Journal Home > Volume 3 , Issue 1

High power conversion efficiency (PCE) flexible perovskite solar cells (FPSCs) are highly desired power sources for aerospace crafts and flexible electronics. However, their PCEs still lag far behind their rigid counterparts. Herein, we report a high PCE FPSC by controllable growth of a SnO2 electron transport layer through constant pH chemical bath deposition (CBD). The application of SnSO4 as tin source enables us to perform CBD without strong acid, which in turn makes it applicable to acid-sensitive flexible indium tin oxide. Furthermore, a mild and controllable growth environment leads to uniform particle growth and dense SnO2 deposition with full coverage and reproducibility, resulting in a record PCE of up to 25.09% (certified 24.90%) for FPSCs to date. The as-fabricated FPSCs exhibited high durability, maintaining over 90% of their initial PCE after 10000 bending cycles.


menu
Abstract
Full text
Outline
About this article

25% – Efficiency flexible perovskite solar cells via controllable growth of SnO2

Show Author's information Ningyu Ren1,Liguo Tan1,Minghao Li1,Junjie Zhou1Yiran Ye1Boxin Jiao1Liming Ding2Chenyi Yi1( )
State Key Laboratory of Power System Operation and Control, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China

† These authors contributed equally to this work.

Abstract

High power conversion efficiency (PCE) flexible perovskite solar cells (FPSCs) are highly desired power sources for aerospace crafts and flexible electronics. However, their PCEs still lag far behind their rigid counterparts. Herein, we report a high PCE FPSC by controllable growth of a SnO2 electron transport layer through constant pH chemical bath deposition (CBD). The application of SnSO4 as tin source enables us to perform CBD without strong acid, which in turn makes it applicable to acid-sensitive flexible indium tin oxide. Furthermore, a mild and controllable growth environment leads to uniform particle growth and dense SnO2 deposition with full coverage and reproducibility, resulting in a record PCE of up to 25.09% (certified 24.90%) for FPSCs to date. The as-fabricated FPSCs exhibited high durability, maintaining over 90% of their initial PCE after 10000 bending cycles.

Keywords: electron transport layer, SnO2, chemical bath deposition, Flexible perovskite solar cells

References(37)

[1]

Xu, R., Pan, F., Chen, J., Li, J., Yang, Y., Sun, Y., Zhu, X., Li, P., Cao, X., Xi, J., et al. (2024). Optimizing the buried interface in flexible perovskite solar cells to achieve over 24% efficiency and long-term stability. Advanced Materials, 36: 2308039.

[2]

Yang, L., Feng, J., Liu, Z., Duan, Y., Zhan, S., Yang, S., He, K., Li, Y., Zhou, Y., Yuan, N., et al. (2022). Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Advanced Materials, 34: 2201681.

[3]

You, S., Zeng, H., Ku, Z., Wang, X., Wang, Z., Rong, Y., Zhao, Y., Zheng, X., Luo, L., Li, L., et al. (2020). Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Advanced Materials, 32: 2003990.

[4]

Ru, P., Bi, E., Zhang, Y., Wang, Y., Kong, W., Sha, Y., Tang, W., Zhang, P., Wu, Y., Chen, W., et al. (2020). High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Advanced Energy Materials, 10: 1903487.

[5]

Meng, X., Cai, Z., Zhang, Y., Hu, X., Xing, Z., Huang, Z., Huang, Z., Cui, Y., Hu, T., Su, M., et al. (2020). Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nature Communications, 11: 3016.

[6]

Li, M., Zhou, J., Tan, L., Li, H., Liu, Y., Jiang, C., Ye, Y., Ding, L., Tress, W., Yi, C. (2022). Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. The Innovation, 3: 100310.

[7]

Li, L., Wang, Y., Wang, X., Lin, R., Luo, X., Liu, Z., Zhou, K., Xiong, S., Bao, Q., Chen, G., et al. (2022). Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nature Energy, 7: 708–717.

[8]

Lei, Y., Chen, Y., Zhang, R., Li, Y., Yan, Q., Lee, S., Yu, Y., Tsai, H., Choi, W., Wang, K., et al. (2020). A fabrication process for flexible single-crystal perovskite devices. Nature, 583: 790–795.

