[1]

R. Agrawal and R. Srikant, Fast algorithms for mining association rules, in Proc. 20th Int. Conf. Very Large Data Bases, Santiago, Chile, 1994, pp. 487-499.

[2]

C. Liu, X. F. Yan, L. Fei, J. W. Han, and S. P. Midkiff, SOBER: Statistical model-based bug localization, *ACM SIGSOFT Soft. Eng. Notes*, vol. 30, no. 5, pp. 286-295, 2005.

[3]

X. Jiang, H. Xiong, C. Wang, and A. H. Tan, Mining globally distributed frequent subgraphs in a single labeled graph, *Data Know. Eng*., vol. 68, no. 10, pp. 1034-1058, 2009.

[4]

M. Kuramochi and G. Karypis, Finding frequent patterns in a large sparse graph, *Data Min. Know. Dis*., vol. 11, no. 3, pp. 243-271, 2005.

[5]

M. Kuramochi and G. Karypis, Grew—A scalable frequent subgraph discovery algorithm, in Proc. Fourth IEEE Int. Conf. Data Mining, Brighton, UK, 2004, pp. 439-442.

[6]

S. Ghazizadeh and S. S. Chawathe, SEuS: Structure extraction using summaries, in *Discovery Science*, S. Lange, K. Satoh, and C. H. Smith, eds. Springer, 2002, pp. 71-85.

[7]

N. Vanetik, E. Gudes, and S. E. Shimony, Computing frequent graph patterns from semistructured data, in Proc. 2002 IEEE Int. Conf. Data Mining, Maebashi City, Japan, 2002, pp. 458-465.

[8]

K. Yoshida, H. Motoda, and N. Indurkhya, Graph-based induction as a unified learning framework, *Appl. Intell*., vol. 4, no. 3, pp. 297-316, 1994.

[9]

L. B. Holder, D. J. Cook, and S. Djoko, Substucture discovery in the SUBDUE system, in Proc. Workshop on Knowledge Discovery in Databases, 1994, pp. 169-180.

[10]

U. Kang, C. E. Tsourakakis, and C. Faloutsos, PEGASUS: A peta-scale graph mining system implementation and observations, in Proc. Ninth IEEE Int. Conf. Data Mining, Miami, FL, USA, 2009, pp. 229-238.

[11]

S. P. Reinhardt and G. Karypis, A multi-level parallel implementation of a program for finding frequent patterns in a large sparse graph, in Proc. 12th Int. Workshop on High-Level Parallel Programming Models and Supportive Environments, Rome, Italy, 2007, pp. 1-8.

[12]

B. Wu and Y. L. Bai, An efficient distributed subgraph mining algorithm in extreme large graphs, in *Artificial Intelligence and Computational Intelligence*, F. L. Wang, H. Deng, Y. Gao, and J. Lei, eds. Springer, 2010, pp. 107-115.

[13]

L. Dehaspe, H. Toivonen, and R. D. King, Finding frequent substructures in chemical compounds, in Proc. Fourth Int. Conf. Knowledge Discovery and Data Mining, 1998.

[14]

A. Inokuchi, T. Washio, and H. Motoda, An apriori-based algorithm for mining frequent substructures from graph data, in *Principles of Data Mining and Knowledge Discovery*, D. A. Zighed, J. Komorowski, and J. Zytkow, eds. Springer, 2000, pp. 13-23.

[15]

A. Inokuchi, T. Washio, K. Nishimura, and H. Motoda, *A fast algorithm for mining frequent connected subgraphs*, IBM Research report, RT0448, 2002.

[16]

X. F. Yan and J. W. Han, gSpan: Graph-based substructure pattern mining, in Proc. 2002 IEEE Int. Conf. Data Mining, Maebashi City, Japan, 2002, pp. 721-724.

[17]

J. Huan, W. Wang, and J. Prins, Efficient mining of frequent subgraphs in the presence of isomorphism, in Proc. Third IEEE Int. Conf. Data Mining, Melbourne, FL, USA, 2003, pp. 549-552.

