Journal Home > Volume 2 , Issue 3

Metal halide perovskite solar cell (PSC) has successfully distinguished itself in optoelectronic field by virtue of the sharp rise in power conversion efficiency over the past decade. The remarkable efficiency breakthrough at such a fast speed can be mainly attributed to the comprehensive study on film deposition techniques, especially the effective management of surface and interfacial defects in recent works. Herein, we summarized the current trends in performance enhancement for PSCs, with a focus on the generally applicable strategies in high-performance works, involving deposition methods, compositional engineering, additive engineering, crystallization manipulation, charge transport material selection, interfacial passivation, optical coupling effect and constructing tandem solar cells. Promising directions and perspectives are also provided.


menu
Abstract
Full text
Outline
About this article

Major strategies for improving the performance of perovskite solar cells

Show Author's information Lixiu Zhang1Hang Li2Kai Zhang3Wenzhe Li8Chuantian Zuo1George Omololu Odunmbaku6Jingde Chen9Cong Chen5Luozheng Zhang10Ru Li11Yuping Gao12Baomin Xu10Jiangzhao Chen11Yongsheng Liu12Yang Wang13Yanlin Song13Jianxin Tang9Feng Gao14Qing Zhao14Yong Peng15Mingzhen Liu16Lei Tao17Yuelong Li17Zhimin Fang18Ming Cheng7( )Kuan Sun6( )Dewei Zhao5( )Yixin Zhao4( )Shihe Yang3( )Chenyi Yi2( )Liming Ding1( )
Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
Shenzhen Graduate School, Peking University, Shenzhen 518055, China
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Sichuan University, Chengdu 610065, China
School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
Institute of New Energy Technology, Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510631, China
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
College of Chemistry, Nankai University, Tianjin 300071, China
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, China
School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China

Abstract

Metal halide perovskite solar cell (PSC) has successfully distinguished itself in optoelectronic field by virtue of the sharp rise in power conversion efficiency over the past decade. The remarkable efficiency breakthrough at such a fast speed can be mainly attributed to the comprehensive study on film deposition techniques, especially the effective management of surface and interfacial defects in recent works. Herein, we summarized the current trends in performance enhancement for PSCs, with a focus on the generally applicable strategies in high-performance works, involving deposition methods, compositional engineering, additive engineering, crystallization manipulation, charge transport material selection, interfacial passivation, optical coupling effect and constructing tandem solar cells. Promising directions and perspectives are also provided.

Keywords: Perovskite solar cells, strategies, efficiency improvement, milestones

References(276)

[1]

Cai, M., Wu, Y., Chen, H., Yang, X., Qiang, Y., Han, L. (2017). Cost-performance analysis of perovskite solar modules. Advanced Science, 4: 1600269.

[2]
National Renewable Energy Laboratory (2023). Best research-cell effiencies. Available at https://www.nrel.gov/pv/cell-efficiency.html
[3]

Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131: 6050–6051.

[4]

Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., Moon, S. J., Humphry-Baker, R., Yum, J. H., Moser, J. E., et al. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2: 591.

[5]

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338: 643–647.

[6]

Jeng, J. Y., Chiang, Y. F., Lee, M. H., Peng, S. R., Guo, T. F., Chen, P., Wen, T. C. (2013). CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced Materials, 25: 3727–3732.

[7]

Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499: 316–319.

[8]

Xiao, M., Huang, F., Huang, W., Dkhissi, Y., Zhu, Y., Etheridge, J., Gray-Weale, A., Bach, U., Cheng, Y. B., Spiccia, L. (2014). A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angewandte Chemie International Edition, 53: 9898–9903.

[9]

Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., Seok, S. I. (2014). Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials, 13: 897–903.

[10]

Ahn, N., Son, D. Y., Jang, I. H., Kang, S. M., Choi, M., Park, N. G. (2015). Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. Journal of the American Chemical Society, 137: 8696–8699.

[11]

Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., Huang, J. (2014). Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Advanced Materials, 26: 6503–6509.

[12]

Liu, M., Johnston, M. B., Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501: 395–398.

[13]

Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., Seok, S. I. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348: 1234–1237.

[14]

Yang, W. S., Park, B. W., Jung, E. H., Jeon, N. J., Kim, Y. C., Lee, D. U., Shin, S. S., Seo, J., Kim, E. K., Noh, J. H., et al. (2017). Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 356: 1376–1379.

[15]

Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., Ye, Q., Li, X., Yin, Z., You, J. (2019). Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 13: 460–466.

[16]

Jeong, M., Choi, I. W., Go, E. M., Cho, Y., Kim, M., Lee, B., Jeong, S., Jo, Y., Choi, H. W., Lee, J., et al. (2020). Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 369: 1615–1620.

[17]

Jeong, J., Kim, M., Seo, J., Lu, H., Ahlawat, P., Mishra, A., Yang, Y., Hope, M. A., Eickemeyer, F. T., Kim, M., et al. (2021). Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 592: 381–385.

[18]

Min, H., Lee, D. Y., Kim, J., Kim, G., Lee, K. S., Kim, J., Paik, M. J., Kim, Y. K., Kim, K. S., Kim, M. G., et al. (2021). Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 598: 444–450.

[19]

Zhao, Y., Ma, F., Qu, Z., Yu, S., Shen, T., Deng, H. X., Chu, X., Peng, X., Yuan, Y., Zhang, X., et al. (2022). Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 377: 531–534.

[20]

Tan, Q., Li, Z., Luo, G., Zhang, X., Che, B., Chen, G., Gao, H., He, D., Ma, G., Wang, J., et al. (2023). Inverted perovskite solar cells using dimethylacridine-based dopants. Nature, 620: 545–551.

[21]

Park, J., Kim, J., Yun, H. S., Paik, M. J., Noh, E., Mun, H. J., Kim, M. G., Shin, T. J., Seok, S. I. (2023). Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 616: 724–730.

[22]

Green, M. A., Dunlop, E. D., Siefer, G., Yoshita, M., Kopidakis, N., Bothe, K., Hao, X. (2023). Solar cell efficiency tables (Version 61). Progress in Photovoltaics: Research and Applications, 31: 3–16.

[23]

Chen, Z., Dong, Q., Liu, Y., Bao, C., Fang, Y., Lin, Y., Tang, S., Wang, Q., Xiao, X., Bai, Y., et al. (2017). Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nature Communications, 8: 1890.

[24]

Gao, F., Zhao, Y., Zhang, X., You, J. (2020). Recent progresses on defect passivation toward efficient perovskite solar cells. Advanced Energy Materials, 10: 1902650.

[25]

Hui, W., Chao, L., Lu, H., Xia, F., Wei, Q., Su, Z., Niu, T., Tao, L., Du, B., Li, D., et al. (2021). Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science, 371: 1359–1364.

[26]

Huang, F., Li, M., Siffalovic, P., Cao, G., Tian, J. (2019). From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy & Environmental Science, 12: 518–549.

[27]

Wang, X., Han, Z., Gao, F., Luo, C., Zhao, Q. (2022). Facet orientation and intermediate phase regulation via a green antisolvent for high-performance perovskite solar cells. Solar RRL, 6: 2100973.

[28]

Taylor, A. D., Sun, Q., Goetz, K. P., An, Q., Schramm, T., Hofstetter, Y., Litterst, M., Paulus, F., Vaynzof, Y. (2021). A general approach to high-efficiency perovskite solar cells by any antisolvent. Nature Communications, 12: 1878.

[29]

Xiang, W., Zhang, J., Liu, S., Albrecht, S., Hagfeldt, A., Wang, Z. (2022). Intermediate phase engineering of halide perovskites for photovoltaics. Joule, 6: 315–339.

[30]

Bu, T., Li, J., Li, H., Tian, C., Su, J., Tong, G., Ono, L. K., Wang, C., Lin, Z., Chai, N., et al. (2021). Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 372: 1327–1332.

[31]

Han, Y., Xie, H., Lim, E. L., Bi, D. (2022). Review of two-step method for lead halide perovskite solar cells. Solar RRL, 6: 2101007.

[32]

Gao, F., Luo, C., Wang, X., Zhao, Q. (2021). Alkali metal chloride-doped water-based TiO2 for efficient and stable planar perovskite photovoltaics exceeding 23% efficiency. Small Methods, 5: e2100856.

[33]

Im, J. H., Jang, I. H., Pellet, N., Grätzel, M., Park, N. G. (2014). Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotechnology, 9: 927–932.

[34]

Zhao, Y., Tan, H., Yuan, H., Yang, Z., Fan, J. Z., Kim, J., Voznyy, O., Gong, X., Quan, L. N., Tan, C. S., et al. (2018). Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature Communications, 9: 1607.

[35]
Li, Q., Zhao, Y., Fu, R., Zhou, W., Zhao, Y., Liu, X., Yu, D., Zhao, Q. (2018). Efficient perovskite solar cells fabricated through CsCl-enhanced PbI2 precursor via sequential deposition. Advanced Materials: e1803095.
DOI
[36]

Li, Q., Zhao, Y., Zhou, W., Han, Z., Fu, R., Lin, F., Yu, D., Zhao, Q. (2019). Perovskite solar cells: Halogen engineering for operationally stable perovskite solar cells via sequential deposition. Advanced Energy Materials, 9: 1902239.

