[1]

T. Hofmann, Latent semantic models for collaborative filtering, *ACM Trans. Inf. Syst*., vol. 22, no. 1, pp. 89-115, 2004.

[2]

T. Hofmann, Unsupervised learning by probabilistic latent semantic analysis, *Mach. Learn*., vol. 42, nos. 1&2, pp. 177-196, 2001.

[3]

C. D. Charalambous and A. Logothetis, Maximum likelihood parameter estimation from incomplete data via the sensitivity equations: The continuous-time case, *IEEE Trans. Automat. Control*, vol. 45, no. 5, pp. 928-934, 2000.

[4]

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, *J. Roy. Stat. Soc. Ser B Methodol*., vol. 39, no. 1, pp. 1-38, 1977.

[5]

R. M. Neal and G. E. Hinton, *A View of the EM Algorithm That Justifies Incremental*, *Sparse*, *and Other Variants*. Norwell, MA, USA: Kluwer, 1998.

[6]

H. T. Zhu, Z. Khondker, Z. H. Lu, and J. G. Ibrahim, Bayesian generalized low rank regression models for neuroimaging phenotypes and genetic markers, *J. Am. Stat. Assoc*., vol. 109, no. 507, pp. 977-990, 2014.

[7]

S. N. Wood, Low-rank scale-invariant tensor product smooths for generalized additive mixed models, *Biometrics*, vol. 62, no. 4, pp. 1025-1036, 2006.

[8]

H. M. Luo, M. Li, S. K. Wang, Q. Liu, Y. H. Li, and J. X. Wang, Computational drug repositioning using low-rank matrix approximation and randomized algorithms, *Bioinformatics*, vol. 34, no. 11, 1904-1912, 2018.

[9]

C. Q. Lu, M. Y. Yang, F. Luo, F. X. Wu, M. Li, Y. Pan, Y. H. Li, and J. X. Wang, Prediction of lncRNA-disease associations based on inductive matrix completion, *Bioinformatics*, .

[10]

Y. Liang, D. L. Wu, G. R. Liu, Y. H. Li, C. L. Gao, Z. J. Ma, and W. D. Wu, Big data-enabled multiscale serviceability analysis for aging bridges, *Digit. Commun. Netw*., vol. 2, no. 3, pp. 97-107, 2016.

[11]

J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, Recommender systems survey, *Knowl. Based Syst*., vol. 46, pp. 109-132, 2013.

[12]

M. Kunaver and T. Požrl, Diversity in recommender systems — A survey, *Knowl. Based Syst*., vol. 123, pp. 154-162, 2017.

[13]

R. Burke, Hybrid recommender systems: Survey and experiments, *User Model. User-Adapt. Interact*., vol. 12, no. 4, pp. 331-370, 2002.

[14]

C. Desrosiers and G. Karypis, A comprehensive survey of neighborhood-based recommendation methods, in *Recommender Systems Handbook*. Springer, 2010, pp. 107-144.

[15]

C. He, D. Parra, and K. Verbert, Interactive recommender systems: A survey of the state of the art and future research challenges and opportunities, *Expert Syst. Appl*., vol. 56, pp. 9-27, 2016.

[16]

P. G. Campos, F. Díez, and I. Cantador, Time-aware recommender systems: A comprehensive survey and analysis of existing evaluation protocols, *User Model. User-Adapt. Interact*., vol. 24, no. 1-2, pp. 67-119, 2014.

[17]

X. W. Yang, Y. Guo, Y. Liu, and H. Steck, A survey of collaborative filtering based social recommender systems, *Comput. Commun*., vol. 41, pp. 1-10, 2014.

[18]

A. Klašnja-Milicevic, M. Ivanovic, and A. Nanopoulos, Recommender systems in e-learning environments: A survey of the state-of-the-art and possible extensions, *Artif. Intell. Rev*., vol. 44, no. 4, pp. 571-604, 2015.