[18]

S. Nijssen and J. N. Kok, A quickstart in frequent structure mining can make a difference, in Proc. Tenth ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, New York, NY, USA, 2004, pp. 647-652.

[19]

S. Fortin, The graph isomorphism problem, Technical Report 96-20, University of Alberta, Edomonton, Alberta, Canada, 1996.

[20]

C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu, Mining behavior graphs for "Backtrace" of noncrashing bugs, in Proc. 5th SIAM Int. Conf. on Data Mining, 2005, pp. 286-297.

[21]

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Network motifs: Simple building blocks of complex networks, *Science*, vol. 298, no. 5594, pp. 824-827, 2002.

[22]

R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon, On the uniform generation of random graphs with prescribed degree sequences, arXiv preprint arXiv:cond-mat/0312028v2, 2003.

[23]

C. Borgelt and M. R. Berthold, Mining molecular fragments: Finding relevant substructures of molecules, in Proc. 2002 IEEE Int. Conf. Data Mining, Maebashi City, Japan, 2002, pp. 51-58.

[24]

B. Srichandan and R. Sunderraman, Oo-fsg: An object-oriented approach to mine frequent subgraphs, in Proc. Ninth Australasian Data Mining Conf, Darlinghurst, Australia, 2011, pp. 221-228.

[25]

S. Hill, B. Srichandan, and R. Sunderraman, An iterative MapReduce approach to frequent subgraph mining in biological datasets, in Proc. ACM Conf. Bioinformatics, Computational Biology and Biomedicine, New York, NY, USA, 2012, pp. 661-666.

[26]

J. Dean and S. Ghemawat, MapReduce: Simplified data processing on large clusters, *Commun. ACM*, vol. 51, no. 1, pp. 107-113, 2008.

[27]

B. Jena, C. Khan, and R. Sunderraman, SparkFSM: A highly scalable frequent subgraph mining approach using apache spark, in Proc. ICDM Workshops 2018, 2018.

[28]

J. W. Han and M. Kamber, *Data Mining*: *Concepts and Techniques, 3rd edition*. San Francisco, CA, USA: Morgan Kaufmann, 2012.

[29]

R. Agrawal, T. Imieliński, and A. Swami, Mining association rules between sets of items in large databases, *ACM Sigmod Record Homep*., vol. 22, no. 2, pp. 207-216, 1993.

[30]

D. Burdick, M. Calimlim, and J. Gehrke, MAFIA: A maximal frequent itemset algorithm for transactional databases, in Proc. 17th Int. Conf. Data Engineering, Heidelberg, Germany, 2001, pp. 443-452.

[31]

R. J. Bayardo Jr, Efficiently mining long patterns from databases, *ACM Sigmod Record*, vol. 27, no. 2, pp. 85-93, 1998.

[32]

J. W. Han, J. Pei, and Y. W. Yin, Mining frequent patterns without candidate generation, *ACM SIGMOD Record*, vol. 29, no. 2, pp. 1-12, 2000.

[33]

M. J. Zaki and C. J. Hsiao, CHARM: An efficient algorithm for closed itemset mining, in Proc. 2nd SIAM Int. Conf. Data Mining, 2002, pp. 457-473.

[34]

M. J. Zaki and K. Gouda, Fast vertical mining using diffsets, in Proc. Ninth ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, New York, NY, USA, 2003, pp. 326-335.

[35]

J. Pei, J. W. Han, B. Mortazavi-Asl, H. Pinto, Q. M. Chen, U. Dayal, and M. C. Hsu, PrefixSpan,: Mining sequential patterns efficiently by prefix-projected pattern growth, in Proc. 17th Int. Conf. Data Engineering, Heidelberg, Germany, 2001.

[36]

H. Mannila, H. Toivonen, and A. I. Verkamo, Discovery of frequent episodes in event sequences, *Data Min. Know. Disc*., vol. 1, no. 3, pp. 259-289, 1997.