[37]

Xie, L., Lin, K., Lu, J., Feng, W., Song, P., Yan, C., Liu, K., Shen, L., Tian, C., Wei, Z. (2019). Efficient and stable low-bandgap perovskite solar cells enabled by a CsPbBr3-cluster assisted bottom-up crystallization approach. Journal of the American Chemical Society, 141: 20537–20546.

[38]

Alharbi, E. A., Baumeler, T. P., Krishna, A., Alyamani, A. Y., Eickemeyer, F. T., Ouellette, O., Pan, L., Alghamdi, F. S., Wang, Z., Alotaibi, M. H., et al. (2021). Formation of high-performance multi-cation halide perovskites photovoltaics by δ-CsPbI3/δ-RbPbI3 seed-assisted heterogeneous nucleation. Advanced Energy Materials, 11: 2003785.

[39]

Zhou, T., Xu, Z., Wang, R., Dong, X., Fu, Q., Liu, Y. (2022). Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Advanced Materials, 34: e2200705.

[40]

Shen, Z., Han, Q., Luo, X., Shen, Y., Wang, T., Zhang, C., Wang, Y., Chen, H., Yang, X., Zhang, Y., et al. (2022). Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells. Energy & Environmental Science, 15: 1078–1085.

[41]

Li, W., Rothmann, M. U., Zhu, Y., Chen, W., Yang, C., Yuan, Y., Choo, Y. Y., Wen, X., Cheng, Y. B., Bach, U., et al. (2021). The critical role of composition-dependent intragrain planar defects in the performance of MA1– x FA x PbI3 perovskite solar cells. Nature Energy, 6: 624–632.

[42]

Luo, C., Zheng, G., Gao, F., Wang, X., Zhao, Y., Gao, X., Zhao, Q. (2022). Facet orientation tailoring via 2D-seed- induced growth enables highly efficient and stable perovskite solar cells. Joule, 6: 240–257.

[43]

Li, D., Zhang, D., Lim, K. S., Hu, Y., Rong, Y., Mei, A., Park, N. G., Han, H. (2021). A review on scaling up perovskite solar cells. Advanced Functional Materials, 31: 2008621.

[44]

Zuo, C., Ding, L. (2021). Drop-casting to make efficient perovskite solar cells under high humidity. Angewandte Chemie International Edition, 60: 11242–11246.

[45]

Barrows, A. T., Pearson, A. J., Kwak, C. K., Dunbar, A. D. F., Buckley, A. R., Lidzey, D. G. (2014). Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 7: 2944–2950.

[46]

Wei, Z., Chen, H., Yan, K., Yang, S. (2014). Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angewandte Chemie International Edition, 53: 13239–13243.

[47]

Li, J., Wang, H., Chin, X. Y., Dewi, H. A., Vergeer, K., Goh, T. W., Lim, J. W. M., Lew, J. H., Loh, K. P., Soci, C., et al. (2020). Highly efficient thermally co-evaporated perovskite solar cells and mini-modules. Joule, 4: 1035–1053.

[48]

Zhang, Y., Zhang, Z., Yu, W., He, Y., Chen, Z., Xiao, L., Shi, J. J., Guo, X., Wang, S., Qu, B. (2022). Lead-free double perovskite Cs2AgIn0.9Bi0.1Cl6 quantum dots for white light-emitting diodes. Advanced Science, 9: e2102895.

[49]

Li, H., Zhou, J., Tan, L., Li, M., Jiang, C., Wang, S., Zhao, X., Liu, Y., Zhang, Y., Ye, Y., et al. (2022). Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Science Advances, 8: eabo7422.

[50]

Qiu, L., He, S., Liu, Z., Ono, L. K., Son, D. Y., Liu, Y., Tong, G., Qi, Y. (2020). Rapid hybrid chemical vapor deposition for efficient and hysteresis-free perovskite solar modules with an operation lifetime exceeding 800 hours. Journal of Materials Chemistry A, 8: 23404–23412.

[51]

Luo, X., Shen, Z., Shen, Y., Su, Z., Gao, X., Wang, Y., Han, Q., Han, L. (2022). Effective passivation with self-organized molecules for perovskite photovoltaics. Advanced Materials, 34: e2202100.

[52]

Liu, L., Zuo, C., Ding, L. (2021). Self-spreading produces highly efficient perovskite solar cells. Nano Energy, 90: 106509.

[53]

Bishop, J. E., Read, C. D., Smith, J. A., Routledge, T. J., Lidzey, D. G. (2020). Fully spray-coated triple-cation perovskite solar cells. Scientific Reports, 10: 6610.

[54]

Huang, Z., Hu, X., Zhao, Z., Meng, X., Su, M., Xue, T., Chi, J., Xie, H., Cai, Z., Chen, Y., et al. (2021). Releasing nanocapsules for high-throughput printing of stable perovskite solar cells. Advanced Energy Materials, 11: 2101291.

[55]

Liang, Q., Liu, K., Sun, M., Ren, Z., Fong, P. W. K., Huang, J., Qin, M., Wu, Z., Shen, D., Lee, C. S., et al. (2022). Manipulating crystallization kinetics in high-performance blade-coated perovskite solar cells via cosolvent-assisted phase transition. Advanced Materials, 34: e2200276.

[56]

Du, M., Zhu, X., Wang, L., Wang, H., Feng, J., Jiang, X., Cao, Y., Sun, Y., Duan, L., Jiao, Y., et al. (2020). High-pressure nitrogen-extraction and effective passivation to attain highest large-area perovskite solar module efficiency. Advanced Materials, 32: e2004979.

[57]

Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., Seok, S. I. (2013). Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters, 13: 1764–1769.

[58]

Wang, S., Li, X., Wu, J., Wen, W., Qi, Y. (2018). Fabrication of efficient metal halide perovskite solar cells by vacuum thermal evaporation: A progress review. Current Opinion in Electrochemistry, 11: 130–140.

[59]

Jiang, Y., He, S., Qiu, L., Zhao, Y., Qi, Y. (2022). Perovskite solar cells by vapor deposition based and assisted methods. Applied Physics Reviews, 9: 021305.

[60]

Ávila, J., Momblona, C., Boix, P. P., Sessolo, M., Bolink, H. J. (2017). Vapor-deposited perovskites: The route to high-performance solar cell production. Joule, 1: 431–442.

[61]

Momblona, C., Gil-Escrig, L., Bandiello, E., Hutter, E. M., Sessolo, M., Lederer, K., Blochwitz-Nimoth, J., Bolink, H. J. (2016). Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy & Environmental Science, 9: 3456–3463.

[62]

Zhu, X., Yang, D., Yang, R., Yang, B., Yang, Z., Ren, X., Zhang, J., Niu, J., Feng, J., Liu, S. F. (2017). Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation. Nanoscale, 9: 12316–12323.

[63]

Kottokkaran, R., Gaonkar, H. A., Abbas, H. A., Noack, M., Dalal, V. (2019). Performance and stability of co-evaporated vapor deposited perovskite solar cells. Journal of Materials Science: Materials in Electronics, 30: 5487–5494.

[64]

Chiang, Y. H., Anaya, M., Stranks, S. D. (2020). Multisource vacuum deposition of methylammonium-free perovskite solar cells. ACS Energy Letters, 5: 2498–2504.

[65]

Abbas, H. A., Kottokkaran, R., Ganapathy, B., Samiee, M., Zhang, L., Kitahara, A., Noack, M., Dalal, V. L. (2015). High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer. APL Materials, 3: 016105.

[66]

Tavakoli, M. M., Simchi, A., Mo, X., Fan, Z. (2017). High-quality organohalide lead perovskite films fabricated by layer-by-layer alternating vacuum deposition for high efficiency photovoltaics. Materials Chemistry Frontiers, 1: 1520–1525.

[67]

Gil-Escrig, L., Momblona, C., La-Placa, M. G., Boix, P. P., Sessolo, M., Bolink, H. J. (2018). Vacuum deposited triple-cation mixed-halide perovskite solar cells. Advanced Energy Materials, 8: 1703506.

[68]

Roß, M., Severin, S., Stutz, M. B., Wagner, P., Köbler, H., Favin-Lévêque, M., Al-Ashouri, A., Korb, P., Tockhorn, P., Abate, A., et al. (2021). Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Advanced Energy Materials, 11: 2101460.

[69]

Lohmann, K. B., Motti, S. G., Oliver, R. D. J., Ramadan, A. J., Sansom, H. C., Yuan, Q., Elmestekawy, K. A., Patel, J. B., Ball, J. M., Herz, L. M., et al. (2022). Solvent-free method for defect reduction and improved performance of p-i-n vapor-deposited perovskite solar cells. ACS Energy Letters, 7: 1903–1911.

[70]

Li, J., Dewi, H. A., Wang, H., Zhao, J., Tiwari, N., Yantara, N., Malinauskas, T., Getautis, V., Savenije, T. J., Mathews, N., et al. (2021). Co-evaporated MAPbI3 with graded Fermi levels enables highly performing, scalable, and flexible p-i-n perovskite solar cells. Advanced Functional Materials, 31: 2103252.

