Journal Home > Volume 1 , issue 2

In the big data era, the data are generated from different sources or observed from different views. These data are referred to as multi-view data. Unleashing the power of knowledge in multi-view data is very important in big data mining and analysis. This calls for advanced techniques that consider the diversity of different views, while fusing these data. Multi-view Clustering (MvC) has attracted increasing attention in recent years by aiming to exploit complementary and consensus information across multiple views. This paper summarizes a large number of multi-view clustering algorithms, provides a taxonomy according to the mechanisms and principles involved, and classifies these algorithms into five categories, namely, co-training style algorithms, multi-kernel learning, multi-view graph clustering, multi-view subspace clustering, and multi-task multi-view clustering. Therein, multi-view graph clustering is further categorized as graph-based, network-based, and spectral-based methods. Multi-view subspace clustering is further divided into subspace learning-based, and non-negative matrix factorization-based methods. This paper does not only introduce the mechanisms for each category of methods, but also gives a few examples for how these techniques are used. In addition, it lists some publically available multi-view datasets. Overall, this paper serves as an introductory text and survey for multi-view clustering.


menu
Abstract
Full text
Outline
About this article

Multi-view Clustering: A Survey

Show Author's information Yan Yang( )Hao Wang
School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China.

∙ Hao Wang is currently a PhD candidate and shares first authorship.

Abstract

In the big data era, the data are generated from different sources or observed from different views. These data are referred to as multi-view data. Unleashing the power of knowledge in multi-view data is very important in big data mining and analysis. This calls for advanced techniques that consider the diversity of different views, while fusing these data. Multi-view Clustering (MvC) has attracted increasing attention in recent years by aiming to exploit complementary and consensus information across multiple views. This paper summarizes a large number of multi-view clustering algorithms, provides a taxonomy according to the mechanisms and principles involved, and classifies these algorithms into five categories, namely, co-training style algorithms, multi-kernel learning, multi-view graph clustering, multi-view subspace clustering, and multi-task multi-view clustering. Therein, multi-view graph clustering is further categorized as graph-based, network-based, and spectral-based methods. Multi-view subspace clustering is further divided into subspace learning-based, and non-negative matrix factorization-based methods. This paper does not only introduce the mechanisms for each category of methods, but also gives a few examples for how these techniques are used. In addition, it lists some publically available multi-view datasets. Overall, this paper serves as an introductory text and survey for multi-view clustering.

Keywords:

