Journal Home > Volume 2 , Issue 3

With the continual deployment of power-electronics-interfaced renewable energy resources, increasing privacy concerns due to deregulation of electricity markets, and the diversification of demand-side activities, traditional knowledge-based power system dynamic modeling methods are faced with unprecedented challenges. Data-driven modeling has been increasingly studied in recent years because of its lesser need for prior knowledge, higher capability of handling large-scale systems, and better adaptability to variations of system operating conditions. This paper discusses about the motivations and the generalized process of data-driven modeling, and provides a comprehensive overview of various state-of-the-art techniques and applications. It also comparatively presents the advantages and disadvantages of these methods and provides insight into outstanding challenges and possible research directions for the future.


menu
Abstract
Full text
Outline
About this article

Data-driven modeling of power system dynamics: Challenges, state of the art, and future work

Show Author's information Heqing Huang1Yuzhang Lin1( )Yifan Zhou2Yue Zhao2Peng Zhang2,3Lingling Fan4
Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01852, USA
Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA
Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
Department of Electrical and Computer Engineering, University of South Florida, Tampa, FL 33620, USA

Abstract

With the continual deployment of power-electronics-interfaced renewable energy resources, increasing privacy concerns due to deregulation of electricity markets, and the diversification of demand-side activities, traditional knowledge-based power system dynamic modeling methods are faced with unprecedented challenges. Data-driven modeling has been increasingly studied in recent years because of its lesser need for prior knowledge, higher capability of handling large-scale systems, and better adaptability to variations of system operating conditions. This paper discusses about the motivations and the generalized process of data-driven modeling, and provides a comprehensive overview of various state-of-the-art techniques and applications. It also comparatively presents the advantages and disadvantages of these methods and provides insight into outstanding challenges and possible research directions for the future.

Keywords: machine learning, Data-driven modeling, parameter identification, system identification, model construction, power system dynamics

References(176)

[1]

Chang, A., Adibi, M. M. (1970). Power system dynamic equivalents. IEEE Transactions on Power Apparatus and Systems, PAS-89: 1737–1744.

[2]
Kundur, P., Malik, O. P. (2022). Power System Stability and Control, 2nd Edition. New York, NY: McGraw-Hill Education.
[3]

Kosterev, D. N., Taylor, C. W., Mittelstadt, W. A. (1999). Model validation for the August 10, 1996 WSCC system outage. IEEE Transactions on Power Systems, 14: 967–979.

[4]
AEMO (2017). Black system South Australia 28 September 2016.Australian Energy Market Operator. Available at https://www.aemo.com.au/-/media/files/electricity/nem/market_notices_and_events/power_system_incident_reports/2017/integrated-final-report-sa-black-system-28-september-2016.pdf.
[5]

Spak, K., Agnes, G., Inman, D. (2013). Cable modeling and internal damping developments. Applied Mechanics Reviews, 65: 010801.

[6]
Odhano, S. A., Bojoi, R., Popescu, M., Tenconi, A. (2015). Parameter identification and self-commissioning of AC permanent magnet machines - A review. In: Proceedings of the 2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Turin, Italy.
DOI
[7]

Podmore, R. (1978). Identification of coherent generators for dynamic equivalents. IEEE Transactions on Power Apparatus and Systems, PAS-97: 1344–1354.

[8]

Ramaswamy, G. N., Verghese, G. C., Rouco, L., Vialas, C., DeMarco, C. L. (1995). Synchrony, aggregation, and multi-area eigenanalysis. IEEE Transactions on Power Systems, 10: 1986–1993.

[9]

Nehrir, M. H., Wang, C., Strunz, K., Aki, H., Ramakumar, R., Bing, J., Miao, Z., Salameh, Z. (2011). A review of hybrid renewable/alternative energy systems for electric power generation: Configurations, control, and applications. IEEE Transactions on Sustainable Energy, 2: 392–403.

[10]

Li, Y., Gu, Y., Green, T. C. (2022). Mapping of dynamics between mechanical and electrical ports in SG-IBR composite grids. IEEE Transactions on Power Systems, 37: 3423–3433.

[11]

Zou, J., Peng, C., Yan, Y., Zheng, H., Li, Y. (2014). A survey of dynamic equivalent modeling for wind farm. Renewable and Sustainable Energy Reviews, 40: 956–963.

[12]
Liu, W., Gu, W., Liu, W., Pan, J., Du, X., Xu, B. (2019). Equivalent modeling of distributed photovoltaic power station clusters based on deep belief network. In: Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China.
DOI
[13]

Shakouri G, H., Radmanesh, H. R. (2009). Identification of a continuous time nonlinear state space model for the external power system dynamic equivalent by neural networks. International Journal of Electrical Power & Energy Systems, 31: 334–344.

[14]

Azmy, A. M., Erlich, I., Sowa, P. (2004). Artificial neural network-based dynamic equivalents for distribution systems containing active sources. IEE Proceedings - Generation, Transmission and Distribution, 151: 681–688.

[15]

Knyazkin, V., Canizares, C. A., Soder, L. H. (2004). On the parameter estimation and modeling of aggregate power system loads. IEEE Transactions on Power Systems, 19: 1023–1031.