[37]

R. Agrawal and R. Srikant, Mining sequential patterns, in Proc. Eleventh Int. Conf. Data Engineering, Washington, DC, USA, 1995, pp. 3-14.

[38]

T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa, Efficient substructure discovery from large semi-structured data, in Proc. 2002 SIAM Int. Conf. Data Mining, Arlington, VA, USA, 2002.

[39]

M. J. Zaki, Efficiently mining frequent trees in a forest, in Proc. Eighth ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2002, pp. 71-80.

[40]

R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad, A tree projection algorithm for generation of frequent item sets, *J. Parall. Distrib. Comput*., vol. 61, no. 3, pp. 350-371, 2001.

[41]

M. Kuramochi and G. Karypis, Frequent subgraph discovery, in Proc. IEEE Int. Conf. Data Mining, San Jose, CA, USA, 2001, pp. 313-320.

[42]

X. Yan, Mining, indexing and similarity search in large graph data sets, PhD dissertation, University of Illinois at Urbana-Champaign, IL, USA, 2006.

[43]

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, *Introduction to Algorithms*. Boston, MA, USA: MIT Press and McGraw-Hill, 2001.

[44]

A. Savasere, E. Omiecinski, and S. B. Navathe, An efficient algorithm for mining association rules in large databases, in Proc. 21th Int. Conf. Very Large Data Bases, San Francisco, CA, USA, 1995, pp. 432-444.

[45]

C. Wang, W. Wang, J. Pei, Y. T. Zhu, and B. L. Shi, Scalable mining of large disk-based graph databases, in Proc. Tenth ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, New York, NY, USA, 2004, pp. 316-325.

[46]

J. M. Wang, W. Hsu, M. L. Lee, and C. Sheng, A partition-based approach to graph mining, in Proc. 22nd Int. Conf. Data Engineering, Atlanta, GA, USA, 2006, p. 74.

[47]

S. N. Nguyen, M. E. Orlowska, and X. Li, Graph mining based on a data partitioning approach, in Proc. Nineteenth Conf. Australasian Database, Darlinghurst, Australia, 2007, pp. 31-37.

[48]

S. N. Nguyen and M. E. Orlowska, Improvements in the data partitioning approach for frequent itemsets mining, in *Knowledge Discovery in Databases*: *PKDD 2005*, A. M. Jorge, L. Torgo, P. Brazdil, R. Camacho, and J. Gama, eds. Springer, 2005, pp. 625-633.

[49]

S. Chakravarthy, R. Beera, and R. Balachandran, DB-Subdue: Database approach to graph mining, in *Advances in Knowledge Discovery and Data Mining*, H. Dai, R. Srikant, and C. Zhang, eds. Springer, 2004, pp. 341-350.

[50]

D. J. Cook and L. B. Holder, Graph-based data mining, *IEEE Intell. Syst. Their Appl*., vol. 15, no. 2, pp. 32-41, 2000.

[51]

J. Rissanen, *Stochastic Complexity in Statistical Inquiry*. Teaneck, NJ, USA: World Scientific Publishing Co., Inc, 1989.

[52]

R. Balachandran, S. Padmanabhan, and S. Chakravarthy, Enhanced DB-subdue: Supporting subtle aspects of graph mining using a relational approach, in *Advances in Knowledge Discovery and Data Mining*, W. K. Ng, M. Kitsuregawa, J. Li, and K. Chang, eds. Springer, 2006, pp. 673-678.

[53]

S. Padmanabhan and S. Chakravarthy, HDB-subdue: A scalable approach to graph mining, in *Data Warehousing and Knowledge Discovery*, T. B. Pedersen, M. K. Mohania, and A. M. Tjoa, eds. Springer, 2009, pp. 325-338.

[54]

S. Chakravarthy and S. Pradhan, DB-FSG: An SQL-based approach for frequent subgraph mining, in *Database and Expert Systems Applications*, S. S. Bhowmick, J. Küng, and R. Wagner, eds. Springer, 2008, pp. 684-692.

