References(80)
[1]
S. Bhagat, G. Cormode, and S. Muthukrishnan, Node classification in social networks, in Social Network Data Analytics, C. C. Aggarwal, ed. Boston, MA, USA: Springer, 2011, pp. 115-148.
[2]
D. Liben-Nowell and J. Kleinberg, The link-prediction problem for social networks, J. Am. Soc. Inf. Sci. Technol., vol. 58, no. 7, pp. 1019-1031, 2007.
[3]
S. E. Schaeffer, Graph clustering, Comput. Sci. Rev., vol. 1, no. 1, pp. 27-64, 2007.
[4]
L. Akoglu, M. McGlohon, and C. Faloutsos, Oddball: Spotting anomalies in weighted graphs, in Proc. 14th Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining, Hyderabad, India, 2010, pp. 410-421.
[5]
Y. Yao, H. Tong, F. Xu, and J. Lu, Feature generation for graphs and networks, in Feature Engineering for Machine Learning and Data Analytics, C. Z. Dong and H. Liu, eds. CRC Press, 2018, pp. 167-188.
[6]
L. F. R. Ribeiro, P. H. P. Saverese, and D. R. Figueiredo, struc2vec: Learning node representations from structural identity, in Proc. 23rd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD), Halifax, Canada, 2017, pp. 385-394.
[7]
Y. A. Lai, C. C. Hsu, W. H. Chen, M. Y. Yeh, and S. D. Lin, Prune: Preserving proximity and global ranking for network embedding, in Proc. 31st Conf. and Workshop on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 2017, pp. 5263-5272.
[8]
W. L. Hamilton, R. Ying, and J. Leskovec, Representation learning on graphs: Methods and applications, arXiv preprint arXiv: 1709.05584, 2017.
[9]
T. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks, in Int. Conf. Learning Representations (ICLR), Toulon, France, 2017.
[10]
P. Goyal and E. Ferrara, Graph embedding techniques, applications, and performance: A survey, arXiv preprint arXiv: 1705.02801, 2017.
[11]
D. K. Zhang, J. Yin, X. Q. Zhu, and C. Q. Zhang, Network representation learning: A survey, arXiv preprint arXiv: 1801.05852, 2017.
[12]
P. Cui, X. Wang, J. Pei, and W. W. Zhu, A survey on network embedding, arXiv preprint arXiv: 1711.08752, 2017.
[13]
H. Y. Cai, V. W. Zheng, and K. C. C. Chang, A comprehensive survey of graph embedding: Problems, techniques, and applications, IEEE Trans. Knowl. Data Eng., vol. 30, no. 9, pp. 1616-1637, 2018.
[14]
Q. Wang, Z. D. Mao, B. Wang, and L. Guo, Knowledge graph embedding: A survey of approaches and applications, IEEE Trans. Knowl. Data Eng., vol. 29, no. 12, pp. 2724-2743, 2017.
[15]
Y. Fu and Y. Q. Ma, Graph Embedding for Pattern Analysis. New York, NY, USA: Springer Science & Business Media, 2012.
[16]
J. B. Tenenbaum, V. De Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, vol. 290, no. 5500, pp. 2319-2323, 2000.
[17]
S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science, vol. 290, no. 5500, pp. 2323-2326, 2000.
[18]
D. X. Wang, P. Cui, and W. W. Zhu, Structural deep network embedding, in Proc. 22ndACM SIGKDD Conf. Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 2016, pp. 1225-1234.
[19]
J. Tang, M. Qu, M. Z. Wang, M. Zhang, J. Yan, and Q. Z. Mei, LINE: Large-scale information network embedding, in Proc. 24th Int. Conf. World Wide Web (WWW), Florence, Italy, 2015, pp. 1067-1077.
[20]
S. Y. Chang, W. Han, J. L. Tang, G. J. Qi, C. C. Aggarwal, and T. S. Huang, Heterogeneous network embedding via deep architectures, in Proc. 21th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD), Sydney, Australia, 2015, pp. 119-128.
[21]
S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, BPR: Bayesian personalized ranking from implicit feedback, in Proc. 25th Conf. Uncertainty in Artificial Intelligence, Montreal, Canada, 2009, pp. 452-461.
[22]
A. G. Duran and M. Niepert, Learning graph representations with embedding propagation, in Advances in Neural Information Processing Systems 30 (NIPS), 2017, pp. 5125-5136.
[23]
X. Huang, J. D. Li, and X. Hu, Accelerated attributed network embedding, in Proc. 17th SIAM Int. Conf. Data Mining (SDM), Houston, TX, USA, 2017.
