375
Views
30
Downloads
31
Crossref
N/A
WoS
37
Scopus
0
CSCD
Microblogging, a popular social media service platform, has become a new information channel for users to receive and exchange the most up-to-date information on current events. Consequently, it is a crucial platform for detecting newly emerging events and for identifying influential spreaders who have the potential to actively disseminate knowledge about events through microblogs. However, traditional event detection models require human intervention to detect the number of topics to be explored, which significantly reduces the efficiency and accuracy of event detection. In addition, most existing methods focus only on event detection and are unable to identify either influential spreaders or key event-related posts, thus making it challenging to track momentous events in a timely manner. To address these problems, we propose a Hypertext-Induced Topic Search (HITS) based Topic-Decision method (TD-HITS), and a Latent Dirichlet Allocation (LDA) based Three-Step model (TS-LDA). TD-HITS can automatically detect the number of topics as well as identify associated key posts in a large number of posts. TS-LDA can identify influential spreaders of hot event topics based on both post and user information. The experimental results, using a Twitter dataset, demonstrate the effectiveness of our proposed methods for both detecting events and identifying influential spreaders.
Microblogging, a popular social media service platform, has become a new information channel for users to receive and exchange the most up-to-date information on current events. Consequently, it is a crucial platform for detecting newly emerging events and for identifying influential spreaders who have the potential to actively disseminate knowledge about events through microblogs. However, traditional event detection models require human intervention to detect the number of topics to be explored, which significantly reduces the efficiency and accuracy of event detection. In addition, most existing methods focus only on event detection and are unable to identify either influential spreaders or key event-related posts, thus making it challenging to track momentous events in a timely manner. To address these problems, we propose a Hypertext-Induced Topic Search (HITS) based Topic-Decision method (TD-HITS), and a Latent Dirichlet Allocation (LDA) based Three-Step model (TS-LDA). TD-HITS can automatically detect the number of topics as well as identify associated key posts in a large number of posts. TS-LDA can identify influential spreaders of hot event topics based on both post and user information. The experimental results, using a Twitter dataset, demonstrate the effectiveness of our proposed methods for both detecting events and identifying influential spreaders.
The work was supported by the National Natural Science Foundation of China (Nos. 61502209 and 61502207), the Natural Science Foundation of Jiangsu Province of China (No. BK20130528) and Visiting Research Fellow Program of Tongji University (No. 8105142504).