[71]

Roß, M., Gil-Escrig, L., Al-Ashouri, A., Tockhorn, P., Jošt, M., Rech, B., Albrecht, S. (2020). Co-evaporated p-i-n perovskite solar cells beyond 20% efficiency: Impact of substrate temperature and hole-transport layer. ACS Applied Materials & Interfaces, 12: 39261–39272.

[72]

Feng, J., Jiao, Y., Wang, H., Zhu, X., Sun, Y., Du, M., Cao, Y., Yang, D., Liu, S. (2021). High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells. Energy & Environmental Science, 14: 3035–3043.

[73]

Chen, C. W., Kang, H. W., Hsiao, S. Y., Yang, P. F., Chiang, K. M., Lin, H. W. (2014). Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Advanced Materials, 26: 6647–6652.

[74]

Hsiao, S. Y., Lin, H. L., Lee, W. H., Tsai, W. L., Chiang, K. M., Liao, W. Y., Ren-Wu, C. Z., Chen, C. Y., Lin, H. W. (2016). Efficient all-vacuum deposited perovskite solar cells by controlling reagent partial pressure in high vacuum. Advanced Materials, 28: 7013–7019.

[75]

Tong, G., Li, H., Li, G., Zhang, T., Li, C., Yu, L., Xu, J., Jiang, Y., Shi, Y., Chen, K. (2018). Mixed cation perovskite solar cells by stack-sequence chemical vapor deposition with self-passivation and gradient absorption layer. Nano Energy, 48: 536–542.

[76]

Luo, L., Zhang, Y., Chai, N., Deng, X., Zhong, J., Huang, F., Peng, Y., Ku, Z., Cheng, Y.B. (2018). Large-area perovskite solar cells with Cs x FA1– x PbI3– y Br y thin films deposited by a vapor–solid reaction method. Journal of Materials Chemistry A, 6: 21143–21148.

[77]

Luo, L., Ku, Z., Li, W., Zheng, X., Li, X., Huang, F., Peng, Y., Ding, L., Cheng, Y. B. (2021). 19.59% Efficiency from Rb0.04-Cs0.14FA0.86Pb(Br y I1− y )3 perovskite solar cells made by vapor-solid reaction technique. Science Bulletin, 66: 962–964.

[78]

Zhang, G., Luo, W., Dai, H., Li, N., Li, Y., Peng, Y., Huang, F., Ku, Z., Cheng, Y.B. (2022). Ultrafast growth of high-quality Cs0.14FA0.86Pb(Br x I1– x )3 thin films achieved using super-close-space sublimation. ACS Applied Energy Materials, 5: 5797–5803.

[79]

Leyden, M. R., Ono, L. K., Raga, S. R., Kato, Y., Wang, S., Qi, Y. (2014). High performance perovskite solar cells by hybrid chemical vapor deposition. Journal of Materials Chemistry A, 2: 18742–18745.

[80]

Qiu, L., He, S., Jiang, Y., Son, D. Y., Ono, L. K., Liu, Z., Kim, T., Bouloumis, T., Kazaoui, S., Qi, Y. (2019). Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm2 approaching 10% efficiency. Journal of Materials Chemistry A, 7: 6920–6929.

[81]

Fei, C., Guo, L., Li, B., Zhang, R., Fu, H., Tian, J., Cao, G. (2016). Controlled growth of textured perovskite films towards high performance solar cells. Nano Energy, 27: 17–26.

[82]

Ma, Z., Liu, Z., Lu, S., Wang, L., Feng, X., Yang, D., Wang, K., Xiao, G., Zhang, L., Redfern, S. A. T., et al. (2018). Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nature Communications, 9: 4506.

[83]

Guo, F., Qiu, S., Hu, J., Wang, H., Cai, B., Li, J., Yuan, X., Liu, X., Forberich, K., Brabec, C. J., et al. (2019). A generalized crystallization protocol for scalable deposition of high-quality perovskite thin films for photovoltaic applications. Advanced Science, 6: 1901067.

[84]

Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J., Leijtens, T., Herz, L. M., Petrozza, A., Snaith, H. J. (2013). Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342: 341–344.

[85]

Lu, H., Krishna, A., Zakeeruddin, S. M., Grätzel, M., Hagfeldt, A. (2020). Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. iScience, 23: 101359.

[86]

Lee, J. W., Kim, D. H., Kim, H. S., Seo, S. W., Cho, S. M., Park, N. G. (2015). Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Advanced Energy Materials, 5: 1501310.

[87]

Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., Snaith, H. J. (2014). Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 7: 982–988.

[88]

Pang, S., Hu, H., Zhang, J., Lv, S., Yu, Y., Wei, F., Qin, T., Xu, H., Liu, Z., Cui, G. (2014). NH2CH═NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chemistry of Materials, 26: 1485–1491.

[89]

Yang, C., Wang, H., Miao, Y., Chen, C., Zhai, M., Bao, Q., Ding, X., Yang, X., Cheng, M. (2021). Interfacial molecular doping and energy level alignment regulation for perovskite solar cells with efficiency exceeding 23%. ACS Energy Letters, 6: 2690–2696.

[90]

Luo, D., Yang, W., Wang, Z., Sadhanala, A., Hu, Q., Su, R., Shivanna, R., Trindade, G. F., Watts, J. F., Xu, Z., et al. (2018). Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 360: 1442–1446.

[91]

Min, H., Kim, M., Lee, S. U., Kim, H., Kim, G., Choi, K., Lee, J. H., Seok, S. I. (2019). Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 366: 749–753.

[92]

Kim, M., Kim, G. H., Lee, T. K., Choi, I. W., Choi, H. W., Jo, Y., Yoon, Y. J., Kim, J. W., Lee, J., Huh, D., et al. (2019). Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 3: 2179–2192.

[93]

Lu, H., Liu, Y., Ahlawat, P., Mishra, A., Tress, W. R., Eickemeyer, F. T., Yang, Y., Fu, F., Wang, Z., Avalos, C. E., et al. (2020). Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science, 370: eabb8985.

[94]

Ahmad, S., Fu, P., Yu, S., Yang, Q., Liu, X., Wang, X., Wang, X., Guo, X., Li, C. (2019). Dion-jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule, 3: 794–806.

[95]

Chen, P., Bai, Y., Wang, S., Lyu, M., Yun, J. H., Wang, L. (2018). Perovskite solar cells: in situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Advanced Functional Materials, 28: 1706923.

[96]

Chen, J., Seo, J. Y., Park, N. G. (2018). Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN interface. Advanced Energy Materials, 8: 1702714.

[97]

Ma, C., Shen, D., Huang, B., Li, X., Chen, W. C., Lo, M. F., Wang, P., Lam, M. H. W., Lu, Y., Ma, B., et al. (2019). High performance low-dimensional perovskite solar cells based on a one dimensional lead iodide perovskite. Journal of Materials Chemistry A, 7: 8811–8817.

[98]

Zhan, Y., Yang, F., Chen, W., Chen, H., Shen, Y., Li, Y., Li, Y. (2021). Elastic lattice and excess charge carrier manipulation in 1D-3D perovskite solar cells for exceptionally long-term operational stability. Advanced Materials, 33: e2105170.

[99]

Wu, G., Liang, R., Ge, M., Sun, G., Zhang, Y., Xing, G. (2022). Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Advanced Materials, 34: 2105635.

[100]

Mahmud, M. A., Duong, T., Yin, Y., Pham, H. T., Walter, D., Peng, J., Wu, Y., Li, L., Shen, H., Wu, N., et al. (2020). Double-sided surface passivation of 3D perovskite film for high-efficiency mixed-dimensional perovskite solar cells. Advanced Functional Materials, 30: 1907962.

[101]

Chen, S., Shen, N., Zhang, L., Zhang, L., Cheung, S. H., Chen, S., So, S. K., Xu, B. (2020). Understanding the interplay of binary organic spacer in ruddlesden–popper perovskites toward efficient and stable solar cells. Advanced Functional Materials, 30: 1907759.

[102]

Azmi, R., Ugur, E., Seitkhan, A., Aljamaan, F., Subbiah, A. S., Liu, J., Harrison, G. T., Nugraha, M. I., Eswaran, M. K., Babics, M., et al. (2022). Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science, 376: 73–77.

[103]

Wang, Z., Lin, Q., Chmiel, F. P., Sakai, N., Herz, L. M., Snaith, H. J. (2017). Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy, 2: 17135.

[104]

Yuan, S., Xian, Y., Long, Y., Cabot, A., Li, W., Fan, J. (2021). Chromium-based metal–organic framework as A-site cation in CsPbI2Br perovskite solar cells. Advanced Functional Materials, 31: 2106233.

[105]

Mahmud, M. A., Duong, T., Peng, J., Wu, Y., Shen, H., Walter, D., Nguyen, H. T., Mozaffari, N., Tabi, G. D., Catchpole, K. R., et al. (2022). Origin of efficiency and stability enhancement in high-performing mixed dimensional 2D-3D perovskite solar cells: A review. Advanced Functional Materials, 32: 2009164.