[16]

Arif, A., Wang, Z., Wang, J., Mather, B., Bashualdo, H., Zhao, D. (2018). Load modeling—A review. IEEE Transactions on Smart Grid, 9: 5986–5999.

[17]

Nardelli, P. H. J., Rubido, N., Wang, C., Baptista, M. S., Pomalaza-Raez, C., Cardieri, P., Latva-aho, M. (2014). Models for the modern power grid. The European Physical Journal Special Topics, 223: 2423–2437.

[18]
Singh, A. K., Ibraheem, Khatoon, S., Muazzam, M., Chaturvedi, D. K. (2013). Load forecasting techniques and methodologies: A review. In: Proceedings of the 2012 2nd International Conference on Power, Control and Embedded Systems, Allahabad, India.
DOI
[19]

Polis, M. P., Goodson, R. E. (1976). Parameter identification in distributed systems: A synthesizing overview. Proceedings of the IEEE, 64: 45–61.

[20]

Zhan, X., Zeng, G., Liu, J., Wang, Q., Ou, S. (2015). A review on parameters identification methods for asynchronous motor. International Journal of Advanced Computer Science and Applications, 6: 104–109.

[21]

Zhu, Y., Milanović, J. V. (2018). Automatic identification of power system load models based on field measurements. IEEE Transactions on Power Systems, 33: 3162–3171.

[22]

Wang, C., Wang, Z., Wang, J., Zhao, D. (2019). SVM-based parameter identification for composite ZIP and electronic load modeling. IEEE Transactions on Power Systems, 34: 182–193.

[23]

Kontis, E. O., Papadopoulos, T. A., Syed, M. H., Guillo-Sansano, E., Burt, G. M., Papagiannis, G. K. (2019). Artificial-intelligence method for the derivation of generic aggregated dynamic equivalent models. IEEE Transactions on Power Systems, 34: 2947–2956.

[24]

Mitra, A., Dutta, R., Gupta, A., Mohapatra, A., Chakrabarti, S. (2022). A robust data-driven approach for adaptive dynamic load modeling. IEEE Transactions on Power Systems, 37: 3779–3791.

[25]

Manobel, B., Sehnke, F., Lazzús, J. A., Salfate, I., Felder, M., Montecinos, S. (2018). Wind turbine power curve modeling based on Gaussian processes and artificial neural networks. Renewable Energy, 125: 1015–1020.

[26]

Papadopoulos, P. N., Papadopoulos, T. A., Crolla, P., Roscoe, A. J., Papagiannis, G. K., Burt, G. M. (2014). Black-box dynamic equivalent model for microgrids using measurement data. IET Generation, Transmission & Distribution, 8: 851–861.

[27]
Zali, S. M., Milanovic, J. V. (2009). Dynamic equivalent model of distribution network cell using prony analysis and nonlinear least square optimization. In: Proceedings of the 2009 IEEE Bucharest PowerTech, Bucharest, Romania.
DOI
[28]

Almunif, A., Fan, L., Miao, Z. (2020). A tutorial on data-driven eigenvalue identification: Prony analysis, matrix pencil, and eigensystem realization algorithm. International Transactions on Electrical Energy Systems, 30: e12283.

[29]

Han, D., Ma, J., He, R. M., Dong, Z. Y. (2009). A real application of measurement-based load modeling in large-scale power grids and its validation. IEEE Transactions on Power Systems, 24: 1756–1764.

[30]

Wang, P., Zhang, Z., Huang, Q., Lee, W. J. (2019). Approach to enhance the robustness on PMU-based power system dynamic equivalent modeling. IEEE Transactions on Industry Applications, 56: 1116–1123.

[31]

Ma, F., Vittal, V. (2012). A hybrid dynamic equivalent using ANN-based boundary matching technique. IEEE Transactions on Power Systems, 27: 1494–1502.

[32]

Bokhari, A., Alkan, A., Dogan, R., Diaz-Aguiló, M., de León, F., Czarkowski, D., Zabar, Z., Birenbaum, L., Noel, A., Uosef, R. E. (2014). Experimental determination of the ZIP coefficients for modern residential, commercial, and industrial loads. IEEE Transactions on Power Delivery, 29: 1372–1381.

[33]

Kalogirou, S. A. (2000). Applications of artificial neural-networks for energy systems. Applied Energy, 67: 17–35.

[34]

Xu, W., Vaahedi, E., Mansour, Y., Tamby, J. (1997). Voltage stability load parameter determination from field tests on BC Hydro’s system. IEEE Transactions on Power Systems, 12: 1290–1297.

[35]

Mota, L. T. M., Mota, A. A. (2004). Load modeling at electric power distribution substations using dynamic load parameters estimation. International Journal of Electrical Power & Energy Systems, 26: 805–811.

[36]

Kao, W. S., Lin, C. J., Huang, C. T., Chen, Y. T., Chiou, C. Y. (1994). Comparison of simulated power system dynamics applying various load models with actual recorded data. IEEE Transactions on Power Systems, 9: 248–254.

[37]

Renmu, H., Jin, M., Hill, D. J. (2006). Composite load modeling via measurement approach. IEEE Transactions on power systems, 21: 663–672.