[24]
X. Huang, J. D. Li, and X. Hu, Label informed attributed network embedding, in Proc. 10th ACM Int. Conf. Web Search and Data Mining (WSDM), Cambridge, United Kingdom, 2017.
[25]
J. Tang, M. Qu, and Q. Z. Mei, PTE: Predictive text embedding through large-scale heterogeneous text networks, in Proc. 21th ACM SIGKDD Conf. Knowledge Discovery and Data Mining (KDD), Sydney, Australia, 2015, pp. 1165-1174.
[26]
X. F. Sun, J. Guo, X. Ding, and T. Liu, A general framework for content-enhanced network representation learning, arXiv preprint arXiv: 1610.02906, 2016.
[27]
S. H. Wang, J. L. Tang, C. Aggarwal, Y. Chang, and H. Liu, Signed network embedding in social media, in Proc. 17th SIAM Int. Conf. Data Mining (SDM), Houston, TX, USA, 2017.
[28]
S. H. Wang, C. Aggarwal, J. L. Tang, and H. Liu, Attributed signed network embedding, in Proc. 26th Int. Conf. Information and Knowledge Management (CIKM), Singapore, 2017, pp. 137-146.
[29]
J. D. Li, H. Dani, X. Hu, J. L. Tang, Y. Chang, and H. Liu, Attributed network embedding for learning in a dynamic environment, in Proc. 2017 Int. Conf. Information and Knowledge Management (CIKM), Singapore, 2017, pp. 387-396.
[30]
L. C. Xu, X. K. Wei, J. N. Cao, and P. S. Yu, Embedding of embedding (EOE): Joint embedding for coupled heterogeneous networks, in Proc. 10th Int. Conf. Web Search and Data Mining (WSDM), Cambridge, United Kingdom, 2017, pp. 741-749.
[31]
M. Qu, J. Tang, J. B. Shang, X. Ren, M. Zhang, and J. W. Han, An attention-based collaboration framework for multi-view network representation learning, in Proc. 2017 Int. Conf. Information and Knowledge Management (CIKM), Singapore, 2017, pp. 1767-1776.
[32]
L. K. Zhou, Y. Yang, X. Ren, F. Wu, and Y. T. Zhuang, Dynamic network embedding by modeling triadic closure process, in Proc. 32ndAAAI Conf. Artificial Intelligence, New Orleans, LA, USA, 2018.
[33]
D. J. Yang, S. Z. Wang, C. Z. Li, X. M. Zhang, and Z. J. Li, From properties to links: Deep network embedding on incomplete graphs, in Proc. 2017 Int. Conf. Information and Knowledge Management (CIKM), Singapore, 2017, pp. 367-376.
[34]
L. C. Xu, X. K. Wei, J. N. Cao, and P. S. Yu, On exploring semantic meanings of links for embedding social networks, in Proc. 2018 Web Conference (WWW), Lyon, France, 2018, pp. 479-488.
[35]
X. Wang, P. Cui, J. Wang, J. Pei, W. W. Zhu, and S. Q. Yang, Community preserving network embedding, in Proc. 31st AAAI Conf. Artificial Intelligence, San Francisco, CA, USA, 2017, pp. 203-209.
[36]
O. Levy and Y. Goldberg, Neural word embedding as implicit matrix factorization, in Proc. 27th Int. Conf. and Workshop on Neural Information Processing Systems (NIPS)), Montreal, Canada, 2014, pp. 2177-2185.
[37]
S. S. Cao, W. Lu, and Q. K. Xu, GraRep: Learning graph representations with global structural information, in Proc. 24th Int. Conf. Information and Knowledge Management (CIKM), Melbourne, Australia, 2015, pp. 891-900.
[38]
B. Perozzi, R. Al-Rfou, and S. Skiena, Deepwalk: Online learning of social representations, in Proc. 20th ACM SIGKDD Conf. Knowledge Discovery and Data Mining (KDD), New York, NY, USA, 2014, pp. 701-710.
[39]
C. Zhou, Y. Q. Liu, X. F. Liu, Z. Y. Liu, and J. Gao, Scalable graph embedding for asymmetric proximity, in Proc. 31st AAAI Conf. Artificial Intelligence, San Francisco, CA, USA, 2017, pp. 2942-2948.
[40]
C. Yang, Z. Y. Liu, D. L. Zhao, M. S. Sun, and E. Y. Chang, Network representation learning with rich text information, in Proc. 24th Int. Joint Conf. Artificial Intelligence (IJCAI), Buenos Aires, Argentina, 2015, pp. 2111-2117.
[41]
M. D. Ou, P. Cui, J. Pei, Z. W. Zhang, and W. W. Zhu, Asymmetric transitivity preserving graph embedding, in Proc. 22nd ACM SIGKDD Conf. Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 2016, pp. 1105-1114.