[106]

Jang, Y. W., Lee, S., Yeom, K. M., Jeong, K., Choi, K., Choi, M., Noh, J. H. (2021). Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nature Energy, 6: 63–71.

[107]

Fan, J., Ma, Y., Zhang, C., Liu, C., Li, W., Schropp, R. E. I., Mai, Y. (2018). Thermodynamically self-healing 1D–3D hybrid perovskite solar cells. Advanced Energy Materials, 8: 1703421.

[108]

Liu, P., Xian, Y., Yuan, W., Long, Y., Liu, K., Rahman, N. U., Li, W., Fan, J. (2020). Lattice-matching structurally-stable 1D@3D perovskites toward highly efficient and stable solar cells. Advanced Energy Materials, 10: 1903654.

[109]

Kong, T., Xie, H., Zhang, Y., Song, J., Li, Y., Lim, E. L., Hagfeldt, A., Bi, D. (2021). Perovskitoid-templated formation of a 1D@3D perovskite structure toward highly efficient and stable perovskite solar cells. Advanced Energy Materials, 11: 2101018.

[110]

Long, Y., Xian, Y., Yuan, S., Liu, K., Sun, M., Guo, Y., Rahman, N. U., Fan, J., Li, W. (2021). π-π conjugate structure enabling the channel construction of carrier-facilitated transport in 1D-3D multidimensional CsPbI2Br solar cells with high stability. Nano Energy, 89: 106340.

[111]

Liu, K., Yuan, S., Xian, Y., Long, Y., Yao, Q., Rahman, N. U., Guo, Y., Sun, M., Xue, Q., Yip, H. L., et al. (2021). Architecturing 1D-2D-3D multidimensional coupled CsPbI2 Br perovskites toward highly effective and stable solar cells. Small, 17: e2100888.

[112]

Yang, N., Zhu, C., Chen, Y., Zai, H., Wang, C., Wang, X., Wang, H., Ma, S., Gao, Z., Wang, X., et al. (2020). An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation. Energy & Environmental Science, 13: 4344–4352.

[113]

Li, W., Zhang, C., Ma, Y., Liu, C., Fan, J., Mai, Y., Schropp, R. E. I. (2018). In situ induced core/shell stabilized hybrid perovskites via gallium(iii) acetylacetonate intermediate towards highly efficient and stable solar cells. Energy & Environmental Science, 11: 286–293.

[114]

Bai, F., Zhang, J., Yuan, Y., Liu, H., Li, X., Chueh, C. C., Yan, H., Zhu, Z., Jen, A. K. (2019). A 0D/3D heterostructured all-inorganic halide perovskite solar cell with high performance and enhanced phase stability. Advanced Materials, 31: e1904735.

[115]

Zhu, J., He, B., Yao, X., Chen, H., Duan, Y., Duan, J., Tang, Q. (2022). Phase control of Cs-Pb-Br derivatives to suppress 0D Cs4 PbBr6 for high-efficiency and stable all-inorganic CsPbBr3 perovskite solar cells. Small, 18: e2106323.

[116]

Fan, Y., Wang, X., Miao, Y., Zhao, Y. (2021). The chemical design in high-performance lead halide perovskite: Additive vs dopant. Journal of Physical Chemistry Letters, 12: 11636–11644.

[117]

Zhao, Y., Zhu, K. (2014). CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: Structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. Journal of Physical Chemistry C, 118: 9412–9418.

[118]

Zhao, Y., Zhu, K. (2014). Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. Journal of the American Chemical Society, 136: 12241–12244.

[119]

Zuo, C., Tan, L., Dong, H., Chen, J., Hao, F., Yi, C., Ding, L. (2023). Natural drying yields efficient perovskite solar cells. DeCarbon, 2: 100020.

[120]

Zuo, C., Ding, L. (2014). An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale, 6: 9935–9938.

[121]

Zhao, Y., Zhu, K. (2015). Three-step sequential solution deposition of PbI2-free CH3NH3PbI3 perovskite. Journal of Materials Chemistry A, 3: 9086–9091.

[122]

Ke, W., Spanopoulos, I., Stoumpos, C. C., Kanatzidis, M. G. (2018). Myths and reality of HPbI3 in halide perovskite solar cells. Nature Communications, 9: 4785.

[123]

Wang, Y., Liu, X., Zhang, T., Wang, X., Kan, M., Shi, J., Zhao, Y. (2019). The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: Additive or dopant. Angewandte Chemie International Edition, 58: 16691–16696.

[124]

Tan, S., Yu, B., Cui, Y., Meng, F., Huang, C., Li, Y., Chen, Z., Wu, H., Shi, J., Luo, Y., Li, D., et al. (2022). Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics. Angewandte Chemie International Edition, 61: e202201300.

[125]

Kim, D. H., Muzzillo, C. P., Tong, J., Palmstrom, A. F., Larson, B. W., Choi, C., Harvey, S. P., Glynn, S., Whitaker, J. B., Zhang, F., et al. (2019). Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule, 3: 1734–1745.

[126]

Abdi-Jalebi, M., Andaji-Garmaroudi, Z., Cacovich, S., Stavrakas, C., Philippe, B., Richter, J. M., Alsari, M., Booker, E. P., Hutter, E. M., Pearson, A. J., et al. (2018). Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature, 555: 497–501.

[127]

Bai, S., Da, P., Li, C., Wang, Z., Yuan, Z., Fu, F., Kawecki, M., Liu, X., Sakai, N., Wang, J. T. W., et al. (2019). Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 571: 245–250.

[128]

Deng, Y., Zheng, X., Bai, Y., Wang, Q., Zhao, J., Huang, J. (2018). Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 3: 560–566.

[129]

Chen, S., Dai, X., Xu, S., Jiao, H., Zhao, L., Huang, J. (2021). Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science, 373: 902–907.

[130]

Bi, D., Yi, C., Luo, J., Décoppet, J. D., Zhang, F., Zakeeruddin, S. M., Li, X., Hagfeldt, A., Grätzel, M. (2016). Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy, 1: 16142.

[131]

Peng, J., Kremer, F., Walter, D., Wu, Y., Ji, Y., Xiang, J., Liu, W., Duong, T., Shen, H., Lu, T., et al. (2022). Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature, 601: 573–578.

[132]

Kim, J. E., Kim, S. S., Zuo, C., Gao, M., Vak, D., Kim, D. Y. (2019). Humidity-tolerant roll-to-roll fabrication of perovskite solar cells via polymer-additive-assisted hot slot die deposition. Advanced Functional Materials, 29: 1809194.

[133]

Zhao, Y., Zhu, K. (2014). Solution chemistry engineering toward high-efficiency perovskite solar cells. Journal of Physical Chemistry Letters, 5: 4175–4186.

[134]

Chen, H., Wei, Z., He, H., Zheng, X., Wong, K. S., Yang, S. (2016). Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%. Advanced Energy Materials, 6: 1502087.

[135]

Bai, Y., Xiao, S., Hu, C., Zhang, T., Meng, X., Li, Q., Yang, Y., Wong, K. S., Chen, H., Yang, S. (2017). A pure and stable intermediate phase is key to growing aligned and vertically monolithic perovskite crystals for efficient PIN planar perovskite solar cells with high processibility and stability. Nano Energy, 34: 58–68.

[136]

Yan, K., Long, M., Zhang, T., Wei, Z., Chen, H., Yang, S., Xu, J. (2015). Hybrid halide perovskite solar cell precursors: Colloidal chemistry and coordination engineering behind device processing for high efficiency. Journal of the American Chemical Society, 137: 4460–4468.

[137]

Zhang, K., Wang, Z., Wang, G., Wang, J., Li, Y., Qian, W., Zheng, S., Xiao, S., Yang, S. (2020). A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity. Nature Communications, 11: 1006.

[138]

Yang, G., Zhang, H., Li, G., Fang, G. (2019). Stabilizer-assisted growth of formamdinium-based perovskites for highly efficient and stable planar solar cells with over 22% efficiency. Nano Energy, 63: 103835.

[139]

Wu, C., Wang, D., Zhang, Y., Gu, F., Liu, G., Zhu, N., Luo, W., Han, D., Guo, X., Qu, B., et al. (2019). FAPbI3 flexible solar cells with a record efficiency of 19.38% fabricated in air via ligand and additive synergetic process. Advanced Functional Materials, 29: 1902974.

[140]

Tavakoli, M. M., Saliba, M., Yadav, P., Holzhey, P., Hagfeldt, A., Zakeeruddin, S. M., Grätzel, M. (2019). Synergistic crystal and interface engineering for efficient and stable perovskite photovoltaics. Advanced Energy Materials, 9: 1802646.

[141]

Xie, F., Chen, C. C., Wu, Y., Li, X., Cai, M., Liu, X., Yang, X., Han, L. (2017). Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy & Environmental Science, 10: 1942–1949.

[142]

Meng, X., Wang, Z., Qian, W., Zhu, Z., Zhang, T., Bai, Y., Hu, C., Xiao, S., Yang, Y., Yang, S. (2019). Excess cesium iodide induces spinodal decomposition of CsPbI2Br perovskite films. Journal of Physical Chemistry Letters, 10: 194–199.

