no. 4, p. e26, 2008.
[26]
Q. Zou, J. J. Li, Q. Q. Hong, Z. Y. Lin, Y. Wu, H. Shi, and Y. Ju, Prediction of microRNA-disease associations based on social network analysis methods, BioMed Res. Int., vol. 2015, pp. 810514, 2015.
[27]
X. Chen, M. X. Liu, and G. Y. Yan, RWRMDA: Predicting novel human microRNA-disease associations, Mol. BioSyst., vol. 8, no. 10, pp. 2792-2798, 2012.
[28]
X. X. Zeng, X. Zhang, and Q. Zou, Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks, Brief. Bioinform., vol. 17, no. 2, pp. 193-203, 2016.
[29]
X. Chen, Q. F. Wu, and G. Y. Yan, RKNNMDA: Ranking-based KNN for miRNA-disease association prediction, RNA Biol., vol. 14, no. 7, pp. 952-962, 2017.
[30]
J. Y. Wang, R. X. Ma, W. Ma, J. Chen, J. C. Yang, Y. G. Xi, and Q. H. Cui, LncDisease: A sequence based bioinformatics tool for predicting lncRNA-disease associations, Nucl. Acids Res., vol. 44, no. 9, p. e90, 2016.
[31]
X. F. Yang, L. Gao, X. L. Guo, X. H. Shi, H. Wu, F. Song, and B. B. Wang, A network based method for analysis of lncRNA-disease associations and prediction of lncRNAs implicated in diseases, PLoS One, vol. 9, no. 1, p. e87797, 2014.
[32]
M. A. Doyle, R. B. Gasser, B. J. Woodcroft, R. S. Hall, and S. A. Ralph, Drug target prediction and prioritization: Using orthology to predict essentiality in parasite genomes, BMC Genomics, vol. 11, p. 222, 2010.
[33]
F. Prado-Prado, X. García-Mera, P. Abeijón, N. Alonso, O. Caamaño, M. Yáñez, T. Gárate, M. Mezo, M. González-Warleta, L. Muiño, et al., Using entropy of drug and protein graphs to predict FDA drug-target network: Theoretic-experimental study of MAO inhibitors and hemoglobin peptides from Fasciola hepatica, Eur. J. Med. Chem., vol. 46, no. 4, pp. 1074-1094, 2011.
[34]
X. Chen, M. X. Liu, Q. H. Cui, and G. Y. Yan, Prediction of disease-related interactions between microRNAs and environmental factors based on a semi-supervised classifier, PLoS One, vol. 7, no. 8, p. e43425, 2012.
[35]
Y. A. Huang, K. C. C. Chan, and Z. H. You, Constructing prediction models from expression profiles for large scale lncRNA-miRNA interaction profiling, Bioinformatics, vol. 34, no. 5, pp. 812-819, 2018.
[36]
J. H. Li, S. Liu, H. Zhou, L. H. Qu, and J. H. Yang, starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data, Nucl. Acids Res., vol. 42, no. D1, pp. D92-D97, 2014.
[37]
C. H. Chou, N. W. Chang, S. Shrestha, S. D. Hsu, Y. L. Lin, W. H. Lee, C. D. Yang, H. C. Hong, T. Y. Wei, S. J. Tu, et al., miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database, Nucl. Acids Res., vol. 44, no. D1, pp. D239-D247, 2016.
[38]
S. D. Hsu, F. M. Lin, W. Y. Wu, C. Liang, W. C. Huang, W. L. Chan, W. T. Tsai, G. Z. Chen, C. J. Lee, C. M. Chiu, et al., miRTarBase: A database curates experimentally validated microRNA-target interactions, Nucl. Acids Res., vol. 39, no. S1, pp. D163-D169, 2011.
[39]
T. S. Keshava Prasad, R. Goel, K. Kandasamy, S. Keerthikumar, S. Kumar, S. Mathivanan, D. Telikicherla, R. Raju, B. Shafreen, A. Venugopal, et al., Human protein reference database—2009 update, Nucl. Acids Res., vol. 37, no. S1, pp. D767-D772, 2009.
[40]
T. Price, F. I. Peña III, and Y. R. Cho, Survey: Enhancing protein complex prediction in PPI networks with GO similarity weighting, Interdiscip. Sci. Comput. Life Sci., vol. 5, no. 3, pp. 196-210, 2013.
[41]
P. Glažar, P. Papavasileiou, and N. Rajewsky, circBase: A database for circular RNAs, RNA, vol. 20, no. 11, pp. 1666-1670, 2014.
[42]
Y. J. Li and J. Y. Li, Disease gene identification by random walk on multigraphs merging heterogeneous genomic and phenotype data, BMC Genomics, vol. 13, no. S7, p. S27, 2012.
[43]
J. Zhu, Y. F. Qin, T. G. Liu, J. Wang, and X. Q. Zheng, Prioritization of candidate disease genes by topological similarity between disease and protein diffusion profiles, BMC Bioinform., vol. 14, no. Suppl 5, p. S5, 2013.
[44]
C. F. Sun, Q. Z. Li, L. Z. Cui, H. Li, and Y. L. Shi, Heterogeneous network-based chronic disease progression mining, Big Data Mining and Analytics, vol. 2, no. 1, pp. 25-34, 2019.
[45]
Y. S. Liu, X. X. Zeng, Z. Y. He, and Q. Zou, Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources, IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 14, no. 4, pp. 905-915, 2017.
[46]