[42]
A. Grover and J. Leskovec, node2vec: Scalable feature learning for networks, in Proc. 22ndACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 2016, pp. 855-864.
[43]
J. F. Chen, Q. Zhang, and X. J. Huang, Incorporate group information to enhance network embedding, in Proc. 25th ACM Int. Conf. Information and Knowledge Management (CIKM), Indianapolis, IN, USA, 2016, pp. 1901-1904.
[44]
S. S. Cao, W. Lu, and Q. K. Xu, Deep neural networks for learning graph representations, in Proc. 30th AAAI Conf. Artificial Intelligence, Phoenix, AZ, USA, 2016, pp. 1145-1152.
[45]
J. Z. Qiu, Y. X. Dong, H. Ma, J. Li, K. S. Wang, and J. Tang, Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec, in Proc. 11th Int. Conf. Web Search and Data Mining (WSDM), Marina Del Rey, CA, USA, 2018.
[46]
S. R. Pan, J. Wu, X. Q. Zhu, C. Q. Zhang, and Y. Wang, Tri-party deep network representation, in Proc. 25th Int. Joint Conf. Artificial Intelligence (IJCAI), New York, NY, USA, 2016, pp. 1895-1901.
[47]
Z. L. Yang, W. W. Cohen, and R. Salakhutdinov, Revisiting semi-supervised learning with graph embeddings, in Proc. 33rd Int. Conf. Machine Learning, New York, NY, USA, 2016, pp. 40-48.
[48]
J. F. Hu, R. Cheng, Z. P. Huang, Y. Fang, and S. Q. Luo, On embedding uncertain graphs, in Proc. 2017 ACM on Int. Conf. Information and Knowledge Management (CIKM), Singapore, 2017, pp. 157-166.
[49]
S. H. Chen, S. F. Niu, L. Akoglu, J. Kovaevi, and C. Faloutsos, Fast, warped graph embedding: Unifying framework and one-click algorithm, arXiv preprint arXiv: 1702.05764, 2017.
[50]
Y. X. Dong, N. V. Chawla, and A. Swami, metapath2vec: Scalable representation learning for heterogeneous networks, in Proc. 23rd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD), Halifax, Canada, 2017, pp. 135-144.
[51]
T. Y. Fu, W. C. Lee, and Z. Lei, HIN2Vec: Explore meta-paths in heterogeneous information networks for representation learning, in Proc. 2017 Conf. Information and Knowledge Management (CIKM), Singapore, 2017, pp. 1797-1806.
[52]
T. Lyu, Y. Zhang, and Y. Zhang, Enhancing the network embedding quality with structural similarity, in Proc. 2017 ACM on Conf. Information and Knowledge Management (CIKM), 2017, pp. 147-156.
[53]
R. Feng, Y. Yang, W. J. Hu, F. Wu, and Y. T. Zhang, Representation learning for scale-free networks, in Proc. 32nd AAAI Conf. Artificial Intelligence, New Orleans, LA, USA, 2018.
[54]
Y. Ma, Z. C. Ren, Z. H. Jiang, J. L. Tang, and D. W. Yin, Multi-dimensional network embedding with hierarchical structure, in Proc. 11th Int. Conf. Web Search and Data Mining (WSDM), Marina Del Rey, CA, USA, 2018.
[55]
Q. Y. Dai, Q. Li, J. Tang, and D. Wang, Adversarial network embedding, in Proc. 2018 AAAI Conf. Artificial Intelligence, New Orleans, LA, USA, 2018.
[56]
J. Kim, H. Park, J. E. Lee, and U. Kang, SIDE: Representation learning in signed directed networks, in Proc. 2018 ACM World Wide Web Conf. (WWW), Lyon, France, 2018, pp. 509-518.
[57]
W. Hamilton, Z. T. Ying, and J. Leskovec, Inductive representation learning on large graphs, in Advances in Neural Information Processing Systems 30 (NIPS), 2017, pp. 1025-1035.
[58]
T. Chen and Y. Z. Sun, Task-guided and path-augmented heterogeneous network embedding for author identification, in Proc. 10th ACM Int. Conf. Web Search and Data Mining (WSDM), Cambridge, United Kingdom, 2017, pp. 295-304.
[59]
B. C. Zhang and M. Al Hasan, Name disambiguation in anonymized graphs using network embedding, in Proc. 2017 ACM on Conf. Information and Knowledge Management (CIKM), Singapore, 2017, pp. 1239-1248.
[60]
H. W. Wang, F. Z. Zhang, M. Hou, X. Xie, M. Y. Guo, and Q. Liu, SHINE: Signed heterogeneous information network embedding for sentiment link prediction, in Proc. 11th Int. Conf. Web Search and Data Mining (WSDM), Marina Del Rey, CA, USA, 2018, pp. 592-600.