[143]

Meng, X., Li, Y., Qu, Y., Chen, H., Jiang, N., Li, M., Xue, D. J., Hu, J. S., Huang, H., Yang, S. (2021). Crystallization kinetics modulation of FASnI3 films with pre-nucleation clusters for efficient lead-free perovskite solar cells. Angewandte Chemie International Edition, 60: 3693–3698.

[144]

Bu, T., Ono, L. K., Li, J., Su, J., Tong, G., Zhang, W., Liu, Y., Zhang, J., Chang, J., Kazaoui, S., et al. (2022). Modulating crystal growth of formamidinium-caesium perovskites for over 200 Cm2 photovoltaic sub-modules. Nature Energy, 7: 528–536.

[145]

Kim, Y. Y., Yang, T. Y., Suhonen, R., Kemppainen, A., Hwang, K., Jeon, N. J., Seo, J. (2020). Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nature Communications, 11: 5146.

[146]

Wang, Y., Wu, J., Zhang, P., Liu, D., Zhang, T., Ji, L., Gu, X., Chen, Z. D., Li, S. (2017). Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells. Nano Energy, 39: 616–625.

[147]

Gedamu, D., Asuo, I. M., Benetti, D., Basti, M., Ka, I., Cloutier, S. G., Rosei, F., Nechache, R. (2018). Solvent-antisolvent ambient processed large grain size perovskite thin films for high-performance solar cells. Scientific Reports, 8: 12885.

[148]

Lou, L., Liu, T., Xiao, J., Xiao, S., Long, X., Zheng, S., Yang, S. (2020). Controlling apparent coordinated solvent number in the perovskite intermediate phase film for developing large-area perovskite solar modules. Energy Technology, 8: 1900972.

[149]

Bai, Y., Xiao, S., Hu, C., Zhang, T., Meng, X., Lin, H., Yang, Y., Yang, S. (2017). Dimensional engineering of a graded 3D–2D halide perovskite interface enables ultrahigh Voc enhanced stability in the p-i-n photovoltaics. Advanced Energy Materials, 7: 1701038.

[150]

Liu, Q., Jiang, Y., Jin, K., Qin, J., Xu, J., Li, W., Xiong, J., Liu, J., Xiao, Z., Sun, K., et al. (2020). 18% Efficiency organic solar cells. Science Bulletin, 65: 272–275.

[151]

Al-Dainy, G., Watanabe, F., Biris, A. S., Bourdo, S. E. (2021). Surface passivation of triple-cation perovskite via organic halide-saturated antisolvent for inverted planar solar cells. ACS Applied Energy Materials, 4: 3297–3309.

[152]

Zhou, L., Chang, J., Liu, Z., Sun, X., Lin, Z., Chen, D., Zhang, C., Zhang, J., Hao, Y. (2018). Enhanced planar perovskite solar cell efficiency and stability using a perovskite/PCBM heterojunction formed in one step. Nanoscale, 10: 3053–3059.

[153]

Zhang, F., Shi, W., Luo, J., Pellet, N., Yi, C., Li, X., Zhao, X., Dennis, T. J. S., Li, X., Wang, S., et al. (2017). Isomer-pure bis-PCBM-assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability. Advanced Materials, 29: 1606806.

[154]

Niu, T., Lu, J., Munir, R., Li, J., Barrit, D., Zhang, X., Hu, H., Yang, Z., Amassian, A., Zhao, K., et al. (2018). Stable high-performance perovskite solar cells via grain boundary passivation. Advanced Materials, 30: e1706576.

[155]

Li, F., Yuan, J., Ling, X., Zhang, Y., Yang, Y., Cheung, S. H., Ho, C. H. Y., Gao, X., Ma, W. (2018). A universal strategy to utilize polymeric semiconductors for perovskite solar cells with enhanced efficiency and longevity. Advanced Functional Materials, 28: 1706377 [166] Li, F., Yuan, J., Ling, X., Zhang, Y., Yang, Y., Hang Cheung, S., Hoi Yi Ho, C., Gao, X., Ma, W. (2018). A universal strategy to utilize polymeric semiconductors for perovskite solar cells with enhanced effciency and longevity. Advanced Functional Materials, 28: 1706377.

[156]

Leijtens, T., Eperon, G. E., Pathak, S., Abate, A., Lee, M. M., Snaith, H. J. (2013). Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nature Communications, 4: 2885.

[157]

Liu, D., Kelly, T. L. (2014). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 8: 133–138.

[158]

Shin, S. S., Yeom, E. J., Yang, W. S., Hur, S., Kim, M. G., Im, J., Seo, J., Noh, J. H., Seok, S. I. (2017). Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science, 356: 167–171.

[159]

Shin, S. S., Yang, W. S., Noh, J. H., Suk, J. H., Jeon, N. J., Park, J. H., Kim, J. S., Seong, W. M., Seok, S. I. (2015). High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 ℃. Nature Communications, 6: 7410.

[160]

Liu, J., Gao, C., Luo, L., Ye, Q., He, X., Ouyang, L., Guo, X., Zhuang, D., Liao, C., Mei, J., et al. (2015). Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells. Journal of Materials Chemistry A, 3: 11750–11755.

[161]

Yoon, H., Kang, S. M., Lee, J. K., Choi, M. (2016). Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy & Environmental Science, 9: 2262–2266.

[162]

Wang, S., Huang, Z., Wang, X., Li, Y., Günther, M., Valenzuela, S., Parikh, P., Cabreros, A., Xiong, W., Meng, Y. S. (2018). Unveiling the role of tBP-LiTFSI complexes in perovskite solar cells. Journal of the American Chemical Society, 140: 16720–16730.

[163]

Kong, J., Shin, Y., Röhr, J. A., Wang, H., Meng, J., Wu, Y., Katzenberg, A., Kim, G., Kim, D. Y., Li, T. D., et al. (2021). CO2 doping of organic interlayers for perovskite solar cells. Nature, 594: 51–56.

[164]

Jeong, M., Choi, I. W., Yim, K., Jeong, S., Kim, M., Choi, S. J., Cho, Y., An, J. H., Kim, H. B., Jo, Y., et al. (2022). Large-area perovskite solar cells employing spiro-Naph hole transport material. Nature Photonics, 16: 119–125.

[165]

Jeong, M. J., Yeom, K. M., Kim, S. J., Jung, E. H., Noh, J. H. (2021). Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24%. Energy & Environmental Science, 14: 2419–2428.

[166]

Fu, Q., Xu, Z., Tang, X., Liu, T., Dong, X., Zhang, X., Zheng, N., Xie, Z., Liu, Y. (2021). Multifunctional two-dimensional conjugated materials for dopant-free perovskite solar cells with efficiency exceeding 22%. ACS Energy Letters, 6: 1521–1532.

[167]

Fu, Q., Tang, X., Liu, H., Wang, R., Liu, T., Wu, Z., Woo, H. Y., Zhou, T., Wan, X., Chen, Y., et al. (2022). Ionic dopant-free polymer alloy hole transport materials for high-performance perovskite solar cells. Journal of the American Chemical Society, 144: 9500–9509.

[168]

Arora, N., Dar, M. I., Hinderhofer, A., Pellet, N., Schreiber, F., Zakeeruddin, S. M., Grätzel, M. (2017). Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 358: 768–771.

[169]

Christians, J. A., Fung, R. C., Kamat, P. V. (2014). An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society, 136: 758–764.

[170]

Hu, L., Li, M., Yang, K., Xiong, Z., Yang, B., Wang, M., Tang, X., Zang, Z., Liu, X., Li, B., et al. (2018). PEDOT: PSS monolayers to enhance the hole extraction and stability of perovskite solar cells. Journal of Materials Chemistry A, 6: 16583–16589.

[171]

Hu, L., Fu, J., Yang, K., Xiong, Z., Wang, M., Yang, B., Wang, H., Tang, X., Zang, Z., Li, M., et al. (2019). Inhibition of In-plane charge transport in hole transfer layer to achieve high fill factor for inverted planar perovskite solar cells. Solar RRL, 3: 1900104.

[172]

Li, Z., Li, B., Wu, X., Sheppard, S. A., Zhang, S., Gao, D., Long, N. J., Zhu, Z. (2022). Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 376: 416–420.

[173]

Zhu, Z., Bai, Y., Zhang, T., Liu, Z., Long, X., Wei, Z., Wang, Z., Zhang, L., Wang, J., Yan, F., et al. (2014). High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angewandte Chemie International Edition, 53: 12571–12575.

[174]

Hou, F., Su, Z., Jin, F., Yan, X., Wang, L., Zhao, H., Zhu, J., Chu, B., Li, W. (2015). Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT: PSS hole transporting layer. Nanoscale, 7: 9427–9432.

[175]
Cheng, M., Li, Y., Safdari, M., Chen, C., Liu, P., Kloo, L., Sun, L. (2017). Efficient perovskite solar cells based on a solution processable nickel(II) phthalocyanine and vanadium oxide integrated hole transport layer. Advanced Energy Materials, 7:
DOI
[176]

Grimme, S., Antony, J., Ehrlich, S., Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132: 154104.