data mining, conditional functional dependency, big data, data quality
Received: 02 August 2017 Accepted: 28 November 2017 Published: 12 April 2018 Issue date: June 2018
References(185)
[1]
C. Xu, D. C. Tao, and C. Xu, A survey on multi-view learning, arXiv preprint arXiv: 1304.5634, 2013.
[2]
S. L. Sun, A survey of multi-view machine learning, Neural Comput. Appl., vol. 23, nos. 7&8, pp. 2031-2038, 2013.
[3]
J. Zhao, X. J. Xie, X. Xu, and S. L. Sun, Multi-view learning overview: Recent progress and new challenges, Information Fusion, vol. 38, pp. 43-54, 2017.
[4]
Y. Zheng, Methodologies for cross-domain data fusion: An overview, IEEE Trans. Big Data, vol. 1, no. 1, pp. 16-34, 2015.
[5]
R. Xu and D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 645-678, 2005.
[6]
C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms and Applications. Boca Raton, FL, USA: Chapman and Hall/CRC, 2013.
[7]
A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya, S. Foufou, and A. Bouras, A survey of clustering algorithms for big data: Taxonomy and empirical analysis, IEEE Trans. Emerg. Top. Comput., vol. 2, no. 3, pp. 267-279, 2014.
[8]
J. D. Wang, H. J. Zeng, Z. Chen, H. J. Lu, L. Tao, and W. Y. Ma, ReCoM: Reinforcement clustering of multi-type interrelated data objects, in Proc. 26th Annu. Int. ACM SIGIR Conf. RESEARCH and Development in Information Retrieval, 2003, pp. 274-281.
[9]
K. Kailing, H. P. Kriegel, A. Pryakhin, and M. Schubert, Clustering multi-represented objects with noise, in Proc. 8th Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining, Sydney, Australia, 2004, pp. 394-403.
[10]
S. Bickel and T. Scheffer, Multi-view clustering, in Proc. 4th IEEE Int. Conf. Data Mining, Brighton, UK, 2004, pp. 19-26.
[11]
MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD-2010, , 2010.
[12]
2ed MultiClust Workshop: Discovering, summarizing and using multiple clusterings held in conjunction with ECML/PKDD 2011, , 2011.
[13]
3rd MultiClust Workshop: Discovering, summarizing and using multiple clusterings held in conjunction with ICDM 2012, , 2012.
[14]
MultiClust: 4th international workshop on discovering, 20 big data mining and analytics, summarizing and using multiple clusterings held in conjunction KDD, , 2013.
[15]
MultiClust 2014: Mini-symposium on multiple clusterings, multi-view data, and multi-source knowledge-driven held in conjunction with SDM, , 2014.
[16]
J. Liu, Y. Jiang, Z. C. Li, Z. H. Zhou, and H. Q. Lu, Partially shared latent factor learning with multiview data, IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6, pp. 1233-1246, 2015.
[17]
S. Dasgupta, M. L. Littman, and D. A. McAllester, PAC generalization bounds for co-training, in Proc. 14th Int. Conf. Neural Information Processing Systems: Natural and Synthetic, Vancouver, Canada, 2001, pp. 375-382.
[18]
A. Blum and T. Mitchell, Combining labeled and unlabeled data with co-training, in Proc. 11th Annu. Conf. Computational Learning Theory, Madison, WI, USA, 1998, pp. 92-100.
[19]
V. R. De Sa, Spectral clustering with two views, in Proc. 22ndWorkshop on Learning with Multiple Views, Bonn, Germany, 2005, pp. 20-27.
[20]
S. Abney, Bootstrapping, in Proc. 40th Annu. Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 2002, pp. 360-367.
[21]
M. F. Balcan, A. Blum, and K. Yang, Co-training and expansion: Towards bridging theory and practice, in Proc. 17th Int. Conf. Neural Information Proc. Systems, Vancouver, Canada, 2004, pp. 89-96.
[22]
W. Wang and Z. H. Zhou, Analyzing co-training style algorithms, in Proc. 18th European Conf. Machine Learning, Warsaw, Poland, 2007, pp. 454-465.
[23]
K. Nigam and R. Ghani, Analyzing the effectiveness and applicability of co-training, in Proc. 9th Int. Conf. Information and Knowledge Management, McLean, VA, USA, 2000, pp. 86-93.
[24]
V. Sindhwani, P. Niyogi, and M. Belkin, A co-regularization approach to semi-supervised learning with multiple views, in Proc. 22nd Workshop on Learning with Multiple Views, Bonn, Germany, 2005, pp. 74-79.
[25]
Y. Z. Cheng and G. M. Church, Biclustering of expression data, in Proc. 8th Int. Conf. Intelligent Systems for Molecular Biology, Menlo Park, CA, USA, 2000, pp. 93-103.
[26]
S. Bickel and T. Scheffer, Estimation of mixture models using Co-EM, in Proc. 16th European Conf. Machine Learning, Porto, Portugal, 2005, pp. 35-46.
[27]
G. F. Tzortzis and A. C. Likas, Multiple view clustering using a weighted combination of exemplar-based mixture models, IEEE Trans. Neural Netw., vol. 21, no. 12, pp. 1925-1938, 2010.
[28]
A. Kumar and H. Daumé III, A co-training approach for multi-view spectral clustering, in Proc. 28th Int. Conf. Machine Learning, Bellevue, WA, USA, 2011, pp. 393-400.
[29]
A. Kumar, P. Rai, and H. Daumé III, Co-regularized multi-view spectral clustering, in Proc. 24th Int. Conf. Neural Information Processing Systems, Granada, Spain, 2011, pp. 1413-1421.
[30]