[55]

H. F. Li and N. Zhang, Mining maximal frequent itemsets on graphics processors, in Proc. 2010 Seventh Int. Conf. Fuzzy Systems and Knowledge Discovery, Yantai, China, 2010, pp. 1461-1464.

[56]

W. B. Fang, M. Lu, X. Y. Xiao, B. S. He, and Q. Luo, Frequent itemset mining on graphics processors, in Proc. Fifth Int. Workshop on Data Management on New Hardware, New York, NY, USA, 2009, pp. 34-42.

[57]

H. F. Li, A GPU-based maximal frequent itemsets mining algorithm over stream, in Proc. 2010 Int. Conf. Computer and Communication Technologies in Agriculture Engineering, Chengdu, China, 2010, pp. 289-292.

[58]

R. R. Amossen and R. Pagh, A new data layout for set intersection on GPUs, in Proc. 2011 IEEE Int. Parallel & Distributed Processing Symp., Anchorage, AK, USA, 2011, pp. 698-708.

[59]

G. Teodoro, N. Mariano, W. Meira Jr, and R. Ferreira, Tree projection-based frequent itemset mining on multicore CPUs and GPUs, in Proc. 2010 22nd Int. Symp. Computer Architecture and High Performance Computing, Petropolis, Brazil, 2010, pp. 47-54.

[60]

D. W. Cheung, J. W. Han, V. T. Ng, A. W. Fu, and Y. J. Fu, A fast distributed algorithm for mining association rules, in Proc. Fourth Int. Conf. Parallel and Distributed Information Systems, Miami Beach, FL, USA, 1996, pp. 31-42.

[61]

L. Liu, E. Li, Y. M. Zhang, and Z. Z. Tang, Optimization of frequent itemset mining on multiple-core processor, in Proc. 33rd Int. Conf. Very Large Data Bases, Vienna, Austria, 2007, pp. 1275-1285.

[62]

H. Y. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, PFP: Parallel FP-growth for query recommendation, in Proc. 2008 ACM Conf. Recommender Systems, New York, NY, USA, 2008, pp. 107-114.

[63]

I. Miliaraki, K. Berberich, R. Gemulla, and S. Zoupanos, Mind the gap: Large-scale frequent sequence mining, in Proc. 2013 ACM SIGMOD Int. Conf. Management of Data, New York, NY, USA, 2013, pp. 797-808.

[64]

Y. Liu, X. H. Jiang, H. J. Chen, J. Ma, and X. Y. Zhang, MapReduce-based pattern finding algorithm applied in motif detection for prescription compatibility network, in *Advanced Parallel Processing Technologies*, Y. Dou, R. Gruber, and J. M. Joller, eds. Springer, 2009, pp. 341-355.

[65]

C. Wang and S. Parthasarathy, Parallel algorithms for mining frequent structural motifs in scientific data, in Proc. 18th Ann. Int. Conf. Supercomputing, New York, NY, USA, 2004, pp. 31-40.

[66]

M. Coatney and S. Parthasarathy, Motifminer: A general toolkit for efficiently identifying common substructures in molecules, in Proc. Third IEEE Symp. Bioinformatics and Bioengineering, Bethesda, MD, USA, 2003, pp. 336-340.

[67]

D. J. Cook, L. B. Holder, G. Galal, and R. Maglothin, Approaches to parallel graph-based knowledge discovery, *J. Parall. Distrib. Comput*., vol. 61, no. 3, pp. 427-446, 2001.

[68]

T. Meinl, I. Fischer, and M. Philippsen, Parallel mining for frequent fragments on a shared-memory multiprocessor-results and java-obstacles, in Proc. Lernen, Wissensentdeckung und Adaptivität, Saarbrücken, Germany, 2005.

[69]

Y. Shiloach and U. Vishkin, An O(logn) parallel connectivity algorithm, *J. Algorithms*, vol. 3, no. 1, pp. 57-67, 1982.

[70]

B. Awerbuch and T. Singh, New connectivity and MSF algorithms for ultracomputer and PRAM, *IEEE Transcactions on Computers*, vol. 36, no. 10, pp. 1258-1263, 1987.