[61]
A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola, Distributed large-scale natural graph factorization, in Proc. 22nd Int. Conf. World Wide Web (WWW), Rio de Janeiro, Brazil, 2013, pp. 37-48.
[62]
C. C. Tu, W. C. Zhang, Z. Y. Liu, and M. S. Sun, Max-margin deepwalk: Discriminative learning of network representation, in Proc. 25th Int. Joint Conf. Artificial Intelligence (IJCAI), New York, NY, USA, 2016, pp. 3889-3895.
[63]
T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, arXiv preprint arXiv: 1301.3781, 2013.
[64]
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality, in Proc. 26th Int. Conf. Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 2013, pp. 3111-3119.
[65]
J. X. Ma, P. Cui, and W. W. Zhu, DepthLGP: Learning embeddings of out-of-sample nodes in dynamic networks, in Proc. 32nd AAAI Conf. Artificial Intelligence, New Orleans, LA, USA, 2018.
[66]
H. W. Wang, J. Wang, J. L. Wang, M. Zhao, W. N. Zhang, F. Z. Zhang, X. Xie, and M. Y. Guo, GraphGAN: Graph representation learning with generative adversarial nets, in Proc. 32nd AAAI Conf. Artificial Intelligence, New Orleans, LA, USA, 2018.
[67]
T. Hoevar and J. Demšar, A combinatorial approach to graphlet counting, Bioinformatics, vol. 30, no. 4, pp. 559-565, 2014.
[68]
Y. P. Gu, Y. Z. Sun, Y. E. Li, and Y. Yang, Rare: Social rank regulated large-scale network embedding, in Proc. 2018 World Wide Web Conf. (WWW), Lyon, France, 2018, pp. 359-368.
[69]
S. H. Yuan, X. T. Wu, and Y. Xiang, SNE: Signed network embedding, in Proc. 21st Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD), 2017, pp. 183-195.
[70]
Y. Z. Sun, J. W. Han, X. F. Yan, P. S. Yu, and T. Y. Wu, PathSim: Meta path-based top-K similarity search in heterogeneous information networks, Proc. VLDB Endowment, vol. 4, no. 11, pp. 992-1003, 2011.
[71]
G. X. Ma, L. F. He, C. T. Lu, W. X. Shao, P. S. Yu, A. D. Leow, and A. B. Ragin, Multi-view clustering with graph embedding for connectome analysis, in Proc. 2017 ACM on Conf. Information and Knowledge Management (CIKM), Singapore, 2017, pp. 127-136.
[72]
R. Trivedi, M. Farajtabar, P. Biswal, and H. Y. Zha, Representation learning over dynamic graphs, arXiv preprint arXiv: 1803.04051, 2018.
[73]
Y. Zhang, Y. Xiong, X. N. Kong, and Y. Y. Zhu, Learning node embeddings in interaction graphs, in Proc. 2017 ACM on Conf. Information and Knowledge Management (CIKM), Singapore, 2017, pp. 397-406.
[74]
K. Tu, P. Cui, X. Wang, F. Wang, and W. W. Zhu, Structural deep embedding for hyper-networks, in Proc. 32nd AAAI Conf. Artificial Intelligence, New Orleans, LA, USA, 2018.
[75]
S. Cavallari, V. W. Zheng, H. Y. Cai, K. C. C. Chang, and E. Cambria, Learning community embedding with community detection and node embedding on graphs, in Proc. 2017 ACM on Conf. Information and Knowledge Management (CIKM), Singapore, 2017, pp. 377-386.
[76]
M. E. J. Newman, Modularity and community structure in networks, Proc. Natl. Acad. Sci. U.S.A., vol. 103, no. 23, pp. 8577-8582, 2006.
[77]
V. Misra and S. Bhatia, Bernoulli embeddings for graphs, in Proc. 32nd AAAI Conf. Artificial Intelligence, New Orleans, LA, USA, 2018.
[78]
H. C. Chen, B. Perozzi, Y. F. Hu, and S. Skiena, Harp: Hierarchical representation learning for networks, in Proc. 32nd AAAI Conf. Artificial Intelligence, New Orleans, LA, USA, 2018.
[79]
P. Yanardag and S. V. N. Vishwanathan, Deep graph kernels, in Proc. 21th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD), Sydney, Australia, 2015, pp. 1365-1374.
[80]
A. Narayanan, M. Chandramohan, L. H. Chen, Y. Liu, and S. Saminathan, subgraph2vec: Learning distributed representations of rooted sub-graphs from large graphs, arXiv preprint arXiv: 1606.08928, 2016.