Y. K. Ye, X. W. Liu, J. P. Yin, and E. Zhu, Co-regularized kernel k-means for multi-view clustering, in Proc. 23rd Int. Conf. Pattern Recognition, Cancun, Mexico, 2016, pp. 1583-1588.
[31]
A. Appice and D. Malerba, A co-training strategy for multiple view clustering in process mining, IEEE Trans. Serv. Comput., vol. 9, no. 6, pp. 832-845, 2016.
[32]
Y. Jiang, J. Liu, Z. C. Li, P. Li, and H. Q. Lu, Co-regularized PLSA for multi-view clustering, in Proc. 11th Asian Conf. Computer Vision-Volume Part II, Daejeon, Korea, 2013, pp. 202-213.
[33]
E. Eaton, M. desJardins, and S. Jacob, Multi-view clustering with constraint propagation for learning with an incomplete mapping between views, in Proc. 19th ACM Int. Conf. Information and Knowledge Management, Toronto, Canada, 2010, pp. 389-398.
[34]
E. Eaton, M. desJardins, and S. Jacob, Multi-view constrained clustering with an incomplete mapping between views, Knowl. Inf. Syst., vol. 38, no. 1, pp. 231-257, 2014.
[35]
L. Meng, A. H. Tan, and D. Xu, Semi-supervised heterogeneous fusion for multimedia data co-clustering, IEEE Trans. Knowl. Data Eng., vol. 26, no. 9, pp. 2293-2306, 2014.
[36]
J. W. Sun, J. Lu, T. Y. Xu, and J. B. Bi, Multi-view sparse co-clustering via proximal alternating linearized minimization, in Proc. 32nd Int. Conf. Machine Learning, Lille, France, 2015, pp. 757-766.
[37]
G. Bisson and C. Grimal, An architecture to efficiently learn co-similarities from multi-view datasets, in Proc. 19th Int. Conf. Neural Information Proc., Doha, Qatar, 2012, pp. 184-193.
[38]
G. Bisson and C. Grimal, Co-clustering of multi-view datasets: A parallelizable approach, in Proc. IEEE 12th Int. Conf. Data Mining, Brussels, Belgium, 2012, pp. 828-833.
[39]
S. F. Hussain and S. Bashir, Co-clustering of multi-view datasets, Knowl. Inf. Syst., vol. 47, no. 3, pp. 545-570, 2016.
[40]
Y. Jiang, J. Liu, Z. C. Li, and H. Q. Lu, Collaborative PLSA for multi-view clustering, in Proc. 21st Int. Conf. Pattern Recognition, Tsukuba, Japan, 2012, pp. 2997-3000.
[41]
M. Ghassany, N. Grozavu, and Y. Bennani, Collaborative multi-view clustering, in Proc. 2013 Int. Joint Conf. Neural Networks, Dallas, TX, USA, 2013, pp. 1-8.
[42]
L. L. Xu, J. Neufeld, B. Larson, and D. Schuurmans, Maximum margin clustering, in Proc. 18th Annu. Conf. Advances in Neural Information Processing Systems 17, Cambridge, MA, USA, 2005, pp. 1537-1544.
[43]
B. Zhao, J. T. Kwok, and C. S. Zhang, Multiple kernel clustering, in Proc. 2009 SIAM Int. Conf. Data Mining, Sparks, NV, USA, 2009, pp. 638-649.
[44]
L. Du, P. Zhou, L. Shi, H. M. Wang, M. Y. Fan, W. J. Wang, and Y. D. Shen, Robust multiple kernel k-means using 2,1-norm, in Proc. 24th Int. Conf. Artificial Intelligence, Buenos Aires, Argentina, 2015, pp. 3476-3482.
[45]
V. R. De Sa, P. W. Gallagher, J. M. Lewis, and V. L. Malave, Multi-view kernel construction, Mach. Learn., vol. 79, nos. 1&2, pp. 47-71, 2010.
[46]
V. R. De Sa, Learning classification with unlabeled data, in Advances in Neural Information Processing Systems 6, Cambridge, MA, USA, 1993, pp. 112-119.
[47]
V. R. De Sa and D. H. Ballard, Category learning through multimodality sensing, Neural Comput., vol. 10, no. 5, pp. 1097-1117, 1998.
[48]
S. Yu, L. C. Tranchevent, X. H. Liu, W. Glanzel, J. A. K. Suykens, B. De Moor, and Y. Moreau, Optimized data fusion for kernel k-means clustering, IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 5, pp. 1031-1039, 2012.
[49]
M. Gönen and A. A. Margolin, Localized data fusion for kernel k-means clustering with application to cancer biology, in Proc. 28th Annu. Conf. Neural Information Proc. Systems, Montreal, Canada, 2014, pp. 1305-1313.
[50]
Y. T. Lu, L. T. Wang, J. F. Lu, J. Y. Yang, and C. H. Shen, Multiple kernel clustering based on centered kernel alignment, Pattern Recognit., vol. 47, no. 11, pp. 3656-3664, 2014.
[51]
G. Tzortzis and A. Likas, Kernel-based weighted multi-view clustering, in Proc. 12th Int. Conf. Data Mining, Brussels, Belgium, 2012, pp. 675-684.
[52]
D. Y. Guo, J. Zhang, X. W. Liu, Y. Cui, and C. X. Zhao, Multiple kernel learning based multi-view spectral clustering, in Proc. 22nd Int. Conf. Pattern Recognition, Stockholm, Sweden, 2014, pp. 3774-3779.
[53]
X. W. Liu, Y. Dou, J. P. Yin, L. Wang, and E. Zhu, Multiple kernel k-means clustering with matrix-induced regularization, in Proc. 30th AAAI Conf. Artificial Intelligence, Phoenix, AZ, USA, 2016, pp. 1888-1984.
[54]
Y. Zhao, Y. Dou, X. W. Liu, and T. Li, A novel multi-view clustering method via low-rank and matrix-induced regularization, Neurocomputing, vol. 216, pp. 342-350, 2016.
[55]
P. R. Zhang, Y. Yang, B. Peng, and M. J. He, Multi-view clustering algorithm based on variable weight and MKL, in Proc. Int. Joint Conf. Rough Sets, Olsztyn, Poland, 2017, pp. 599-610.
[56]
A. Trivedi, P. Rai, H. Daumé III, and S. L. DuVall, Multiview clustering with incomplete views, in Proc. Workshop on Machine Learning for Social Computing, Whistler, Canada, 2010.
[57]
W. X. Shao, X. X. Shi, and P. S. Yu, Clustering on multiple incomplete datasets via collective kernel learning, in Proc. 13th Int. Conf. Data Mining, Dallas, TX, USA, 2013, pp. 1181-1186.