[38]

Jin, M., Renmu, H., Hill, D. J. (2006). Load modeling by finding support vectors of load data from field measurements. IEEE Transactions on Power Systems, 21: 726–735.

[39]

Wang, C., Wang, Z., Wang, J., Zhao, D. (2019). Robust time-varying parameter identification for composite load modeling. IEEE Transactions on Smart Grid, 10: 967–979.

[40]

Ma, J., Han, D., He, R. M., Dong, Z. Y., Hill, D. J. (2008). Reducing identified parameters of measurement-based composite load model. IEEE Transactions on Power Systems, 23: 76–83.

[41]

Ge, Y., Flueck, A. J., Kim, D. K., Ahn, J. B., Lee, J. D., Kwon, D. Y. (2015). An event-oriented method for online load modeling based on synchrophasor data. IEEE Transactions on Smart Grid, 6: 2060–2068.

[42]

Cui, M., Khodayar, M., Chen, C., Wang, X., Zhang, Y., Khodayar, M. E. (2019). Deep learning-based time-varying parameter identification for system-wide load modeling. IEEE Transactions on Smart Grid, 10: 6102–6114.

[43]

Regulski, P., Vilchis-Rodriguez, D. S., Djurović, S., Terzija, V. (2015). Estimation of composite load model parameters using an improved particle swarm optimization method. IEEE Transactions on Power Delivery, 30: 553–560.

[44]
Choi, B. K., Chiang, H. D., Li, Y., Chen, Y. T., Huang, D. H., Lauby, M. G. (2006). Development of composite load models of power systems using on-line measurement data. In: Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, Que.
[45]
Baghzouz, Y., Quist, C. (1999). Composite load model derivation from recorded field data. In: Proceedings of the IEEE Power Engineering Society. 1999 Winter Meeting (Cat. No. 99CH36233), New York, NY, USA.
DOI
[46]
Liu, Q., Chen, Y., Duan, D. (2002). The load modeling and parameters identification for voltage stability analysis. In: Proceedings of the International Conference on Power System Technology, Kunming, China.
[47]
NERC (2016). Technical Reference Document: Dynamic Load Modeling.
[48]
Kosterev, D., Meklin, A., Undrill, J., Lesieutre, B., Price, W., Chassin, D., Bravo, R., Yang, S. (2008). Load modeling in power system studies: WECC progress update. In: Proceedings of the 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, PA, USA.
DOI
[49]

Zhang, K., Zhu, H., Guo, S. (2017). Dependency analysis and improved parameter estimation for dynamic composite load modeling. IEEE Transactions on Power Systems, 32: 3287–3297.

[50]

Karlsson, D., Hill, D. J. (1994). Modelling and identification of nonlinear dynamic loads in power systems. IEEE Transactions on Power Systems, 9: 157–166.

[51]

Rouhani, A., Abur, A. (2016). Real-time dynamic parameter estimation for an exponential dynamic load model. IEEE Transactions on Smart Grid, 7: 1530–1536.

[52]

Stojanović, D. P., Korunović, L. M., Milanović, J. V. (2008). Dynamic load modelling based on measurements in medium voltage distribution network. Electric Power Systems Research, 78: 228–238.

[53]

Choi, B. K., Chiang, H. D., Li, Y., Li, H., Chen, Y. T., Huang, D. H., Lauby, M. G. (2006). Measurement-based dynamic load models: Derivation, comparison, and validation. IEEE Transactions on Power Systems, 21: 1276–1283.

[54]
Kontis, E. O., Chrysochos, A. I., Papagiannis, G. K., Papadopoulos, T. A. (2015). Development of measurement-based generic load models for dynamic simulations. In: Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, Netherlands.
DOI
[55]
Kontis, E. O., Skondrianos, I. S., Papadopoulos, T. A., Chrysochos, A. I., Papagiannis, G. K. (2017). Generic dynamic load models using artificial neural networks. In: Proceedings of the 2017 52nd International Universities Power Engineering Conference (UPEC), Heraklion, Greece.
DOI
[56]

Liang, Y., Nwankpa, C. O., Fischl, R., DeVito, A., Readinger, S. C. (1998). Dynamic reactive load model. IEEE Transactions on Power Systems, 13: 1365–1372.

[57]

Wen, J. Y., Jiang, L., Wu, Q. H., Cheng, S. J. (2003). Power system load modeling by learning based on system measurements. IEEE Transactions on Power Delivery, 18: 364–371.

[58]

Visconti, I. F., Lima, D. A., de Sousa Costa, J. M. C., de BC Sobrinho, N. R. (2013). Measurement-based load modeling using transfer functions for dynamic simulations. IEEE Transactions on Power Systems, 29: 111–120.

[59]

Lin, C. J., Chen, A. Y. T., Chiou, C. Y., Huang, C. H., Chiang, H. D., Wang, J. C., Fekih-Ahmed, L. (1993). Dynamic load models in power systems using the measurement approach. IEEE Transactions on Power Systems, 8: 309–315.

[60]

Ku, B. Y., Thomas, R. J., Chiou, C. Y., Lin, C. J. (1994). Power system dynamic load modeling using artificial neural networks. IEEE Transactions on Power Systems, 9: 1868–1874.