[177]

Yin, W.J., Shi, T., Yan, Y. (2014). Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Applied Physics Letters, 104: 063903.

[178]

Bai, Y., Lin, Y., Ren, L., Shi, X., Strounina, E., Deng, Y., Wang, Q., Fang, Y., Zheng, X., Lin, Y., et al. (2019). Oligomeric silica-wrapped perovskites enable synchronous defect passivation and grain stabilization for efficient and stable perovskite photovoltaics. ACS Energy Letters, 4: 1231–1240.

[179]

Jung, M., Shin, T. J., Seo, J., Kim, G., Seok, S. I. (2018). Structural features and their functions in surfactant-armoured methylammonium lead iodide perovskites for highly efficient and stable solar cells. Energy & Environmental Science, 11: 2188–2197.

[180]

Xiong, Z., Chen, S., Zhao, P., Cho, Y., Odunmbaku, G. O., Zheng, Y., Jones, D. J., Yang, C., Sun, K. (2021). Phase transition modulation and defect suppression in perovskite solar cells enabled by a self-sacrificed template. Solar RRL, 5: 2100448.

[181]

Yu, B., Zhang, L., Wu, J., Liu, K., Wu, H., Shi, J., Luo, Y., Li, D., Bo, Z., Meng, Q. (2020). Application of a new π-conjugated ladder-like polymer in enhancing the stability and efficiency of perovskite solar cells. Journal of Materials Chemistry A, 8: 1417–1424.

[182]

Li, M., Li, H., Zhuang, Q., He, D., Liu, B., Chen, C., Zhang, B., Pauporté, T., Zang, Z., Chen, J. (2022). Stabilizing perovskite precursor by synergy of functional groups for NiO x -based inverted solar cells with 23.5 % efficiency. Angewandte Chemie International Edition, 61: e202206914.

[183]

Li, X., Zhang, W., Guo, X., Lu, C., Wei, J., Fang, J. (2022). Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science, 375: 434–437.

[184]

Gu, L., Wang, S., Chen, Y., Xu, Y., Li, R., Liu, D., Fang, X., Jia, X., Yuan, N., Ding, J. (2021). Stable high-performance perovskite solar cells via passivation of the grain boundary and interface. ACS Applied Energy Materials, 4: 6883–6891.

[185]

de Quilettes, D. W., Koch, S., Burke, S., Paranji, R. K., Shropshire, A. J., Ziffer, M. E., Ginger, D. S. (2016). Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation. ACS Energy Letters, 1: 438–444.

[186]

Noel, N. K., Abate, A., Stranks, S. D., Parrott, E. S., Burlakov, V. M., Goriely, A., Snaith, H. J. (2014). Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano, 8: 9815–9821.

[187]

Zhang, Y., Fei, Z., Gao, P., Lee, Y., Tirani, F. F., Scopelliti, R., Feng, Y., Dyson, P. J., Nazeeruddin, M. K. (2017). A strategy to produce high efficiency, high stability perovskite solar cells using functionalized ionic liquid-dopants. Advanced Materials, 29: 1702157.

[188]

Liu, B., Bi, H., He, D., Bai, L., Wang, W., Yuan, H., Song, Q., Su, P., Zang, Z., Zhou, T., et al. (2021). Interfacial defect passivation and stress release via multi-active-site ligand anchoring enables efficient and stable methylammonium-free perovskite solar cells. ACS Energy Letters, 6: 2526–2538.

[189]

Zhu, L., Zhang, X., Li, M., Shang, X., Lei, K., Zhang, B., Chen, C., Zheng, S., Song, H., Chen, J. (2021). Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency. Advanced Energy Materials, 11: 2100529.

[190]

Xiong, Z., Lan, L., Wang, Y., Lu, C., Qin, S., Chen, S., Zhou, L., Zhu, C., Li, S., Meng, L., et al. (2021). Multifunctional polymer framework modified SnO2 enabling a photostable α-FAPbI3 perovskite solar cell with efficiency exceeding 23%. ACS Energy Letters, 6: 3824–3830.

[191]

Cong, S., Liu, X., Jiang, Y., Zhang, W., Zhao, Z. (2020). Surface enhanced Raman scattering revealed by interfacial charge-transfer transitions. The Innovation, 1: 100051.

[192]

Chen, J., Zhao, X., Kim, S. G., Park, N. G. (2019). Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells. Advanced Materials, 31: e1902902.

[193]

Zhou, Q., He, D., Zhuang, Q., Liu, B., Li, R., Li, H., Zhang, Z., Yang, H., Zhao, P., He, Y., et al. (2022). Revealing steric-hindrance-dependent buried interface defect passivation mechanism in efficient and stable perovskite solar cells with mitigated tensile stress. Advanced Functional Materials, 32: 2205507.

[194]

Xiong, Z., Chen, X., Zhang, B., Odunmbaku, G. O., Ou, Z., Guo, B., Yang, K., Kan, Z., Lu, S., Chen, S., et al. (2022). Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4. Advanced Materials, 34: e2106118.

[195]

Kim, M., Jeong, J., Lu, H., Lee, T. K., Eickemeyer, F. T., Liu, Y., Choi, I. W., Choi, S. J., Jo, Y., Kim, H. B., et al. (2022). Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 375: 302–306.

[196]

Chen, J., Kim, S. G., Park, N. G. (2018). FA0.88Cs0.12PbI3– x (PF6) x interlayer formed by ion exchange reaction between perovskite and hole transporting layer for improving photovoltaic performance and stability. Advanced Materials, 30: 1801948.

[197]

Meng, L., Sun, C., Wang, R., Huang, W., Zhao, Z., Sun, P., Huang, T., Xue, J., Lee, J. W., Zhu, C., et al. (2018). Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21. Journal of the American Chemical Society, 140: 17255–17262.

[198]

Fu, Q., Liu, H., Tang, X., Wang, R., Chen, M., Liu, Y. (2022). Multifunctional two-dimensional polymers for perovskite solar cells with efficiency exceeding 24%. ACS Energy Letters, 7: 1128–1136.

[199]

Degani, M., An, Q., Albaladejo-Siguan, M., Hofstetter, Y. J., Cho, C., Paulus, F., Grancini, G., Vaynzof, Y. (2021). 23.7% Efficient inverted perovskite solar cells by dual interfacial modification. Science Advances, 7: eabj7930.

[200]

Hu, L., Sun, K., Wang, M., Chen, W., Yang, B., Fu, J., Xiong, Z., Li, X., Tang, X., Zang, Z., et al. (2017). Inverted planar perovskite solar cells with a high fill factor and negligible hysteresis by the dual effect of NaCl-doped PEDOT: PSS. ACS Applied Materials & Interfaces, 9: 43902–43909.

[201]

Liu, X., Li, B., Zhang, N., Yu, Z., Sun, K., Tang, B., Shi, D., Yao, H., Ouyang, J., Gong, H. (2018). Multifunctional RbCl dopants for efficient inverted planar perovskite solar cell with ultra-high fill factor, negligible hysteresis and improved stability. Nano Energy, 53: 567–578.

[202]

Yablonovitch, E. (1982). Statistical ray optics. Journal of the Optical Society of America, 72: 899–907.

[203]

Wang, Y., Wang, P., Zhou, X., Li, C., Li, H., Hu, X., Li, F., Liu, X., Li, M., Song, Y. (2018). Solar cells: Diffraction-grated perovskite induced highly efficient solar cells through nanophotonic light trapping. Advanced Energy Materials, 8: 1702960.

[204]

Kang, S. M., Jang, S., Lee, J. K., Yoon, J., Yoo, D. E., Lee, J. W., Choi, M., Park, N. G. (2016). Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells. Small, 12: 2443–2449.

[205]

Wang, Y., Li, M., Zhou, X., Li, P., Hu, X., Song, Y. (2018). High efficient perovskite whispering-gallery solar cells. Nano Energy, 51: 556–562.

[206]

Hörantner, M. T., Zhang, W., Saliba, M., Wojciechowski, K., Snaith, H. J. (2015). Templated microstructural growth of perovskite thin films via colloidal monolayer lithography. Energy & Environmental Science, 8: 2041–2047.

[207]

Wei, J., Xu, R.P., Li, Y.Q., Li, C., Chen, J.D., Zhao, X.D., Xie, Z.Z., Lee, C. S., Zhang, W.J., Tang, J.X. (2017). Perovskite solar cells: Enhanced light harvesting in perovskite solar cells by a bioinspired nanostructured back electrode. Advanced Energy Materials, 7: 1700492.

[208]

Pascoe, A. R., Meyer, S., Huang, W., Li, W., Benesperi, I., Duffy, N. W., Spiccia, L., Bach, U., Cheng, Y.B. (2016). Enhancing the optoelectronic performance of perovskite solar cells via a textured CH3NH3PbI3Morphology. Advanced Functional Materials, 26: 1278–1285.