[58]
X. W. Liu, M. M. Li, L. Wang, Y. Dou, J. P. Yin, and E. Zhu, Multiple kernel k-means with incomplete kernels, in Proc. 31st AAAI Conf. Artificial Intelligence, San Francisco, CA, USA, 2017, pp. 2259-2265.
[59]
W. Tang, Z. D. Lu, and I. S. Dhillon, Clustering with multiple graphs, in Proc. 9th IEEE Int. Conf. Data Mining, Miami, FL, USA, 2009, pp. 1016-1021.
[60]
S. F. Hussain, M. Mushtaq, and Z. Halim, Multi-view document clustering via ensemble method, J. Intell. Inf. Syst., vol. 43, no. 1, pp. 81-99, 2014.
[61]
A. Serra, D. Greco, and R. Tagliaferri, Impact of different metrics on multi-view clustering, in Proc. 2015 Int. Joint Conf. Neural Networks, Killarney, Ireland, 2015, pp. 1-8.
[62]
Z. Xue, G. R. Li, S. H. Wang, C. J. Zhang, W. G. Zhang, and Q. M. Huang, GOMES: A group-aware multi-view fusion approach towards real-world image clustering, in Proc. 2015 IEEE Int. Conf. Multimedia and Expo, Turin, Italy, 2015, pp. 1-6.
[63]
F. P. Nie, J. Li, and X. L. Li, Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification, in Proc. 25th Int. Joint Conf. Artificial Intelligence, New York, NY, USA, 2016, pp. 1881-1887.
[64]
X. K. Wei, B. K. Cao, and P. S. Yu, Multi-view unsupervised feature selection by cross-diffused matrix alignment, in Proc. 2017 Int. Joint Conf. Neural Networks, Anchorage, AK, USA, 2017, pp. 494-501.
[65]
C. P. Hou, F. P. Nie, H. Tao, and D. Y. Yi, Multi-view unsupervised feature selection with adaptive similarity and view weight, IEEE Trans. Knowl. Data Eng., vol. 29, no. 9, pp. 1998-2011, 2017.
[66]
A. Hamzaoui, A. Joly, and N. Boujemaa, Multi-source shared nearest neighbours for multi-modal image clustering, Multimed. Tools Appl., vol. 51, no. 2, pp. 479-503, 2011.
[67]
S. K. Wang, Y. M. Ye, and R. Y. K. Lau, A generative model with ensemble manifold regularization for multi-view clustering, in Proc. 11th Int. Conf. Advanced Intelligent Computing Theories and Applications, Fuzhou, China, 2015, pp. 109-114.
[68]
S. K. Wang, E. K. Wang, X. T. Li, Y. M. Ye, R. Y. K. Lau, and X. L. Du, Multi-view learning via multiple graph regularized generative model, Knowl.-Based Syst., vol. 121, pp. 153-162, 2017.
[69]
Z. Y. Zhang and J. Y. Mao, Jointly sparse neighborhood graph for multi-view manifold clustering, Neurocomputing, vol. 216, pp. 28-38, 2016.
[70]
F. P. Nie, G. H. Cai, and X. L. Li, Multi-view clustering and semi-supervised classification with adaptive neighbours, in Proc. 31st AAAI Conf. Artificial Intelligence, San Francisco, CA, USA, 2017, pp. 2408-2414. t
[71]
W. Cheng, X. Zhang, Z. S. Guo, Y. B. Wu, P. F. Sullivan, and W. Wang, Flexible and robust co-regularized multi-domain graph clustering, in Proc. 19th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Chicago, IL, USA, 2013, pp. 320-328.
[72]
J. C. Ni, H. H. Tong, W. Fan, and X. Zhang, Flexible and robust multi-network clustering, in Proc. 21th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Sydney, Australia, 2015, pp. 835-844.
[73]
J. C. Ni, W. Cheng, W. Fan, and X. Zhang, Self-grouping multi-network clustering, in Proc. 16th Int. Conf. Data Mining, Barcelona, Spain, 2016, pp. 1119-1124.
[74]
R. Liu, W. Cheng, H. H. Tong, W. Wang, and X. Zhang, Robust multi-network clustering via joint cross-domain cluster alignment, in Proc. 2015 IEEE Int. Conf. Data Mining, Atlantic City, NJ, USA, 2015, pp. 291-300.
[75]
P. S. Yu and J. W. Zhang, MCD: Mutual clustering across multiple social networks, in Proc. 2015 IEEE Int. Conf. Big Data, New York, NY, USA, 2015, pp. 762-771.
[76]
C. D. Wang, J. H. Lai, and P. S. Yu, Multi-view clustering based on belief propagation, IEEE Trans. Knowl. Data Eng., vol. 28, no. 4, pp. 1007-1021, 2016.
[77]
D. Y. Zhou and C. J. C. Burges, Spectral clustering and transductive learning with multiple views, in Proc. 24th Int. Conf. Machine Learning, Corvalis, OR, USA, 2007, pp. 1159-1166.
[78]
Y. Cheng and R. L. Zhao, Multiview spectral clustering via ensemble, in Proc. 2009 IEEE Int. Conf. Granular Computing, Nanchang, China, 2009, pp. 101-106.
[79]
B. Long, P. S. Yu, and Z. F. Zhang, A general model for multiple view unsupervised learning, in Proc. 2008 SIAM Int. Conf. Data Mining, Philadelphia, PA, USA, 2008, pp. 822-833.
[80]
D. L. Niu, J. G. Dy, and M. I. Jordan, Multiple non-redundant spectral clustering views, in Proc. 27th Int. Conf. Int. Conf. Machine Learning, Haifa, Israel, 2010, pp. 831-838.
[81]
R. K. Xia, Y. Pan, L. Du, and J. Yin, Robust multi-view spectral clustering via low-rank and sparse decomposition, in Proc. 28th AAAI Conf. Artificial Intelligence, Québec City, Canada, 2014, pp. 2149-2155.
[82]
Y. Q. Li, F. P. Nie, H. Huang, and J. Z. Huang, Large-scale multi-view spectral clustering via bipartite graph, in Proc. 29th AAAI Conf. Artificial Intelligence, Austin, TX, USA, 2015, pp. 2750-2756.
[83]
N. F. Chikhi, Multi-view clustering via spectral partitioning and local refinement, Information Processing and Management, vol. 52, no. 4, pp. 618-627, 2016.