[19]

R. Yera and L. Martínez, Fuzzy tools in recommender systems: A survey, *Int. J. Comput. Intell. Syst*., vol. 10, no. 1, pp. 776-803, 2017.

[20]

D. Kotkov, S. Q. Wang, and J. Veijalainen, A survey of serendipity in recommender systems, *Knowl. Based Syst*., vol. 111, pp. 180-192, 2016.

[21]

E. J. Candes and T. Tao, The power of convex relaxation: Near-optimal matrix completion, *IEEE Trans. Inf. Theory*, vol. 56, no. 5, pp. 2053-2080, 2010.

[22]

M. Udell, C. Horn, R. Zadeh, and S. Boyd, Generalized low rank models, *Found. Trends® Mach. Learn*., vol. 9, no. 1, pp. 1-118, 2016.

[23]

Y. Koren, R. Bell, and C. Volinsky, Matrix factorization techniques for recommender systems, *Computer*, vol. 42, no. 8, pp. 30-37, 2009.

[24]

B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl, Application of dimensionality reduction in recommender system-a case study, in Proc. ACM WebKDD Web Mining for E-Commerce Workshop, 2000.

[25]

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Incremental singular value decomposition algorithms for highly scalable recommender systems, in Proc. 6th Int. Conf. on Computers and Information Technology, 2002.

[26]

D. Billsus and M. J. Pazzani, Learning collaborative information filters, in Proc. 15th Int. Conf. on Machine Learning, San Francisco, CA, USA: ACM, 1998.

[27]

A. Paterek, Improving regularized singular value decomposition for collaborative filtering, in Proc. KDD and Workshop, San Jose, CA, USA, 2007.

[28]

J. D. M. Rennie and N. Srebro, Fast maximum margin matrix factorization for collaborative prediction, in Proc. 22nd Int. Conf. on Machine Learning, Bonn, Germany, 2005.

[29]

M. G. Vozalis and K. G. Margaritis, Using SVD and demographic data for the enhancement of generalized collaborative filtering, *Inf. Sci*., vol. 177, no. 15, pp. 3017-3037, 2007.

[30]

Y. Koren, Factorization meets the neighborhood: A multifaceted collaborative filtering model, in Proc. 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 2008.

[31]

B. Hallinan and T. Striphas, Recommended for you: The NETflix prize and the production of algorithmic culture, *New Media Soc*., vol. 18, no. 1, pp. 117-137, 2016.

[32]

Y. C. Ji, W. X. Hong, Y. L. Shangguan, H. Wang, and J. Ma, Regularized singular value decomposition in news recommendation system, in Proc. 11th Int. Conf. on Computer Science & Education, Nagoya, Japan, 2016, pp. 621-626.

[33]

R. Mazumder, T. Hastie, and R. Tibshirani, Spectral regularization algorithms for learning large incomplete matrices, *J. Mach. Learn. Res*., vol. 11, pp. 2287-2322, 2010.

[34]

M. Kagie, M. van der Loos, and M. van Wezel, Including item characteristics in the probabilistic latent semantic analysis model for collaborative filtering, *AI Commun*., vol. 22, no. 4, pp. 249-265, 2009.

[35]

J. F. Cai, E. J. Candes, and Z. W. Shen, A singular value thresholding algorithm for matrix completion, *SIAM* *J. Optim*., vol. 20, no. 4, pp. 1956-1982, 2010.

[36]

E. Candès and B. Recht, Simple bounds for recovering low-complexity models, *Math. Program*., vol. 141, nos. 1&2, pp. 577-589, 2013.

[37]

B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, *SIAM Rev*, vol. 52, no. 3, pp. 471-501, 2010.

[38]

Z. W. Wen, W. T. Yin, and Y. Zhang, Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm, *Math. Program. Comput*., vol. 4, no. 4, pp. 333-361, 2012.

[39]

R. Salakhutdinov and A. Mnih, Bayesian probabilistic matrix factorization using Markov chain Monte Carlo, in Proc. 25th Int. Conf. on Machine Learning, Helsinki, Finland, 2008.