[61]

Hiyama, T., Tokieda, M., Hubbi, W., Andou, H. (1997). Artificial neural network based dynamic load modeling. IEEE Transactions on Power Systems, 12: 1576–1583.

[62]

Bostanci, M., Koplowitz, J., Taylor, C. W. (1997). Identification of power system load dynamics using artificial neural networks. IEEE Transactions on Power Systems, 12: 1468–1473.

[63]

Chang, G. W., Chen, C. I., Liu, Y. J. (2009). A neural-network-based method of modeling electric arc furnace load for power engineering study. IEEE Transactions on Power Systems, 25: 138–146.

[64]
Keyhani, A., Lu, W., Heydt, G. T. (2004). Composite neural network load models for power system stability analysis. In: Proceedings of the IEEE PES Power Systems Conference and Exposition, New York, NY, USA.
[65]
Li, X., Peng, M., He, H., Liu, T. (2012). Dynamic load modeling for power system based on GD-FNN. In: Proceedings of the 2012 Third International Conference on Digital Manufacturing & Automation, Guilin, China.
[66]

Paidi, E. S. N. R., Nechifor, A., Albu, M. M., Yu, J., Terzija, V. (2020). Development and validation of a new oscillatory component load model for real-time estimation of dynamic load model parameters. IEEE Transactions on Power Delivery, 35: 618–629.

[67]

Kontis, E. O., Papadopoulos, T. A., Chrysochos, A. I., Papagiannis, G. K. (2018). Measurement-based dynamic load modeling using the vector fitting technique. IEEE Transactions on Power Systems, 33: 338–351.

[68]
González-Longatt, F., Regulski, P., Wall, P., Terzija, V. (2011). Procedure for estimation of equivalent model parameters for a wind farm using post-disturbance on-line measurement data. In: Proceedings of the 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, Manchester, UK.
DOI
[69]

Zhang, J., Cui, M., He, Y. (2020). Robustness and adaptability analysis for equivalent model of doubly fed induction generator wind farm using measured data. Applied Energy, 261: 114362.

[70]

Li, Y., Fan, L., Miao, Z. (2020). Replicating real-world wind farm SSR events. IEEE Transactions on Power Delivery, 35: 339–348.

[71]

Fan, L., Miao, Z. (2021). Analytical model building for Type-3 wind farm subsynchronous oscillation analysis. Electric Power Systems Research, 201: 107566.

[72]

Wang, Y., Lu, C., Zhu, L., Zhang, G., Li, X., Chen, Y. (2016). Comprehensive modeling and parameter identification of wind farms based on wide-area measurement systems. Journal of Modern Power Systems and Clean Energy, 4: 383–393.

[73]

Wang, T., Huang, S., Gao, M., Wang, Z. (2021). Adaptive extended Kalman filter based dynamic equivalent method of PMSG wind farm cluster. IEEE Transactions on Industry Applications, 57: 2908–2917.

[74]
Chaspierre, G., Panciatici, P., Van Cutsem, T. (2017). Dynamic equivalent of a distribution grid hosting dispersed photovoltaic units. In: Proceedings of the IREP’2017 Symposium.
[75]

Fan, L. (2019). Modeling type-4 wind in weak grids. IEEE Transactions on Sustainable Energy, 10: 853–864.

[76]

Zhang, M., Miao, Z., Fan, L. (2021). Reduced-order analytical models of grid-connected solar photovoltaic systems for low-frequency oscillation analysis. IEEE Transactions on Sustainable Energy, 12: 1662–1671.

[77]

Hu, J., Wang, Q., Ye, Y., Tang, Y. (2023). Toward online power system model identification: A deep reinforcement learning approach. IEEE Transactions on Power Systems, 38: 2580–2593.

[78]

Fan, L., Miao, Z., Shah, S., Koralewicz, P., Gevorgian, V., Fu, J. (2022). Data-driven dynamic modeling in power systems: A fresh look on inverter-based resource modeling. IEEE Power and Energy Magazine, 20: 64–76.

[79]

Fan, L., Miao, Z. (2020). Admittance-based stability analysis: Bode plots, nyquist diagrams or eigenvalue analysis? IEEE Transactions on Power Systems, 35: 3312–3315.

[80]

Zhang, M., Miao, Z., Fan, L., Shah, S. (2022). Data-driven interarea oscillation analysis for a 100% IBR-penetrated power grid. IEEE Open Access Journal of Power and Energy, 10: 93–103.

[81]

Fan, L., Miao, Z., Koralewicz, P., Shah, S., Gevorgian, V. (2021). Identifying DQ-domain admittance models of a 2.3-MVA commercial grid-following inverter via frequency-domain and time-domain data. IEEE Transactions on Energy Conversion, 36: 2463–2472.

[82]

Wang, Z., Bao, L., Fan, L., Miao, Z., Shah, S. (2022). From event data to wind power plant DQ admittance and stability risk assessment. IEEE Transactions on Power Systems, 37: 4400–4408.