[84]
C. Y. Lu, S. C. Yan, and Z. C. Lin, Convex sparse spectral clustering: Single-view to multi-view, IEEE Trans. Image Proc., vol. 25, no. 6, pp. 2833-2843, 2016.
[85]
J. W. Son, J. Jeon, A. Lee, and S. J. Kim, Spectral clustering with brainstorming process for multi-view data, in Proc. 31st AAAI Conf. Artificial Intelligence, San Francisco, CA, USA, 2017, pp. 2548-2554.
[86]
H. C. Huang, Y. Y. Chuang, and C. S. Chen, Affinity aggregation for spectral clustering, in Proc. 2012 IEEE Conf. Computer Vision and Pattern Recognition, Providence, RI, USA, 2012, pp. 773-780.
[87]
W. X. Shao, J. W. Zhang, L. F. He, and P. S. Yu, Multi-source multi-view clustering via discrepancy penalty, in Proc. 2016 Int. Joint Conf. Neural Networks, Vancouver, Canada, 2016, pp. 2714-2721.
[88]
L. Feng, L. Cai, Y. Liu, and S. L. Liu, Multi-view spectral clustering via robust local subspace learning, Soft Comput., vol. 21, no. 8, pp. 1937-1948, 2017.
[89]
Y. Wang, W. J. Zhang, L. Wu, X. M. Lin, M. Fang, and S. R. Pan, Iterative views agreement: An iterative low-rank based structured optimization method to multi-view spectral clustering, in Proc. 25th Int. Joint Conf. Artificial Intelligence, New York, NY, USA, 2016, pp. 2153-2159.
[90]
P. Zhao, Y. Jiang, and Z. H. Zhou, Multi-view matrix completion for clustering with side information, in Proc. 21st Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining, Jeju, South Korea, 2017, pp. 403-415.
[91]
B. Long, Z. F. Zhang, X. Y. Wú, and P. S. Yu, Spectral clustering for multi-type relational data, in Proc. 23rd Int. Conf. Machine Learning, Pittsburgh, PA, USA, 2006, pp. 585-592.
[92]
X. Cai, F. P. Nie, H. Huang, and F. Kamangar, Heterogeneous image feature integration via multi-modal spectral clustering, in Proc. 2011 IEEE Conf. Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 2011, pp. 1977-1984.
[93]
J. L. Tang, X. Hu, H. J. Gao, and H. Liu, Unsupervised feature selection for multi-view data in social media, in Proc. 2013 SIAM Int. Conf. Data Mining, Austin, TX, USA, 2013, pp. 270-278.
[94]
H. B. Chen, K. M. Li, D. J. Zhu, X. Jiang, Y. X. Yuan, P. L. Lv, T. Zhang, L. Guo, D. G. Shen, and T. M. Liu, Inferring group-wise consistent multimodal brain networks via multi-view spectral clustering, IEEE Trans. Med. Imag., vol. 32, no. 9, pp. 1576-1586, 2013.
[95]
Y. H. Yang, C. Lan, X. L. Li, B. Luo, and J. Huan, Automatic social circle detection using multi-view clustering, in Proc. 23rd ACM Int. Conf. Conf. Information and Knowledge Management, Shanghai, China, 2014, pp. 1019-1028.
[96]
Y. Zhang, X. H. Hu, and X. P. Jiang, Multi-view clustering of microbiome samples by robust similarity network fusion and spectral clustering, IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 14, no. 2, pp. 264-271, 2017.
[97]
K. Chaudhuri, S. M. Kakade, K. Livescu, and K. Sridharan, Multi-view clustering via canonical correlation analysis, in Proc. 26th Annu. Int. Conf. Machine Learning, Montreal, Canada, 2009, pp. 129-136.
[98]
Y. H. Guo, Convex subspace representation learning from multi-view data, in Proc. 27th AAAI Conf. Artificial Intelligence, Bellevue, WA, USA, 2013, pp. 387-393.
[99]
X. R. Zhao, N. Evans, and J. L. Dugelay, A subspace co-training framework for multi-view clustering, Pattern Recogn. Lett., vol. 41, pp. 73-82, 2014.
[100]
Q. Deng, Y. Yang, M. He, and H. Xing, Locally adaptive feature weighting for multiview clustering, in Proc. 12th Int. FLINS Conf. Uncertainty Modelling in Knowledge Engineering and Decision Making, Roubaix, France, 2016, pp. 139-145.
[101]
X. C. Cao, C. Q. Zhang, H. Z. Fu, S. Liu, and H. Zhang, Diversity-induced multi-view subspace clustering, in Proc. 2015 IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 586-594.
[102]
Q. Wang, Y. Dou, X. W. Liu, Q. Lv, and S. J. Li, Multi-view clustering with extreme learning machine, Neurocomputing, vol. 214, pp. 483-494, 2016.
[103]
H. C. Gao, F. P. Nie, X. L. Li, and H. Huang, Multi-view subspace clustering, in Proc. 2015 IEEE Int. Conf. Computer Vision, Santiago, Chile, 2016, pp. 4238-4246.
[104]
J. L. Xu, J. W. Han, and F. P. Nie, Discriminatively embedded k-means for multi-view clustering, in Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 5356-5364.
[105]
J. L. Xu, J. W. Han, F. P. Nie, and X. L. Li, Re-weighted discriminatively embedded k-means for multi-view clustering, IEEE Trans. Image Process., vol. 26, no. 6, pp. 3016-3027, 2017.
[106]
Y. Wang, X. M. Lin, L. Wu, W. J. Zhang, and Q. Zhang, Exploiting correlation consensus: Towards subspace clustering for multi-modal data, in Proc. 22nd ACM Int. Conf. Multimedia, Orlando, FL, USA, 2014, pp. 981-984.
[107]
Y. Wang, X. M. Lin, L. Wu, W. J. Zhang, Q. Zhang, and X. D. Huang, Robust subspace clustering for multi-view data by exploiting correlation consensus, IEEE Trans. Image Process., vol. 24, no. 11, pp. 3939-3949, 2015.
[108]