[9]

Chung, J., Shin, S. S., Hwang, K., Kim, G., Kim, K. W., Lee, D. S., Kim, W., Ma, B. S., Kim, Y. K., Kim, T. S., et al. (2020). Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer. Energy & Environmental Science, 13: 4854–4861.

[10]

Kumar, M. H., Yantara, N., Dharani, S., Graetzel, M., Mhaisalkar, S., Boix, P. P., Mathews, N. (2013). Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chemical Communications, 49: 11089–11091.

[11]

Wu, Y., Xu, G., Xi, J., Shen, Y., Wu, X., Tang, X., Ding, J., Yang, H., Cheng, Q., Chen, Z., et al. (2023). In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency. Joule, 7: 398–415.

[12]

Xie, L., Du, S., Li, J., Liu, C., Pu, Z., Tong, X., Liu, J., Wang, Y., Meng, Y., Yang, M., et al. (2023). Molecular dipole engineering-assisted strain release for mechanically robust flexible perovskite solar cells. Energy & Environmental Science, 16: 5423–5433.

[13]

Park, J., Kim, J., Yun, H. S., Paik, M. J., Noh, E., Mun, H. J., Kim, M. G., Shin, T. J., Seok, S. I. (2023). Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 616: 724–730.

[14]
Xu, W., Chen, B., Zhang, Z., Liu, Y., Xian, Y., Wang, X., Shi, Z., Gu, H., Fei, C., Li, N., et al. (2024). Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and minimodules. Nature Photonics, https://doi.org/10.1038/s41566-023-01373-z.
DOI
[15]

Elseman, A. M., Xu, C., Yao, Y., Elisabeth, M., Niu, L., Malavasi, L., Song, Q. L. (2020). Electron transport materials: Evolution and case study for high-efficiency perovskite solar cells. Solar RRL, 4: 2000136.

[16]

Wu, P., Wang, S., Li, X., Zhang, F. (2021). Advances in SnO2-based perovskite solar cells: From preparation to photovoltaic applications. Journal of Materials Chemistry A, 9: 19554–19588.

[17]

Park, S. Y., Zhu, K. (2022). Advances in SnO2 for efficient and stable n–i–p perovskite solar cells. Advanced Materials, 34: 2110438.

[18]

Uddin, A., Yi, H. (2022). Progress and challenges of SnO2 electron transport layer for perovskite solar cells: A critical review. Solar RRL, 6: 2100983.

[19]

Jiang, Q., Zhang, X., You, J. (2018). SnO2: A wonderful electron transport layer for perovskite solar cells. Small, 14: 1801154.

[20]

Ke, W., Fang, G., Liu, Q., Xiong, L., Qin, P., Tao, H., Wang, J., Lei, H., Li, B., Wan, J., et al. (2015). Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. Journal of the American Chemical Society, 137: 6730–6733.

[21]

Yoo, J. J., Seo, G., Chua, M. R., Park, T. G., Lu, Y., Rotermund, F., Kim, Y. K., Moon, C. S., Jeon, N. J., Correa-Baena, J. P., et al. (2021). Efficient perovskite solar cells via improved carrier management. Nature, 590: 587–593.

[22]

Min, H., Lee, D. Y., Kim, J., Kim, G., Lee, K. S., Kim, J., Paik, M. J., Kim, Y. K., Kim, K. S., Kim, M. G., et al. (2021). Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 598: 444–450.

[23]

Kim, M., Jeong, J., Lu, H., Lee, T. K., Eickemeyer, F. T., Liu, Y., Choi, I. W., Choi, S. J., Jo, Y., Kim, H. B., et al. (2022). Conformal quantum dot–SnO 2 layers as electron transporters for efficient perovskite solar cells. Science, 375: 302–306.

[24]

Zhao, Y., Ma, F., Qu, Z., Yu, S., Shen, T., Deng, H. X., Chu, X., Peng, X., Yuan, Y., Zhang, X., et al. (2022). Inactive (PbI 2) 2 RbCl stabilizes perovskite films for efficient solar cells. Science, 377: 531–534.

[25]

Halvani Anaraki, E., Kermanpur, A., Mayer, M. T., Steier, L., Ahmed, T., Turren-Cruz, S. H., Seo, J., Luo, J., Zakeeruddin, S. M., Tress, W. R., et al. (2018). Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Letters, 3: 773–778.