[40]

D. Agarwal and B. C. Chen, Regression-based latent factor models, in Proc. 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Paris, France, 2009.

[41]

D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent Dirichlet allocation, *J. Mach. Learn. Res*., vol. 3, pp. 993-1022, 2003.

[42]

J. Canny, Collaborative filtering with privacy via factor analysis, in Proc. 25th Annu. Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, Tampere, Finland, 2002.

[43]

R. R. Salakhutdinov, A. Mnih, and G. E. Hinton, Restricted boltzmann machines for collaborative filtering, in Proc. 24th Int. Conf. on Machine Learning, Corvallis, OR, USA, 2007.

[44]

F. F. Xu and P. Pan, A new algorithm for positive semidefinite matrix completion, *J. Appl. Math*., vol. 2016, p. 1659019, 2016.

[45]

T. Hastie, R. Mazumder, J. D. Lee, and R. Zadeh, Matrix completion and low-rank svd via fast alternating least squares, *J. Mach. Learn. Res*., vol. 16, no. 1, pp. 3367-3402, 2015.

[46]

J. F. Cai, R. H. Chan, and Z. W. Shen, A framelet-based image inpainting algorithm, *Appl. Computat. Harmon. Anal*., vol. 24, no. 2, pp. 131-149, 2008.

[47]

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, *Multiscale Model. Simul*., vol. 4, no. 4, pp. 1168-1200, 2005.

[48]

I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, *Commun. Pure Appl. Math*., vol. 57, no. 11, pp. 1413-1457, 2004.

[49]

E. T. Hale, W. T. Yin, and Y. Zhang, Fixed-point continuation for ℓ1-minimization: Methodology and convergence, *SIAM J Optim*., vol. 19, no. 3, pp. 1107-1130, 2008.

[50]

B. S. He, H. Yang, and S. L. Wang, Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities, *J. Optim. Theory Appl*., vol. 106, no. 2, pp. 337-356, 2000.

[51]

D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, *Comput. Math. Appl*., vol. 2, no. 1, pp. 17-40, 1976.

[52]

R. Glowinski, *Numerical Methods for Nonlinear Variational Problems*. Springer, 1984.

[53]

R. Glowinski and P. Le Tallec, *Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics*. Philadelphia, PA, USA: SIAM, 1989, pp. 9.

[54]

F. Xu and G. He, New algorithms for nonnegative matrix completion, *Pac. J. Optim*., vol. 11, no. 3, pp. 459-469, 2015.

[55]

Y. Y. Xu, W. T. Yin, Z. W. Wen, and Y. Zhang, An alternating direction algorithm for matrix completion with nonnegative factors, *Front. Math. China*, vol. 7, no. 2, pp. 365-384, 2012.

[56]

C. H. Chen, B. S. He, and X. M. Yuan, Matrix completion via an alternating direction method, *IMA* *J. Numer. Anal*., vol. 32, no. 1, pp. 227-245, 2012.

[57]

J. F. Cai and S. Osher, Fast singular value thresholding without singular value decomposition, *Methods Appl. Anal*., vol. 20, no. 4, pp. 335-352, 2013.

[58]

N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, *SIAM Rev*., vol. 53, no. 2, pp. 217-288, 2011.

[59]

H. Ji, W. J. Yu, and Y. H. Li, A rank revealing randomized singular value decomposition (R3SVD) algorithm for low-rank matrix approximations, arXiv: 1605.08134, 2016.

[60]

W. J. Yu, Y. Gu, J. Li, S. H. Liu, and Y. H. Li, Single-pass PCA of large high-dimensional data, in Proc. 26th Int. Joint Conf. on Artificial Intelligence, Catalina Island, CA, USA, 2010.

[61]

Y. H. Li and W. J. Yu, A fast implementation of singular value thresholding algorithm using recycling rank revealing randomized singular value decomposition, arXiv: 1704.05528, 2017.

[62]

K. C. Toh and S. Yun, An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems, *Pac. J. Optim*., vol. 6, no. 3, pp. 615-640, 2010.