H. L. Chen and Z. P. Zhang, Prediction of associations between OMIM diseases and microRNAs by random walk on OMIM disease similarity network, Sci. World J., vol. 2013, p. 204658, 2013.
[47]
J. Sun, H. B. Shi, Z. Z. Wang, C. J. Zhang, L. Liu, L. T. Wang, W. W. He, D. P. Hao, S. L. Liu, and M. Zhou, Inferring novel lncRNA-disease associations based on a random walk model of a lncRNA functional similarity network, Mol. BioSyst., vol. 10, no. 8, pp. 2074-2081, 2014.
[48]
X. Chen, Z. H. You, G. Y. Yan, and D. W. Gong, IRWRLDA: Improved random walk with restart for lncRNA-disease association prediction, Oncotarget, vol. 7, no. 36, pp. 57919-57931, 2016.
[49]
M. Zhou, X. J. Wang, J. W. Li, D. P. Hao, Z. Z. Wang, H. B. Shi, L. Han, H. Zhou, and J. Sun, Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network, Mol. BioSyst., vol. 11, no. 3, pp. 760-769, 2015.
[50]
X. Chen, M. X. Liu, and G. Y. Yan, Drug-target interaction prediction by random walk on the heterogeneous network, Mol. BioSyst., vol. 8, no. 7, pp. 1970-1978, 2012.
[51]
L. C. Chen, H. Y. Yeh, C. Y. Yeh, C. R. Arias, and V. W. Soo, Identifying co-targets to fight drug resistance based on a random walk model, BMC Syst. Biol., vol. 6, p. 5, 2012.
[52]
G. D. Guo, H. Wang, D. Bell, Y. X. Bi, and K. Greer, KNN model-based approach in classification, in Proc. OTM Confederated Int. Conf. the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, Catania, Italy, 2003, pp. 986-996.
[53]
X. Xia, X. H. Yang, S. P. Li, C. Wu, and L. L. Zhou, RW.KNN: A proposed random walk KNN algorithm for multi-label classification, in Proc. 4th Workshop on Workshop for PhD Students in Information & Knowledge Management, Glasgow, UK, 2011, pp. 87-90.
[54]
Y. J. Li and J. C. Patra, Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network, Bioinformatics, vol. 26, no. 9, pp. 1219-1224, 2010.
[55]
J. Weston, A. Elisseeff, D. Y. Zhou, C. S. Leslie, and W. S. Noble, Protein ranking: From local to global structure in the protein similarity network, Proc. Natl. Acad. Sci. USA, vol. 101, no. 17, pp. 6559-6563, 2004.
[56]
T. Can, O. Çamoglu, and A. K. Singh, Analysis of protein-protein interaction networks using random walks, in Proc. 5th Int. Workshop on Bioinformatics, Chicago, IL, USA, 2005, pp. 61-68.
[57]
G. U. Ganegoda, J. X. Wang, F. X. Wu, and M. Li, Prediction of disease genes using tissue-specified gene-gene network, BMC Syst. Biol., vol. 8, no. Suppl 3, p. S3, 2014.
[58]
D. D. Sun, A. Li, H. Q. Feng, and M. H. Wang, NTSMDA: Prediction of miRNA-disease associations by integrating network topological similarity, Mol. BioSyst., vol. 12, no. 7, pp. 2224-2232, 2016.
[59]
M. Q. Xie, T. Hwang, and R. Kuang, Prioritizing disease genes by bi-random walk, in Proc. 16th Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining, Kuala Lumpur, Malaysia, 2012, pp. 292-303.
[60]
M. G. Schrauder, R. Strick, R. Schulz-Wendtland, P. L. Strissel, L. Kahmann, C. R. Loehberg, M. P. Lux, S. M. Jud, A. Hartmann, A. Hein, et al., Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection, PLoS One, vol. 7, no. 1, p. e29770, 2012.
[61]
C. Polytarchou, D. Iliopoulos, and K. Struhl, An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state, Proc. Natl. Acad. Sci. USA, vol. 109, no. 36, pp. 14470-14475, 2012.
[62]
X. Y. Sun, J. Lu, L. Zhang, H. T. Song, L. Zhao, H. M. Fan, A. F. Zhong, W. Niu, Z. M. Guo, Y. H. Dai, et al., Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients, J. Clin. Neurosci., vol. 22, no. 3, pp. 570-574, 2015.
[63]
Y. Xu, F. Li, B. Zhang, K. R. Zhang, F. Q. Zhang, X. Z. Huang, N. Sun, Y. Ren, M. Q. Sui, and P. Z. Liu, MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia, Schizophr. Res., vol. 119, nos. 1-3, pp. 219-227, 2010.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 November 2018
Revised: 16 April 2019
Accepted: 17 April 2019
Published: 05 August 2019
Issue date: December 2019

Copyright

© The author(s) 2019

Acknowledgements

This paper was supported by the National Natural Science Foundation of China (No. 61672334) and the Fundamental Research Funds for the Central Universities (No. GK201901010).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Reprints and Permission requests may be sought directly from editorial office.

Return