[71]

D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate, Computing connected components on parallel computers, *Commun. ACM*, vol. 22, no. 8, pp. 461-464, 1979.

[72]

U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec, Hadi: Mining radii of large graphs, *ACM Trans. Know. Discovery Data*, vol. 5, no. 2, p. 8, 2011.

[73]

Z. Zhao, G. Y. Wang, A. R. Butt, M. Khan, V. A. Kumar, and M. V. Marathe, SAHAD: Subgraph analysis in massive networks using Hadoop, in Proc. 2012 IEEE 26th Int. Parallel and Distributed Processing Symp., Shanghai, China, 2012, pp. 390-401.

[74]

N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp, Biomolecular network motif counting and discovery by color coding, *Bioinformatics*, vol. 24, no. 13, pp. i241-i249, 2008.

[75]

N. Alon, R. Yuster, and U. Zwick, Color-coding, *J. ACM*, vol. 42, no. 4, pp. 844-856, 1995.

[76]

F. N. Afrati, D. Fotakis, and J. D. Ullman, Enumerating subgraph instances using map-reduce, in Proc. 2013 IEEE 29th Int. Conf. Data Engineering, Brisbane, Australia, 2013, pp. 62-73.

[77]

F. N. Afrati and J. D. Ullman, Optimizing multiway joins in a map-reduce environment, *IEEE Trans. Know. Data Eng*., vol. 23, no. 9, pp. 1282-1298, 2011.

[78]

J. G. Xiang, C. Guo, and A. Aboulnaga, Scalable maximum clique computation using MapReduce, in Proc. 2013 IEEE 29th Int. Conf. Data Engineering, Brisbane, Australia, 2013, pp. 74-85.

[79]

Di G. Fatta and M. R. Berthold, Dynamic load balancing for the distributed mining of molecular structures, *IEEE Trans. Parall. Distrib. Syst*., vol. 17, no. 8, pp. 773-785, 2006.

[80]

Y. F. Luo, J. H. Guan, and S. G. Zhou, Towards efficient subgraph search in cloud computing environments, in Proc. 16th Int. Conf. Database Systems for Advanced Applications, Hong Kong, China, 2011, pp. 2-13.

[81]

G. Buehrer, S. Parthasarathy, and Y. K. Chen, Adaptive parallel graph mining for CMP architectures, in Proc. Sixth Int. Conf. Data Mining, Hong Kong, China, 2006, pp. 97-106.

[82]

S. Aridhi, L. D’ Orazio, M. Maddouri, and M. E. Nguifo, Density-based data partitioning strategy to approximate large-scale subgraph mining, *Inf. Syst*., vol. 48, pp. 213-223, 2013.

[83]

M. A. Bhuiyan and M. A. Hasan, MIRAGE: An iterative MapReduce based frequent subgraph mining algorithm, arXiv Preprint arXiv: 1307.5894, 2013.

[84]

C. H. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and A. Aboulnaga, Arabesque: A system for distributed graph mining, in Proc. 25th Symp Operating Systems Principles, New York, NY, USA, 2015, pp. 425-440.

[85]

W. Q. Lin, X. K. Xiao, and G. Ghinita, Large-scale frequent subgraph mining in MapReduce, in Proc. 2014 IEEE 30th Int. Conf. Data Engineering, Chicago, IL, USA, 2014, pp. 844-855.

[86]

F. C. Qiao, X. Zhang, P. Li, Z. Y. Ding, S. S. Jia, and H. Wang, A parallel approach for frequent subgraph mining in a single large graph using Spark, *Appl. Sci*., vol. 8, no. 2, p. 230. 2018.

[87]

A. M. Petermann, M. Junghanns, and E. Rahm, DIMSpan-transactional frequent subgraph mining with distributed in-memory dataflow systems, in Proc. Fourth IEEE/ACM Int. Conf. Big Data Computing, Applications and Technologies, New York, NY, USA, 2017.