Y. B. Fan, R. He, and B. G. Hu, Global and local consistent multi-view subspace clustering, in Proc. 3rd IAPR Asian Conf. Pattern Recognition, Kuala Lumpur, Malaysia, 2015, pp. 564-568.
[109]
X. Zhang, D. Phung, S. Venkatesh, D. S. Pham, and W. Q. Liu, Multi-view subspace clustering for face images, in Proc.2015 Int. Conf. Digital Image Computing: Techniques and Applications, Adelaide, Australia, 2015, pp. 1-7.
[110]
D. Wang, R. He, L. Wang, and T. N. Tan, Adaptive multi-view clustering via cross trace lasso, in Proc. 3rd IAPR Asian Conf. Pattern Recognition, Kuala Lumpur, Malaysia, 2015, pp. 559-563.
[111]
D. Wang, Q. Y. Yin, R. He, L. Wang, and T. N. Tan, Multi-view clustering via structured low-rank representation, in Proc. 24th ACM Int. on Conf. Information and Knowledge Management, Melbourne, Australia, 2015, pp. 1911-1914.
[112]
X. H. Liu, S. W. Ji, W. Glänzel, and B. De Moor, Multiview partitioning via tensor methods, IEEE Trans. Knowl. Data Eng., vol. 25, no. 5, pp. 1056-1069, 2013.
[113]
C. Q. Zhang, H. Z. Fu, S. Liu, G. C. Liu, and X. C. Cao, Low-rank tensor constrained multiview subspace clustering, in Proc. 2015 IEEE Int. Conf. Computer Vision, Santiago, Chile, 2015, pp. 1582-1590.
[114]
Y. Xie, D. C. Tao, W. S. Zhang, and L. Zhang, Multi-view subspace clustering via relaxed L1-norm of tensor multi-rank, arXiv preprint arXiv: 1610.07126, 2016.
[115]
M. Yin, J. B. Gao, S. L. Xie, and Y. Guo, Low-rank multi-view clustering in third-order tensor space, arXiv preprint arXiv: 1608.08336, 2016.
[116]
Y. Cui, X. Z. Fern, and J. G. Dy, Non-redundant multi-view clustering via orthogonalization, in Proc. 7th IEEE Int. Conf. Data Mining, Omaha, NE, USA, 2007, pp. 133-142.
[117]
Y. Cui, X. Z. Fern, and J. G. Dy, Learning multiple nonredundant clusterings, ACM Trans. Knowl. Discov.Data, vol. 4, no. 3, p. 15, 2010.
[118]
S. Günnemann, I. Färber, and T. Seidl, Multi-view clustering using mixture models in subspace projections, in Proc. 18th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Beijing, China, 2012, pp. 132-140.
[119]
E. Muller, S. Günnemann, I. Farber, and T. Seidl, Discovering multiple clustering solutions: Grouping objects in different views of the data, in Proc. 10th Int. Conf. Data Mining, Sydney, Australia, 2012, p. 1220.
[120]
S. Günnemann, I. Färber, M. Rüdiger, and T. Seidl, SMVC: Semi-supervised multi-view clustering in subspace projections, in Proc. 20th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, New York, NY, USA, 2014, pp. 253-262.
[121]
Q. Y. Yin, S. Wu, R. He, and L. Wang, Multi-view clustering via pairwise sparse subspace representation, Neurocomputing, vol. 156, pp. 12-21, 2015.
[122]
X. C. Cao, C. Q, Zhang, C. J. Zhou, H. Z. Fu, and H. Foroosh, Constrained multi-view video face clustering, IEEE Trans. Image Process., vol. 24, no. 11, pp. 4381-4393, 2015.
[123]
Q. Y. Yin, S. Wu, and L. Wang, Incomplete multi-view clustering via subspace learning, in Proc. 24th ACM Int. on Conf. Information and Knowledge Management, Melbourne, Australia, 2015, pp. 383-392.
[124]
Q. Y. Yin, S. Wu, and L. Wang, Unified subspace learning for incomplete and unlabeled multi-view data, Pattern Recogn., vol. 67, pp. 313-327, 2017.
[125]
C. Xu, D. C. Tao, and C. Xu, Multi-view learning with incomplete views, IEEE Trans. Image Process., vol. 24, no. 12, pp. 5812-5825, 2015.
[126]
D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, vol. 401, no. 6755, pp. 788-791, 1999.
[127]
C. Ding, X. F. He, and H. D. Simon, Nonnegative lagrangian relaxation of k-means and spectral clustering, in Proc. 16th European Conf. Machine Learning, Porto, Portugal, 2005, pp. 530-538.
[128]
V. P. Pauca, J. Piper, and R. J. Plemmons, Nonnegative matrix factorization for spectral data analysis, Linear Algebra Appl., vol. 416, no. 1, pp. 29-47, 2006.
[129]
D. Cai, X. F. He, J. W. Han, and T. S. Huang, Graph regularized nonnegative matrix factorization for data representation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1548-1560, 2011.
[130]
C. H. Q. Ding, T. Li, and M. I. Jordan, Convex and semi-nonnegative matrix factorizations, IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 1, pp. 45-55, 2010.
[131]
A. Cichocki and R. Zdunek, Multilayer nonnegative matrix factorisation, Electron. Lett., vol. 42, no. 16, pp. 947-948, 2006.
[132]
T. Li and C. Ding, Non-negative matrix factorizations for clustering: A survey, in Data Clustering: Algorithms and Applications, C. C. Aggarwal and C. K. Reddy, eds. Boca Raton, FL, USA: Chapman & Hall/CRC, 2014.
[133]
D. Greene and P. Cunningham, A matrix factorization approach for integrating multiple data views, in Proc. European Conf. Machine Learning and Knowledge Discovery in Databases: Part I, Bled, Slovenia, 2009, pp. 423-438.
[134]
J. L. Liu, C. Wang, J. Gao, and J. W. Han, Multi-view clustering via joint nonnegative matrix factorization, in Proc. 2013 SIAM Int. Conf. Data Mining, Austin, TX, USA, 2013, pp. 252-260.
[135]
Y. Jiang, J. Liu, Z. C. Li, and H. Q. Lu, Semi-supervised unified latent factor learning with multi-view data, Mach. Vision Appl., vol. 25, no. 7, pp. 1635-1645, 2014.
