Open Access
Abstract
Big data analytics and data mining are techniques used to analyze data and to extract hidden information. Traditional approaches to analysis and extraction do not work well for big data because this data is complex and of very high volume. A major data mining technique known as data clustering groups the data into clusters and makes it easy to extract information from these clusters. However, existing clustering algorithms, such as -means and hierarchical, are not efficient as the quality of the clusters they produce is compromised. Therefore, there is a need to design an efficient and highly scalable clustering algorithm. In this paper, we put forward a new clustering algorithm called hybrid clustering in order to overcome the disadvantages of existing clustering algorithms. We compare the new hybrid algorithm with existing algorithms on the bases of precision, recall, F-measure, execution time, and accuracy of results. From the experimental results, it is clear that the proposed hybrid clustering algorithm is more accurate, and has better precision, recall, and F-measure values.