[83]
Guruwacharya, N., Bhandari, H., Subedi, S., Vasquez-Plaza, J. D., Stoel, M. L., Tamrakar, U., Wilches-Bernal, F., Andrade, F., Hansen, T. M., Tonkoski, R. (2022). Data-driven modeling of commercial photovoltaic inverter dynamics using power hardware-in-the-loop. In: Proceedings of the 2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy.
DOI
[84]
IEEE Standards Coordinating Committee 21 (2018). IEEE Standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces. IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), 1–138.
[85]

Ali, H. R., Kunjumuhammed, L. P., Pal, B. C., Adamczyk, A. G., Vershinin, K. (2020). A trajectory piecewise-linear approach to nonlinear model order reduction of wind farms. IEEE Transactions on Sustainable Energy, 11: 894–905.

[86]

Ti, Z., Deng, X. W., Yang, H. (2020). Wake modeling of wind turbines using machine learning. Applied Energy, 257: 114025.

[87]

Kong, X., Liu, X., Lee, K. Y. (2014). Data-driven modelling of a doubly fed induction generator wind turbine system based on neural networks. IET Renewable Power Generation, 8: 849–857.

[88]
Qing, S., Yifan, Z., Peng, Z. (2023). Physicsinformed induction machine modelling. Preprint, arXiv: 2309.16943.
[89]

Ali, M., Ilie, I. S., Milanovic, J. V., Chicco, G. (2013). Wind farm model aggregation using probabilistic clustering. IEEE Transactions on Power Systems, 28: 309–316.

[90]

Zou, J., Peng, C., Xu, H., Yan, Y. (2015). A fuzzy clustering algorithm-based dynamic equivalent modeling method for wind farm with DFIG. IEEE Transactions on Energy Conversion, 30: 1329–1337.

[91]

Wang, P., Zhang, Z., Huang, Q., Wang, N., Zhang, X., Lee, W. J. (2018). Improved wind farm aggregated modeling method for large-scale power system stability studies. IEEE Transactions on Power Systems, 33: 6332–6342.

[92]

Han, J., Miao, S., Li, Y., Yang, W., Zheng, T. (2020). A multi-view and multi-scale transfer learning based wind farm equivalent method. International Journal of Electrical Power & Energy Systems, 117: 105740.

[93]

Zhu, L., Huang, S., Wu, Z., Hu, Y., Liao, M., Xu, M. (2022). A study of dynamic equivalence method for multiple wind farms in urban power grids. Frontiers in Energy Research, 10: 908207.

[94]

Zhang, M., Xu, Q., Wang, X. (2023). Physics-informed neural network based online impedance identification of voltage source converters. IEEE Transactions on Industrial Electronics, 70: 3717–3728.

[95]

Li, Y., Ma, G., Yang, J., Xu, Y. (2022). Dynamic modeling for VSG cluster by using data-physical driven method. Energy Reports, 8: 227–234.

[96]

Rahim, A. H. M. A., Al-Ramadhan, A. J. (2002). Dynamic equivalent of external power system and its parameter estimation through artificial neural networks. International Journal of Electrical Power & Energy Systems, 24: 113–120.

[97]

Zhou, Y., Wang, K., Xiong, Y., Zhang, B. (2012). Study of power system online dynamic equivalent based on wide area measurement system. Energy Procedia, 16: 1768–1775.

[98]
Benmiloud, O., Arif, S. (2018). Optimal dynamic equivalence based on multi-objective formulation. In: Proceedings of the 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Algiers, Algeria.
DOI
[99]
Cepeda, J. C., Rueda, J. L., Erlich, I. (2012). Identification of dynamic equivalents based on heuristic optimization for smart grid applications. In: Proceedings of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, QLD, Australia.
DOI
[100]

Rueda, J. L., Cepeda, J., Erlich, I., Echeverría, D., Argüello, G. (2015). Heuristic optimization based approach for identification of power system dynamic equivalents. International Journal of Electrical Power & Energy Systems, 64: 185–193.

[101]
Liao, G., Li, M., Xiao, S., Shao, Q., Li, L., Hu, B. (2016). Measurement-based dynamic equivalent modeling for small and medium hydropower generator group. In: Proceedings of the 2016 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), Chengdu, China.
DOI
[102]

Chakrabortty, A., Chow, J. H., Salazar, A. (2011). A measurement-based framework for dynamic equivalencing of large power systems using wide-area phasor measurements. IEEE Transactions on Smart Grid, 2: 68–81.

[103]

Shiroei, M., Mohammadi-Ivatloo, B., Parniani, M. (2016). Low-order dynamic equivalent estimation of power systems using data of phasor measurement units. International Journal of Electrical Power & Energy Systems, 74: 134–141.

[104]

Chavan, G., Weiss, M., Chakrabortty, A., Bhattacharya, S., Salazar, A., Ashrafi, F. H. (2017). Identification and predictive analysis of a multi-area WECC power system model using synchrophasors. IEEE Transactions on Smart Grid, 8: 1977–1986.

[105]

Jiang, Z., Tong, N., Liu, Y., Xue, Y., Tarditi, A. G. (2020). Enhanced dynamic equivalent identification method of large-scale power systems using multiple events. Electric Power Systems Research, 189: 106569.

[106]

Fernández, O. D., Tiistola, S., Gusrialdi, A. (2022). Real-time data-driven electromechanical oscillation monitoring using dynamic mode decomposition with sliding window. IFAC-PapersOnLine, 55: 158–163.