[136]
M. J. He, Y. Yang, and H. J. Wang, Learning latent features for multi-view clustering based on NMF, in Proc. Int. Joint Conf. Rough Sets, Santiago de Chile, Chile, 2016, pp. 459-469.
[137]
W. Y. Chang, C. P. Wei, and Y. C. F. Wang, Multi-view nonnegative matrix factorization for clothing image characterization, in Proc. 22nd Int. Conf. Pattern Recognition, Stockholm, Sweden, 2014, pp. 1272-1277.
[138]
W. H. Ou, S. J. Yu, G. Li, J. Lu, K. S. Zhang, and G. Xie, Multi-view non-negative matrix factorization by patch alignment framework with view consistency, Neurocomputing, vol. 204, pp. 116-124, 2016.
[139]
C. Xu, D. C. Tao, and C. Xu, Multi-view self-paced learning for clustering, in Proc. 24th Int. Conf. Artificial Intelligence, Buenos Aires, Argentina, 2015, pp. 3974-3980.
[140]
X. Cai, F. P. Nie, and H. Huang, Multi-view k-means clustering on big data, in Proc. 23rd Int. joint Conf. Artificial Intelligence, Beijing, China, 2013, pp. 2598-2604.
[141]
M. J. Qian and C. X. Zhai, Unsupervised feature selection for multi-view clustering on text-image web news data, in Proc. 23rd ACM Int. Conf. Conf. Information and Knowledge Management, Shanghai, China, 2014, pp. 1963-1966.
[142]
H. D. Zhao, Z. M. Ding, and Y. Fu, Multi-view clustering via deep matrix factorization, in Proc. 31st AAAI Conf. Artificial Intelligence, San Francisco, CA, USA, 2017, pp. 2921-2927.
[143]
H. Wang, F. P. Nie, and H. Huang, Multi-view clustering and feature learning via structured sparsity, in Proc. 30th Int. Conf. Machine Learning, Atlanta, GA, USA, 2013, pp. 352-360.
[144]
H. F. Liu, H. Y. Mao, and Y. Fu, Robust multi-view feature selection, in Proc. 16th Int. Conf. Data Mining, Barcelona, Spain, 2016, pp. 281-290.
[145]
X. L. Gong, F. W. Wang, and L. P. Huang, Weighted NMF-based multiple sparse views clustering for web items, in Proc. 21st Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining, Jeju, South Korea, 2017, pp. 416-428.
[146]
D. Hidru and A. Goldenberg, EquiNMF: Graph regularized multiview nonnegative matrix factorization, arXiv preprint arXiv: 1409.4018, 2014.
[147]
Z. F. Wang, X. W. Kong, H. Y. Fu, M. Li, and Y. J. Zhang, Feature extraction via multi-view non-negative matrix factorization with local graph regularization, in Proc. 2015 IEEE Int. Conf. Image Proc., Quebec City, Canada, 2015, pp. 3500-3504.
[148]
Z. Y. Guan, L. J. Zhang, J. Y. Peng, and J. P. Fan, Multi-view concept learning for data representation, IEEE Trans. Knowl. Data Eng., vol. 27, no. 11, pp. 3016-3028, 2015.
[149]
X. C. Zhang, L. Zhao, L. L. Zong, X. Y. Liu, and H. Yu, Multi-view clustering via multi-manifold regularized nonnegative matrix factorization, in Proc. 2014 IEEE Int. Conf. Data Mining, Shenzhen, China, 2014, pp. 1103-1108.
[150]
L. L. Zong, X. C. Zhang, L. Zhao, H. Yu, and Q. L. Zhao, Multi-view clustering via multi-manifold regularized non-negative matrix factorization, Neural Netw., vol. 88, pp. 74-89, 2017.
[151]
D. Kuang, C. Ding, and H. Park, Symmetric nonnegative matrix factorization for graph clustering, in Proc. 2012 SIAM Int. Conf. Data Mining, Anaheim, CA, USA, 2012, pp. 106-117.
[152]
X. C. Zhang, Z. X. Wang, L. L. Zong, and H. Yu, Multi-view clustering via graph regularized symmetric nonnegative matrix factorization, in Proc. 2016 IEEE Int. Conf. Cloud Computing and Big Data Analysis, Chengdu, China, 2016, pp. 109-114.
[153]
W. Xu and Y. H. Gong, Document clustering by concept factorization, in Proc. 27th Annu. Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Sheffield, UK, 2004, pp. 202-209.
[154]
H. Wang, Y. Yang, and T. R. Li, Multi-view clustering via concept factorization with local manifold regularization, in Proc. 16th Int. Conf. Data Mining, Barcelona, Spain, 2016, pp. 1245-1250.
[155]
K. Zhan, J. H. Shi, J. Wang, and F. Tian, Graph-regularized concept factorization for multi-view document clustering, Journal of Visual Communication and Image Representation, vol. 48, pp. 411-418, 2017.
[156]
W. X. Shao, L. F. He, and P. S. Yu, Multiple incomplete views clustering via weighted nonnegative matrix factorization with L2,1 regularization, in European Conf. Machine Learning and Knowledge Discovery in Databases, Porto, Portugal, 2015, pp. 318-334.
[157]
W. X. Shao, L. F. He, C. T. Lu, and P. S. Yu, Online multi-view clustering with incomplete views, arXiv preprint arXiv: 1611.00481, 2016.
[158]
W. X. Shao, L. F. He, and P. S. Yu, Clustering on multi-source incomplete data via tensor modeling and factorization, in Proc. 19th Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining, Ho Chi Minh City, Vietnam, 2015, pp. 485-497.
[159]
S. Y. Li, Y. Jiang, and Z. H. Zhou, Partial multi-view clustering, in Proc. 28th AAAI Conf. Artificial Intelligence, Québec City, Canada, 2014, pp. 1968-1974.
[160]
B. Qian, X. B. Shen, Y. Y. Gu, Z. M. Tang, and Y. H. Ding, Double constrained NMF for partial multi-view clustering, in Proc. 2016 Int. Conf. Digital Image Computing: Techniques and Applications, Gold Coast, Australia, 2016, pp. 1-7.