[209]

Guo, P., Zhu, H., Zhao, W., Liu, C., Zhu, L., Ye, Q., Jia, N., Wang, H., Zhang, X., Huang, W., et al. (2021). Interfacial embedding of laser-manufactured fluorinated gold clusters enabling stable perovskite solar cells with efficiency over 24. Advanced Materials, 33: e2101590.

[210]

Schuster, C. S., Kowalczewski, P., Martins, E. R., Patrini, M., Scullion, M. G., Liscidini, M., Lewis, L., Reardon, C., Andreani, L. C., Krauss, T. F. (2013). Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique. Optics Express, 21: A433–A439.

[211]

Wang, K. X., Yu, Z., Liu, V., Cui, Y., Fan, S. (2012). Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Letters, 12: 1616–1619.

[212]

Wang, Y., Lan, Y., Song, Q., Vogelbacher, F., Xu, T., Zhan, Y., Li, M., Sha, W. E. I., Song, Y. (2021). Perovskite solar cells: Colorful efficient moiré-perovskite solar cells. Advanced Materials, 33: e2008091.

[213]

Song, Q., Wang, Y., Vogelbacher, F., Zhan, Y., Zhu, D., Lan, Y., Fang, W., Zhang, Z., Jiang, L., Song, Y., et al. (2021). Moiré perovskite photodetector toward high-sensitive digital polarization imaging. Advanced Energy Materials, 11: 2100742.

[214]

Shi, X.B., Liu, Y., Yuan, Z., Liu, X.K., Miao, Y., Wang, J., Lenk, S., Reineke, S., Gao, F. (2018). Optical energy losses in organic–inorganic hybrid perovskite light-emitting diodes. Advanced Optical Materials, 6: 1800667.

[215]

Meng, S. S., Li, Y. Q., Tang, J. X. (2018). Theoretical perspective to light outcoupling and management in perovskite light-emitting diodes. Organic Electronics, 61: 351–358.

[216]

Mao, J., Sha, W. E. I., Zhang, H., Ren, X., Zhuang, J., Roy, V. A. L., Wong, K. S., Choy, W. C. H. (2017). Novel direct nanopatterning approach to fabricate periodically nanostructured perovskite for optoelectronic applications. Advanced Functional Materials, 27: 1606525.

[217]

Zhang, Q., Tavakoli, M. M., Gu, L., Zhang, D., Tang, L., Gao, Y., Guo, J., Lin, Y., Leung, S. F., Poddar, S., et al. (2019). Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nature Communications, 10: 727.

[218]

Chen, Z., Li, Z., Chen, Z., Xia, R., Zou, G., Chu, L., Su, S. J., Peng, J., Yip, H. L., Cao, Y. (2021). Utilization of trapped optical modes for white perovskite light-emitting diodes with efficiency over 12%. Joule, 5: 456–466.

[219]

Jeon, S., Zhao, L., Jung, Y. J., Kim, J. W., Kim, S. Y., Kang, H., Jeong, J. H., Rand, B. P., Lee, J. H. (2019). Perovskite light-emitting diodes with improved outcoupling using a high-index contrast nanoarray. Small, 15: e1900135.

[220]

Shen, Y., Cheng, L. P., Li, Y. Q., Li, W., Chen, J. D., Lee, S. T., Tang, J. X. (2019). High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Advanced Materials, 31: e1901517.

[221]

Pitarke, J. M., Silkin, V. M., Chulkov, E. V., Echenique, P. M. (2007). Theory of surface plasmons and surface-plasmon polaritons. Reports on Progress in Physics, 70: 1–87.

[222]

Li, Z., Moon, J., Gharajeh, A., Haroldson, R., Hawkins, R., Hu, W., Zakhidov, A., Gu, Q. (2018). Room-temperature continuous-wave operation of organometal halide perovskite lasers. ACS Nano, 12: 10968–10976.

[223]

Saliba, M., Wood, S. M., Patel, J. B., Nayak, P. K., Huang, J., Alexander-Webber, J. A., Wenger, B., Stranks, S. D., et al. (2016). Structured organic-inorganic perovskite toward a distributed feedback laser. Advanced Materials, 28: 923–929.

[224]

Shen, Y., Li, M. N., Li, Y., Xie, F. M., Wu, H. Y., Zhang, G. H., Chen, L., Lee, S. T., Tang, J. X. (2020). Rational interface engineering for efficient flexible perovskite light-emitting diodes. ACS Nano, 14: 6107–6116.

[225]

Shi, Z., Li, Y., Li, S., Li, X., Wu, D., Xu, T., Tian, Y., Chen, Y., Zhang, Y., Zhang, B., et al. (2018). Luminescence: Localized surface plasmon enhanced all-inorganic perovskite quantum dot light-emitting diodes based onCoaxial core/shell heterojunction architecture. Advanced Functional Materials, 28: 1707031.

[226]

Yu, Z., Leilaeioun, M., Holman, Z. (2016). Selecting tandem partners for silicon solar cells. Nature Energy, 1: 16137.

[227]

Leijtens, T., Bush, K. A., Prasanna, R., McGehee, M. D. (2018). Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nature Energy, 3: 828–838.

[228]

Sahli, F., Werner, J., Kamino, B. A., Bräuninger, M., Monnard, R., Paviet-Salomon, B., Barraud, L., Ding, L., Diaz Leon, J. J., Sacchetto, D., et al. (2018). Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials, 17: 820–826.

[229]

Hou, Y., Aydin, E., De Bastiani, M., Xiao, C., Isikgor, F. H., Xue, D. J., Chen, B., Chen, H., Bahrami, B., Chowdhury, A. H., et al. (2020). Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 367: 1135–1140.

[230]

Xu, J., Boyd, C. C., Yu, Z. J., Palmstrom, A. F., Witter, D. J., Larson, B. W., France, R. M., Werner, J., Harvey, S. P., Wolf, E. J., et al. (2020). Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science, 367: 1097–1104.

[231]

Al-Ashouri, A., Köhnen, E., Li, B., Magomedov, A., Hempel, H., Caprioglio, P., Márquez, J. A., Morales Vilches, A. B., Kasparavicius, E., Smith, J. A., et al. (2020). Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 370: 1300–1309.

[232]

Eperon, G. E., Leijtens, T., Bush, K. A., Prasanna, R., Green, T., Wang, J. T., McMeekin, D. P., Volonakis, G., Milot, R. L., May, R., et al. (2016). Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 354: 861–865.

[233]

Rajagopal, A., Yang, Z., Jo, S. B., Braly, I. L., Liang, P.W., Hillhouse, H. W., Jen, A. K. Y. (2017). Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Advanced Materials, 29: 1702140.

[234]

Zhao, D., Chen, C., Wang, C., Junda, M. M., Song, Z., Grice, C. R., Yu, Y., Li, C., Subedi, B., Podraza, N. J., et al. (2018). Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nature Energy, 3: 1093–1100.

[235]

Tong, J., Song, Z., Kim, D. H., Chen, X., Chen, C., Palmstrom, A. F., Ndione, P. F., Reese, M. O., Dunfield, S. P., Reid, O. G., et al. (2019). Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 364: 475–479.

[236]

Xiao, K., Lin, R., Han, Q., Hou, Y., Qin, Z., Nguyen, H. T., Wen, J., Wei, M., Yeddu, V., Saidaminov, M. I., et al. (2020). All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy, 5: 870–880.

[237]

Lin, R., Xiao, K., Qin, Z., Han, Q., Zhang, C., Wei, M., Saidaminov, M. I., Gao, Y., Xu, J., Xiao, M., et al. (2019). Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy, 4: 864–873.

[238]

Li, L., Wang, Y., Wang, X., Lin, R., Luo, X., Liu, Z., Zhou, K., Xiong, S., Bao, Q., Chen, G., et al. (2022). Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nature Energy, 7: 708–717.

[239]

Lin, R., Xu, J., Wei, M., Wang, Y., Qin, Z., Liu, Z., Wu, J., Xiao, K., Chen, B., Park, S. M., et al. (2022). All-perovskite tandem solar cells with improved grain surface passivation. Nature, 603: 73–78.

[240]

Green, M. A., Dunlop, E. D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Bothe, K., Hinken, D., Rauer, M., Hao, X. (2022). Solar cell efficiency tables (Version 60). Progress in Photovoltaics: Research and Applications, 30: 687–701.

[241]

Xiao, K., Lin, Y. H., Zhang, M., Oliver, R. D. J., Wang, X., Liu, Z., Luo, X., Li, J., Lai, D., Luo, H., et al. (2022). Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science, 376: 762–767.

[242]

Palmstrom, A. F., Eperon, G. E., Leijtens, T., Prasanna, R., Habisreutinger, S. N., Nemeth, W., Gaulding, E. A., Dunfield, S. P., Reese, M., Nanayakkara, S., et al. (2019). Enabling flexible all-perovskite tandem solar cells. Joule, 3: 2193–2204.

[243]

Zhang, Z., Li, Z., Meng, L., Lien, S.Y., Gao, P. (2020). Perovskite-based tandem solar cells: Get the most out of the Sun. Advanced Functional Materials, 30: 2001904.