[107]
Sharma, P., Huang, B., Ajjarapu, V., Vaidya, U. (2019). Data-driven identification and prediction of power system dynamics using linear operators. In: Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA.
DOI
[108]

Wang, S., Lu, S., Zhou, N., Lin, G., Elizondo, M., Pai, M. A. (2014). Dynamic-feature extraction, attribution, and reconstruction (DEAR) method for power system model reduction. IEEE Transactions on Power Systems, 29: 2049–2059.

[109]

Sharma, P., Ajjarapu, V., Vaidya, U. (2021). Data-driven identification of nonlinear power system dynamics using output-only measurements. IEEE Transactions on Power Systems, 37: 3458–3468.

[110]
Qing, S., Yifan, Z., Qiang, Z., Maslennikov, S., Luo, X., Zhang, P. (2023). Physics-aware neural dynamic equivalence of power systems. Preprint, arXiv:2309.16934.
[111]

Stankovic, A. M., Saric, A. T., Milosevic, M. (2003). Identification of nonparametric dynamic power system equivalents with artificial neural networks. IEEE Transactions on Power Systems, 18: 1478–1486.

[112]
Chen, W., Gong, Q., Yin, C., Wang, T., Yao, J. (2010). An Elman neural network application on dynamic equivalents of power system. In: Proceedings of the 2010 International Conference on Electrical and Control Engineering, Wuhan, China.
DOI
[113]
Kim, S., Overbye, T. J. (2013). Enhanced measurement-based dynamic equivalence using coherency identification. In: Proceedings of the 2013 IEEE Power and Energy Conference at Illinois (PECI), Urbana, IL, USA.
[114]
Singhavilai, T., Anaya-Lara, O., Lo, K. L. (2010). Identification of the dynamic equivalent of a power system. In: Proceedings of the 2009 44th International Universities Power Engineering Conference (UPEC), Glasgow.
[115]

Liu, Y., Sun, K., Liu, Y. (2015). A measurement-based power system model for dynamic response estimation and instability warning. Electric Power Systems Research, 124: 1–9.

[116]

Pagnier, L., Fritzsch, J., Jacquod, P., Chertkov, M. (2022). Toward model reduction for power system transients with physics-informed PDE. IEEE Access, 10: 65118–65125.

[117]

Gorjão, L. R., Anvari, M., Kantz, H., Beck, C., Witthaut, D., Timme, M., Schäfer, B. (2020). Data-driven model of the power-grid frequency dynamics. IEEE Access, 8: 43082–43097.

[118]
Ramirez, J. M., Hernandez, B. V. (2011). A multi-objective formulation to estimate dynamic equivalents. In: Proceedings of the 2011 North American Power Symposium, Boston, MA, USA.
DOI
[119]
Liu, Z., Bornhorst, N., Wende-von Berg, S., Braun, M. (2020). A grid equivalent based on artificial neural networks in power systems with high penetration of distributed generation with reactive power control. In: Proceedings of the NEIS 2020; Conference on Sustainable Energy Supply and Energy Storage Systems, Hamburg, Germany.
[120]
Tong, N., Jiang, Z., You, S., Zhu, L., Deng, X., Xue, Y., Liu, Y. (2020). Dynamic equivalence of large-scale power systems based on boundary measurements. In: Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA.
DOI
[121]
Li, J., Zhao, Y., Yue, M. (2023). Integrating learning and physics based computation for fast online transient analysis. In: Proceedings of the 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA.
DOI
[122]
Pagnier, L., Chertkov, M. (2021). Physics-informed graphical neural network for parameter & state estimations in power systems. Preprint, arXiv: 2102.06349.
[123]

Huang, B., Wang, J. (2023). Applications of physics-informed neural networks in power systems - A review. IEEE Transactions on Power Systems, 38: 572–588.

[124]

Lusch, B., Kutz, J. N., Brunton, S. L. (2018). Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications, 9: 4950.

[125]

Ping, Z., Yin, Z., Li, X., Liu, Y., Yang, T. (2021). Deep Koopman model predictive control for enhancing transient stability in power grids. International Journal of Robust and Nonlinear Control, 31: 1964–1978.

[126]
Yeung, E., Kundu, S., Hodas, N. (2019). Learning deep neural network representations for koopman operators of nonlinear dynamical systems. In: Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA.
DOI
[127]

You, P., Pang, J., Yeung, E. (2018). Deep koopman controller synthesis for cyber-resilient market-based frequency regulation. IFAC-PapersOnLine, 51: 720–725.

[128]

Milanović, J. V., Mat Zali, S. (2013). Validation of equivalent dynamic model of active distribution network cell. IEEE Transactions on Power Systems, 28: 2101–2110.

[129]

Mat Zali, S., Milanović, J. V. (2013). Generic model of active distribution network for large power system stability studies. IEEE Transactions on Power Systems, 28: 3126–3133.

[130]

Conte, F., D’Agostino, F., Silvestro, F. (2019). Operational constrained nonlinear modeling and identification of active distribution networks. Electric Power Systems Research, 168: 92–104.