[63]

S. Q. Ma, D. Goldfarb, and L. F. Chen, Fixed point and bregman iterative methods for matrix rank minimization, *Math. Program*., vol. 128, no. 1-2, pp. 321-353, 2011.

[64]

Y. Koren and R. Bell, Advances in collaborative filtering, in *Recommender Systems Handbook*, F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, eds. Springer, 2011.

[65]

G. Takács, I. Pilászy, B. Németh, and D. Tikk, Matrix factorization and neighbor based algorithms for the NETflix prize problem, in Proc. 2008 ACM Conf. on Recommender Systems, Lausanne, Switzerland, 2008, pp. 267-274.

[66]

C. B. Do and S. Batzoglou, What is the expectation maximization algorithm? *Nat. Biotechnol*., vol. 26, no. 8, pp. 897-899, 2008.

[67]

H. Ji, E. O’Saben, A. Boudion, and Y. H. Li, March madness prediction: A matrix completion approach, in Proc. Modeling, Simulation, and Visualization Student Capstone Conf., Suffolk, UA, USA, 2015.

[68]

H. Ji, E. O’Saben, R. Lambi, and Y. H. Li, Matrix completion based model v2.0: Predicting the winning probabilities of march madness matches, in Proc. Modeling, Simulation, and Visualization Student Capstone Conf., Suffolk, VA, USA, 2016.

[69]

X. R. Zhang and H. S. Wang, Study on recommender systems for business-to-business electronic commerce, *Commun. IIMA*, vol. 5, no. 4, pp. 53-61, 2005.

[70]

T. P. Exarchos, C. Papaloukas, C. Lampros, and D. I. Fotiadis, Mining sequential patterns for protein fold recognition, *J. Biomed. Inf*., vol. 41, no. 1, pp. 165-179, 2008.

[71]

A. Kapur, K. Marwah, and G. Alterovitz, Gene expression prediction using low-rank matrix completion, *BMC Bioinform.*, vol. 17, pp. 243, 2016.

[72]

D. Shin, S. Cetintas, K. C. Lee, and I. S. Dhillon, Tumblr blog recommendation with boosted inductive matrix completion, in Proc. 24th ACM Int. on Conf. on Information and Knowledge Management, Melbourne, Australia, 2015.

[73]

T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, in Proc. Workshop at Int. Conf. on Learning Representations, Scottsdale, AZ, USA, 2013.

[74]

J. Liu, P. Musialski, P. Wonka, and J. P. Ye, Tensor completion for estimating missing values in visual data, *IEEE Trans. Pattern Anal. Mach. Intell*., vol. 35, no. 1, pp. 208-220, 2013.

[75]

L. Z. Cui, P. Ou, X. H. Fu, Z. K. Wen, and N. Lu, A novel multi-objective evolutionary algorithm for recommendation systems, *J. Parallel Distrib. Comput*., vol. 103, pp. 53-63, 2017.

[76]

K. Deb, Multi-objective optimization. in *Search Methodologies*, E. K. Burke and G. Kendall, eds. Springer, 2005.

[77]

Y. H. Li, MOMCMC: An efficient Monte Carlo method for multi-objective sampling over real parameter space, *Comput. Math. Appl*., vol. 64, no. 11, pp. 3542-3556, 2012.

[78]

W. H. Zhu, A. Yaseen, and Y. H. Li, DEMCMC-GPU: An efficient multi-objective optimization method with GPU acceleration on the fermi architecture, *New Generat. Comput*., vol. 29, no. 2, pp. 163-184, 2011.

[79]

B. Recht and C. Ré, Parallel stochastic gradient algorithms for large-scale matrix completion, *Math. Program. Comput*., vol. 5, no. 2, pp. 201-226, 2013.

[80]

Y. Y. Xu, R. R. Hao, W. T. Yin, and Z. X. Su, Parallel matrix factorization for low-rank tensor completion, *Inverse Probl. Imaging*, vol. 9, no. 2, pp. 601-624, 2015.