[244]

Fang, Z., Zeng, Q., Zuo, C., Zhang, L., Xiao, H., Cheng, M., Hao, F., Bao, Q., Zhang, L., Yuan, Y., et al. (2021). Perovskite-based tandem solar cells. Science Bulletin, 66: 621–636.

[245]

Jošt, M., Kegelmann, L., Korte, L., Albrecht, S. (2020). Monolithic perovskite tandem solar cells: A review of the present status and advanced characterization methods toward 30% efficiency. Advanced Energy Materials, 10: 1904102.

[246]

Todorov, T., Gershon, T., Gunawan, O., Lee, Y. S., Sturdevant, C., Chang, L.Y., Guha, S. (2015). Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering. Advanced Energy Materials, 5: 1500799.

[247]

Han, Q., Hsieh, Y. T., Meng, L., Wu, J. L., Sun, P., Yao, E. P., Chang, S. Y., Bae, S. H., Kato, T., Bermudez, V., et al. (2018). High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells. Science, 361: 904–908.

[248]

Al-Ashouri, A., Magomedov, A., Roß, M., Jošt, M., Talaikis, M., Chistiakova, G., Bertram, T., Márquez, J. A., Köhnen, E., Kasparavičius, E., et al. (2019). Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy & Environmental Science, 12: 3356–3369.

[249]

Jošt, M., Köhnen, E., Al-Ashouri, A., Bertram, T., Tomšič, Š., Magomedov, A., Kasparavicius, E., Kodalle, T., Lipovšek, B., Getautis, V., et al. (2022). Perovskite/CIGS tandem solar cells: From certified 24.2% toward 30% and beyond. ACS Energy Letters, 7: 1298–1307.

[250]

Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H. L., Lau, T. K., Lu, X., Zhu, C., Peng, H., Johnson, P. A., et al. (2019). Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 3: 1140–1151.

[251]

Xiao, Z., Jia, X., Ding, L. (2017). Ternary organic solar cells offer 14% power conversion efficiency. Science Bulletin, 62: 1562–1564.

[252]

Meng, L., Zhang, Y., Wan, X., Li, C., Zhang, X., Wang, Y., Ke, X., Xiao, Z., Ding, L., Xia, R., et al. (2018). Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 361: 1094–1098.

[253]

Liu, L., Xiao, Z., Zuo, C., Ding, L. (2021). Inorganic perovskite/organic tandem solar cells with efficiency over 20%. Journal of Semiconductors, 42: 020501.

[254]

Chen, C. C., Bae, S. H., Chang, W. H., Hong, Z., Li, G., Chen, Q., Zhou, H., Yang, Y. (2015). Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Materials Horizons, 2: 203–211.

[255]

Liu, Y., Renna, L. A., Bag, M., Page, Z. A., Kim, P., Choi, J., Emrick, T., Venkataraman, D., Russell, T. P. (2016). High efficiency tandem thin-perovskite/polymer solar cells with a graded recombination layer. ACS Applied Materials & Interfaces, 8: 7070–7076.

[256]

Chen, X., Jia, Z., Chen, Z., Jiang, T., Bai, L., Tao, F., Chen, J., Chen, X., Liu, T., Xu, X., et al. (2020). Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule, 4: 1594–1606.

[257]

Zeng, Q., Liu, L., Xiao, Z., Liu, F., Hua, Y., Yuan, Y., Ding, L. (2019). A two-terminal all-inorganic perovskite/organic tandem solar cell. Science Bulletin, 64: 885–887.

[258]

Wang, P., Li, W., Sandberg, O. J., Guo, C., Sun, R., Wang, H., Li, D., Zhang, H., Cheng, S., Liu, D., et al. (2021). Tuning of the interconnecting layer for monolithic perovskite/organic tandem solar cells with record efficiency exceeding 21. Nano Letters, 21: 7845–7854.

[259]

Qin, S., Lu, C., Jia, Z., Wang, Y., Li, S., Lai, W., Shi, P., Wang, R., Zhu, C., Du, J., et al. (2022). Constructing monolithic perovskite/organic tandem solar cell with efficiency of 22.0% via reduced open-circuit voltage loss and broadened absorption spectra. Advanced Materials, 34: e2108829.

[260]

Chen, W., Zhu, Y., Xiu, J., Chen, G., Liang, H., Liu, S., Xue, H., Birgersson, E., Ho, J. W., Qin, X., et al. (2022). Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nature Energy, 7: 229–237.

[261]

Brinkmann, K. O., Becker, T., Zimmermann, F., Kreusel, C., Gahlmann, T., Theisen, M., Haeger, T., Olthof, S., et al. (2022). Perovskite-organic tandem solar cells with indium oxide interconnect. Nature, 604: 280–286.

[262]

Aydin, E., Allen, T. G., De Bastiani, M., Xu, L., Ávila, J., Salvador, M., Van Kerschaver, E., De Wolf, S. (2020). Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells. Nature Energy, 5: 851–859.

[263]

Liu, J., Aydin, E., Yin, J., De Bastiani, M., Isikgor, F. H., Rehman, A. U., Yengel, E., Ugur, E., Harrison, G. T., Wang, M., et al. (2021). 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule, 5: 3169–3186.

[264]

Wang, S., Wang, P., Chen, B., Li, R., Ren, N., Li, Y., Shi, B., Huang, Q., Zhao, Y., Grätzel, M., et al. (2022). Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%. eScience, 2: 339–346.

[265]

Zheng, J., Mehrvarz, H., Liao, C., Bing, J., Cui, X., Li, Y., Gonçales, V. R., Lau, C. F. J., Lee, D. S., Li, Y., et al. (2019). Large-area 23%-efficient monolithic perovskite/homojunction-silicon tandem solar cell with enhanced UV stability using down-shifting material. ACS Energy Letters, 4: 2623–2631.

[266]

Zheng, J., Mehrvarz, H., Ma, F.J., Lau, C. F. J., Green, M. A., Huang, S., Ho-Baillie, A. W. Y. (2018). 21.8% efficient monolithic perovskite/homo-junction-silicon tandem solar cell on 16 cm2. ACS Energy Letters, 3: 2299–2300.

[267]

Li, J., Xia, R., Qi, W., Zhou, X., Cheng, J., Chen, Y., Hou, G., Ding, Y., Li, Y., Zhao, Y., et al. (2021). Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization. Journal of Power Sources, 485: 229313.

[268]

Li, Y., Wu, H., Qi, W., Zhou, X., Li, J., Cheng, J., Zhao, Y., Li, Y., Zhang, X. (2020). Passivation of defects in perovskite solar cell: From a chemistry point of view. Nano Energy, 77: 105237.

[269]

Yang, W., Zhong, D., Shi, M., Qu, S., Chen, H. (2019). Toward highly thermal stable perovskite solar cells by rational design of interfacial layer. iScience, 22: 534–543.

[270]

Belisle, R. A., Bush, K. A., Bertoluzzi, L., Gold-Parker, A., Toney, M. F., McGehee, M. D. (2018). Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites. ACS Energy Letters, 3: 2694–2700.

[271]

Bush, K. A., Palmstrom, A. F., Yu, Z. J., Boccard, M., Cheacharoen, R., Mailoa, J. P., McMeekin, D. P., Hoye, R. L. Z., Bailie, C. D., Leijtens, T., et al. (2017). 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2: 17009.

[272]
Oxford pv sets world record for perovskite solar cell. 2018, 2023(7): https://www.oxfordpv.com/news/oxford-pv-sets-world-record-perovskite-solar-cell
[273]
Oxford pv perovskite solar cell achieves 28% efficiency. 2018, 2023(7): https://www.oxfordpv.com/news/oxford-pv-perovskite-solar-cell-achieves-28-efficiency
[274]
Helmholtz center achieves 29.80% efficiency for perovskite/silicon tandem solar cell. 2021, 2023(7):https://www.pv-magazine.com/2021/11/22/helmholtz-center-achieves-29-80-efficiency-for-perovskite-silicon-tandem-solar-cell/
[275]

Sahli, F., Kamino, B. A., Werner, J., Bräuninger, M., Paviet-Salomon, B., Barraud, L., Monnard, R., Seif, J. P., Tomasi, A., Jeangros, Q., et al. (2018). Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction. Advanced Energy Materials, 8: 1701609.

[276]

Kamino, B. A., Paviet-Salomon, B., Moon, S. J., Badel, N., Levrat, J., Christmann, G., Walter, A., Faes, A., Ding, L., Diaz Leon, J. J., et al. (2019). Low-temperature screen-printed metallization for the scale-up of two-terminal perovskite–silicon tandems. ACS Applied Energy Materials, 2: 3815–3821.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 August 2023
Revised: 25 September 2023
Accepted: 27 September 2023
Published: 30 September 2023
Issue date: September 2023

Copyright

© The author(s) 2023.

Acknowledgements

Acknowledgements

The work was supported by the National Key Research and Development Program of China (2022YFB3803300), the open research fund of Songshan Lake Materials Laboratory (2021SLABFK02), and the National Natural Science Foundation of China (21961160720 and 52203217), and the China Postdoctoral Science Foundation (2021M690805).

Rights and permissions

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return