[131]
Chaspierre, G., Panciatici, P., Van Cutsem, T. (2018). Aggregated dynamic equivalent of a distribution system hosting inverter-based generators. In: Proceedings of the 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland.
DOI
[132]
Chaspierre, G., Denis, G., Panciatici, P., Van Cutsem, T. (2019). Dynamic equivalent of an active distribution network taking into account model uncertainties. In: Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy.
DOI
[133]
Chaspierre, G., Denis, G., Panciatici, P., Van Cutsem, T. (2019). Identification of a dynamic equivalent of an active distribution network from monte-carlo simulations. In: Proceedings of the 8th International Solar Workshop and 17th International Wind Workshop.
DOI
[134]

Shang, X., Li, Z., Zheng, J., Wu, Q. H. (2019). Equivalent modeling of active distribution network considering the spatial uncertainty of renewable energy resources. International Journal of Electrical Power & Energy Systems, 112: 83–91.

[135]

Zaker, B., Gharehpetian, G. B., Karrari, M. (2019). A novel measurement-based dynamic equivalent model of grid-connected microgrids. IEEE Transactions on Industrial Informatics, 15: 2032–2043.

[136]

Fulgêncio, N., Moreira, C., Carvalho, L., Peças Lopes, J. (2020). Aggregated dynamic model of active distribution networks for large voltage disturbances. Electric Power Systems Research, 178: 106006.

[137]
Azmy, A. M., Erlich, I. (2004). Identification of dynamic equivalents for distribution power networks using recurrent ANNs. In: Proceedings of the IEEE PES Power Systems Conference and Exposition, New York, NY, USA.
[138]
Cai, C., Wu, M., Deng, L., Deng, Z., Zhang, J. (2014). Micro-grid dynamic modeling based on RBF Artificial Neural Network. In: Proceedings of the 2014 International Conference on Power System Technology, Chengdu, China.
[139]
Baboli, P. T., Babazadeh, D., Kumara Bowatte, D. R. (2020). Measurement-based modeling of smart grid dynamics: A digital twin approach. In: Proceedings of the 2020 10th Smart Grid Conference (SGC), Kashan, Iran.
DOI
[140]
Liu, H., Cai, C., Tao, Y., Chen, J. (2019). Dynamic equivalent modeling for microgrids based on LSTM recurrent neural network. In: Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China.
DOI
[141]

Cai, C., Liu, H., Tao, Y., Deng, Z., Dai, W., Chen, J. (2020). Microgrid equivalent modeling based on long short-term memory neural network. IEEE Access, 8: 23120–23133.

[142]

Zheng, C., Wang, S., Liu, Y., Liu, C., Xie, W., Fang, C., Liu, S. (2019). A novel equivalent model of active distribution networks based on LSTM. IEEE Transactions on Neural Networks and Learning Systems, 30: 2611–2624.

[143]

Li, Y., Guerrero, J. M., Yang, J., Guan, Y., Ma, G., Feng, J. (2022). Dynamic equivalent modeling for black-box microgrid under multi-operating-point by using LSTM. CSEE Journal of Power and Energy Systems.

[144]

Li, Y., Wang, Z., Yang, J., Wang, X., Feng, J. (2021). Dynamic equivalence modeling for microgrid cluster by using physical-data-driven method. IEEE Transactions on Applied Superconductivity, 31: 1–4.

[145]

Zhou, Y., Zhang, P. (2022). Neuro-reachability of networked microgrids. IEEE Transactions on Power Systems, 37: 142–152.

[146]

Hiskens, I. A. (2001). Nonlinear dynamic model evaluation from disturbance measurements. IEEE Transactions on Power Systems, 16: 702–710.

[147]
Feng, X., Lubosny, Z., Bialek, J. W. (2008). Identification based dynamic equivalencing. In: Proceedings of the 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland.
DOI
[148]

Papadopoulos, P. N., Papadopoulos, T. A., Crolla, P., Roscoe, A. J., Papagiannis, G. K., Burt, G. M. (2015). Measurement-based analysis of the dynamic performance of microgrids using system identification techniques. IET Generation, Transmission & Distribution, 9: 90–103.

[149]
Porada, S., Becker, C. A., Moser, A. (2021). Use of machine learning algorithms to develop grey-box model equivalents of distribution networks. In: Proceedings of the 2021 IEEE 15th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Florence, Italy.
DOI
[150]
Kontis, E. O., Dimitrakopoulos, S. P., Chrysochos, A. I., Papagiannis, G. K., Papadopoulos, T. A. (2017). Dynamic equivalencing of active distribution grids. In: Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK.
DOI
[151]

Mitrentsis, G., Lens, H. (2021). Data-driven dynamic models of active distribution networks using unsupervised learning techniques on field measurements. IEEE Transactions on Smart Grid, 12: 2952–2965.

[152]
Feng, F., Zhou, Y., Zhang, P. (2022). Neuro-dynamic state estimation for networked microgrids. Preprint, arXiv: 2208.12288.
[153]
Resende, F. O., Pecas Lopes, J. A. (2008). Development of dynamic equivalents for MicroGrids using system identification theory. In: Proceedings of the 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland.
DOI
[154]

Golpîra, H., Seifi, H., Haghifam, M. R. (2015). Dynamic equivalencing of an active distribution network for large-scale power system frequency stability studies. IET Generation, Transmission & Distribution, 9: 2245–2254.