[161]
N. Rai, S. Negi, S. Chaudhury, and O. Deshmukh, Partial multi-view clustering using graph regularized NMF, in Proc. 23rd Int. Conf. Pattern Recognition, Cancun, Mexico, 2016, pp. 2192-2197.
[162]
X. C. Zhang, L. L. Zong, X. Y. Liu, and H. Yu, Constrained NMF-based multi-view clustering on unmapped data, in Proc. 29th AAAI Conf. Artificial Intelligence, Austin, TX, USA, 2015, pp. 3174-3180.
[163]
R. Caruana, Multitask learning, Mach. Learn., vol. 28, no. 1, pp. 41-75, 1997.
[164]
Q. Q. Gu and J. Zhou, Learning the shared subspace for multi-task clustering and transductive transfer classification, in Proc. 9th IEEE Int. Conf. Data Mining, Miami, FL, USA, 2009, pp. 159-168.
[165]
Z. H. Zhang and J. Zhou, Multi-task clustering via domain adaptation, Pattern Recogn., vol. 45, no. 1, pp. 465-473, 2012.
[166]
S. N. Xie, H. T. Lu, and Y. C. He, Multi-task co-clustering via nonnegative matrix factorization, in Proc. 21st Int. Conf. Pattern Recognition, Tsukuba, Japan, 2012, pp. 2954-2958.
[167]
S. Al-Stouhi and C. K. Reddy, Multi-task clustering using constrained symmetric non-negative matrix factorization, in Proc. 2014 SIAM Int. Conf. Data Mining, Philadelphia, PA, USA, 2014, pp. 785-793.
[168]
X. Wang, B. Y. Qian, J. P. Ye, and I. Davidson, Multi-objective multi-view spectral clustering via Pareto optimization, in Proc. 2013 SIAM Int. Conf. Data Mining, Austin, TX, USA, 2013, pp. 234-242.
[169]
A. Wahid, X. Y. Gao, and P. Andreae, Multi-view clustering of web documents using multi-objective genetic algorithm, in Proc. 2016 IEEE Congress on Evolutionary Computation, Beijing, China, 2014, pp. 2625-2632.
[170]
A. Wahid, X. Y. Gao, and P. Andreae, Multi-objective multi-view clustering ensemble based on evolutionary approach, in Proc. 2015 IEEE Congress on Evolutionary Computation, Sendai, Japan, 2015, pp. 1696-1703.
[171]
X. T. Zhang, X. C. Zhang, H. Liu, and X. Y. Liu, Multi-task clustering through instances transfer, Neurocomputing, vol. 251, pp. 145-155, 2017.
[172]
H. Shi, Y. Li, Y. H. Han, and Q. H. Hu, Cluster structure preserving unsupervised feature selection for multi-view tasks, Neurocomputing, vol. 175, pp. 686-697, 2016.
[173]
X. C. Zhang, X. T. Zhang, and H. Liu, Multi-task multi-view clustering for non-negative data, in Proc. 24th Int. Conf. Artificial Intelligence, Buenos Aires, Argentina, 2015, pp. 4055-4061.
[174]
X. T. Zhang, X. C. Zhang, H. Liu, and X. Y. Liu, Multi-task multi-view clustering, IEEE Trans. Knowl. Data Eng., vol. 28, no. 12, pp. 3324-3338, 2016.
[175]
R. Bekkerman and J. Jeon, Multi-modal clustering for multimedia collections, in Proc. 2007 IEEE Conf. Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007, pp. 1-8.
[176]
X. J. Xie and S. L. Sun, Multi-view clustering ensembles, in Proc. 2013 Int. Conf. Machine Learning and Cybernetics, Tianjin, China, 2013, pp. 51-56.
[177]
X. J. Chen, X. F. Xu, J. Z. Huang, and Y. M. Ye, Tw-k-means: Automated two-level variable weighting clustering algorithm for multiview data, IEEE Trans. Knowl. Data Eng., vol. 25, no. 4, pp. 932-944, 2013.
[178]
Y. M. Xu, C. D. Wang, and J. H. Lai, Weighted multi-view clustering with feature selection, Pattern Recogn., vol. 53, pp. 25-35, 2016.
[179]
B. Jiang, F. Y. Qiu, L. P. Wang, and Z. J. Zhang, Bi-level weighted multi-view clustering via hybrid particle swarm optimization, Inf. Process. Manage., vol. 52, no. 3, pp. 387-398, 2016.
[180]
B. Jiang, F. Y. Qiu, and L. P. Wang, Multi-view clustering via simultaneous weighting on views and features, Appl. Soft Comput., vol. 47, pp. 304-315, 2016.
[181]
G. Cleuziou, M. Exbrayat, L. Martin, and J. H. Sublemontier, CoFKM: A centralized method for multiple-view clustering, in Proc. 9th IEEE Int. Conf. Data Mining, Miami, FL, USA, 2009, pp. 752-757.
[182]
F. de A. T. de Carvalho, F. M. de Melo, and Y. Lechevallier, A multi-view relational fuzzy c-medoid vectors clustering algorithm, Neurocomputing, vol. 163, pp. 115-123, 2015.
[183]
Y. Z. Jiang, F. L. Chung, S. T. Wang, Z. H. Deng, J. Wang, and P. J. Qian, Collaborative fuzzy clustering from multiple weighted views. IEEE Trans. Cybern., vol. 45, no. 4, pp. 688-701, 2015.
[184]
Y. T. Wang and L. H. Chen, Multi-view fuzzy clustering with minimax optimization for effective clustering of data from multiple sources, Expert Syst. Appl., vol. 72, pp. 457-466, 2017.
[185]
S. F. Hussain, G. Bisson, and C. Grimal, An improved co-similarity measure for document clustering, in Proc. 9th Int. Conf. Machine Learning and Applications, Washington, DC, USA, 2010, pp. 190-197.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 August 2017
Accepted: 28 November 2017
Published: 12 April 2018
Issue date: June 2018

Copyright

© The author(s) 2018

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 61572407).

Rights and permissions

Reprints and Permission requests may be sought directly from editorial office.

Return