[26]

Lee, S. U., Park, H., Shin, H., Park, N. G. (2023). Atomic layer deposition of SnO2 using hydrogen peroxide improves the efficiency and stability of perovskite solar cells. Nanoscale, 15: 5044–5052.

[27]

Peng, Z., Zuo, Z., Qi, Q., Hou, S., Fu, Y., Zou, D. (2023). Perovskite solar cells with all functional layers deposited by magnetron sputtering. ACS Applied Energy Materials, 6: 7556–7562.

[28]

Gao, L., He, Z., Zeng, K., Liu, A., Jiang, F., Ma, T. (2023). Ultralow-temperature SnO2 electron transport layers fabricated by intermediate-controlled chemical bath deposition for highly efficient perovskite solar cells. ChemSusChem, 16: 2300765.

[29]

Tay, D. J. J., Febriansyah, B., Salim, T., Wong, Z. S., Dewi, H. A., Koh, T. M., Mathews, N. (2023). Enabling a rapid SnO2 chemical bath deposition process for perovskite solar cells. Sustainable Energy & Fuels, 7: 1302–1310.

[30]

Wu, Z., Su, J., Chai, N., Cheng, S., Wang, X., Zhang, Z., Liu, X., Zhong, H., Yang, J., Wang, Z., et al. (2023). Periodic acid modification of chemical-bath deposited SnO2 electron transport layers for perovskite solar cells and mini modules. Advanced Science, 10: 2300010.

[31]

Pawar, S. M., Pawar, B. S., Kim, J. H., Joo, O. S., Lokhande, C. D. (2011). Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films. Current Applied Physics, 11: 117–161.

[32]

Zimmermann, I., Provost, M., Mejaouri, S., Al Atem, M., Blaizot, A., Duchatelet, A., Collin, S., Rousset, J. (2022). Industrially compatible fabrication process of perovskite-based mini-modules coupling sequential slot-die coating and chemical bath deposition. ACS Applied Materials & Interfaces, 14: 11636–11644.

[33]

Zhao, Q., Liu, D., Li, Z., Zhang, B., Sun, X., Shao, Z., Chen, C., Wang, X., Hao, L., Wang, X., et al. (2022). Chemical bath deposition of mesoporous SnO2 to improve interface adhesion and device operational stability. Chemical Engineering Journal, 443: 136308.

[34]

Zhang, J., Bai, C., Dong, Y., Shen, W., Zhang, Q., Huang, F., Cheng, Y. B., Zhong, J. (2021). Batch chemical bath deposition of large-area SnO2 film with mercaptosuccinic acid decoration for homogenized and efficient perovskite solar cells. Chemical Engineering Journal, 425: 131444.

[35]

Ko, Y., Kim, Y., Lee, C., Kim, T., Kim, S., Yun, Y. J., Gwon, H. J., Lee, N. H., Jun, Y. (2020). Self-aggregation-controlled rapid chemical bath deposition of SnO2 layers and stable dark depolarization process for highly efficient planar perovskite solar cells. ChemSusChem, 13: 4051–4063.

[36]

Yang, S., Chen, S., Mosconi, E., Fang, Y., Xiao, X., Wang, C., Zhou, Y., Yu, Z., Zhao, J., Gao, Y., et al. (2019). Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 365: 473–478.

[37]

Lee, J. H., Lee, S., Kim, T., Ahn, H., Jang, G. Y., Kim, K. H., Cho, Y. J., Zhang, K., Park, J. S., Park, J. H. (2023). Interfacial α-FAPbI3 phase stabilization by reducing oxygen vacancies in SnO2– x . Joule, 7: 380–397.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 19 February 2024
Revised: 05 March 2024
Accepted: 15 March 2024
Published: 31 March 2024
Issue date: March 2024

Copyright

© The author(s) 2024.

Acknowledgements

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (2022YFB3803304), National Natural Science Foundation of China (U23B20153, U23A20138), Tsinghua University Initiative Scientific Research Program (20221080065, 20223080044), Independent Innovative Research Program (ZK20230101), Department of Electrical Engineering, Tsinghua University, State Key Laboratory of Power System and Generation Equipment (Nos. SKLD21Z03 and SKLD20M03); China Postdoctoral Science Foundation (2023M741888), The Chinese Thousand Talents Program for Young Professionals; State Grid Corporation of China, National Bio Energy Co. Ltd., grant no. 52789922000D.

Rights and permissions

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return