[155]
Feng, X., Lubosny, Z., Bialek, J. (2007). Dynamic equivalencing of distribution network with high penetration of distributed generation. In: Proceedings of the 41st International Universities Power Engineering Conference, Newcastle upon Tyne, UK.
DOI
[156]

Zhao, J., Wang, Z., Wang, J. (2018). Robust time-varying load modeling for conservation voltage reduction assessment. IEEE Transactions on Smart Grid, 9: 3304–3312.

[157]

Wang, C., Qin, Z., Hou, Y., Yan, J. (2018). Multi-area dynamic state estimation with PMU measurements by an equality constrained extended Kalman filter. IEEE Transactions on Smart Grid, 9: 900–910.

[158]

Gupta, A. P., Mohapatra, A., Singh, S. N. (2021). Measurement based parameters estimation of large scale wind farm dynamic equivalent model. Renewable Energy, 168: 1388–1398.

[159]

Chaspierre, G., Denis, G., Panciatici, P., Van Cutsem, T. (2020). An active distribution network equivalent derived from large-disturbance simulations with uncertainty. IEEE Transactions on Smart Grid, 11: 4749–4759.

[160]

Metallinos, K. S., Papadopoulos, T. A., Charalambous, C. A. (2016). Derivation and evaluation of generic measurement-based dynamic load models. Electric Power Systems Research, 140: 193–200.

[161]

Yu, C., Ljung, L., Wills, A., Verhaegen, M. (2020). Constrained subspace method for the identification of structured state-space models (COSMOS). IEEE Transactions on Automatic Control, 65: 4201–4214.

[162]
Alassaf, A., Fan, L. (2023). Dynamic model identification via Hankel matrix fitting: Synchronous generators and IBRs. In: Proceedings of the 2022 North American Power Symposium (NAPS), Salt Lake City, UT, USA.
DOI
[163]

Dias, L. G., El-Hawary, M. E. (1989). Nonlinear parameter estimation experiments for static load modelling in electric power systems. IEE Proceedings C Generation, Transmission and Distribution, 136: 68–77.

[164]
Zhao, Z., Yang, P., Xu, Z., Yin, X. (2013). Dynamic equivalent modeling of wind farm with double fed induction wind generator based on operating data. In: Proceedings of the 2013 5th International Conference on Power Electronics Systems and Applications(PESA), Hong Kong, China.
DOI
[165]

Zhao, J., Gómez-Expósito, A., Netto, M., Mili, L., Abur, A., Terzija, V., Kamwa, I., Pal, B., Singh, A. K., Qi, J., et al. (2019). Power system dynamic state estimation: Motivations, definitions, methodologies, and future work. IEEE Transactions on Power Systems, 34: 3188–3198.

[166]

Jin, L., Kumar, R., Elia, N. (2010). Model predictive control-based real-time power system protection schemes. IEEE Transactions on Power Systems, 25: 988–998.

[167]

Transtrum, M. K., Sarić, A. T., Stanković, A. M. (2017). Measurement-directed reduction of dynamic models in power systems. IEEE Transactions on Power Systems, 32: 2243–2253.

[168]

Choi, B. K., Chiang, H. D. (2009). Multiple solutions and plateau phenomenon in measurement-based load model development: Issues and suggestions. IEEE Transactions on Power Systems, 24: 824–831.

[169]
Wang, Z., Fan, L., Miao, Z. (2023). The cause of insufficient damping in phase-locked-loop and its influence. In: Proceedings of the IEEE PES General Meeting.
DOI
[170]

Fan, L., Miao, Z., Bao, L., Shah, S., Ramakrishna, R. H. (2023). DQ admittance model extraction for IBRs via Gaussian pulse excitation. IEEE Transactions on Power Systems, 38: 2966–2969.

[171]

Li, T., Sahu, A. K., Talwalkar, A., Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37: 50–60.

[172]

Ren, C., Xu, Y. (2020). Transfer learning-based power system online dynamic security assessment: Using one model to assess many unlearned faults. IEEE Transactions on Power Systems, 35: 821–824.

[173]

Fahim, S. R., Sarker, S. K., Das, S. K., Islam, M. R., Kouzani, A. Z., Parvez Mahmud, M. A. (2021). A probabilistic generative model for fault analysis of a transmission line with SFCL. IEEE Transactions on Applied Superconductivity, 31: 5401505.

[174]

Xu, C., Liao, Z., Li, C., Zhou, X., Xie, R. (2022). Review on interpretable machine learning in smart grid. Energies, 15: 4427.

[175]
Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., Kagal, L. (2018). Explaining explanations: An overview of interpretability of machine learning. In: Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy.
DOI
[176]

Montáns, F. J., Chinesta, F., Gómez-Bombarelli, R., Kutz, J. N. (2019). Data-driven modeling and learning in science and engineering. Comptes Rendus Mécanique, 347: 845–855.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 12 July 2023
Revised: 31 August 2023
Accepted: 04 September 2023
Published: 30 September 2023
Issue date: September 2023

Copyright

© The author(s) 2023.

Acknowledgements

Acknowledgements

This work was supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number 38456.

Rights and permissions

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return