AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iEnergy Article
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Electrocaloric cooling technologies for a sustainable world

Xin Chen1,2,Wenyi Zhu2,3,Q. M. Zhang2,3( )
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA

† These authors contributed equally to this work.

Show Author Information

Abstract

Our societies are highly dependent on reliable cooling for air conditioning (AC) and refrigeration. Currently, modern cooling is supported by a 19th century technology: vapor compression cycle (VCC)-based cooling. Refrigerants used in the VCC cooling are strong greenhouse gases and thus are among the leading causes of global warming. The electrocaloric (EC) cooling is attractive as an alternative to the VCC cooling. EC cooling is environmentally benign, compressor-free, highly scalable, and has the potential of achieving higher efficiency than VCC cooling. The active EC materials research since the late 2000s has created several EC materials that exhibit giant electrocaloric effect (ECE) (by direct measurement). These EC materials have enabled the demonstration of EC cooling devices that exhibit temperature lifts of more than 8 K. These EC materials and device research reveals the promise of ferroelectric materials in generating giant ECE at low electric fields and EC cooling devices achieving high performance. This review highlights these advances and offers perspectives of the EC cooling technologies.

References

[1]
Lines, M. E., Glass, A. M. (2001).. Principles and Applications of Ferroelectrics and Related Materials. Oxford: Clarendon.
[2]

Lu, S. G., Zhang, Q. (2009). Electrocaloric materials for solid-state refrigeration. Advanced Materials, 21: 1983–1987.

[3]

Moya, X., Kar-Narayan, S., Mathur, N. D. (2014). Caloric materials near ferroic phase transitions. Nature Materials, 13: 439–450.

[4]

Li, X., Lu, S. G., Chen, X. Z., Gu, H., Qian, X. S., Zhang, Q. M. (2013). Pyroelectric and electrocaloric materials. Journal of Materials Chemistry C, 1: 23–37.

[5]

Shi, J., Han, D., Li, Z., Yang, L., Lu, S. G., Zhong, Z., Chen, J., Zhang, Q. M., Qian, X. (2019). Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 3: 1200–1225.

[6]

Chen, X., Xu, W., Lu, B., Zhang, T., Wang, Q., Zhang, Q. M. (2018). Towards electrocaloric heat pump—A relaxor ferroelectric polymer exhibiting large electrocaloric response at low electric field. Applied Physics Letters, 113: 113902.

[7]
Kobeko, P., Kurtschatov, J. (1930). Dielektrische eigenschaften der seignettesalzkristalle. Zeitschrift Für Physik, 66: 192–205.( In German)
[8]

Wiseman, G. G., Kuebler, J. K. (1963). Electrocaloric effect in ferroelectric rochelle salt. Physical Review, 131: 2023–2027.

[9]

Lang, S. B. (1976). Cryogenic refrigeration utilizing the electrocaloric effect in pyroelectric lithium sulfate monohydrate. Ferroelectrics, 11: 519–523.

[10]

Tuttle, B. A., Payne, D. A. (1981). The effects of microstructure on the electrocaloric properties of Pb(Zr, Sn, Ti)O3 ceramics. Ferroelectrics, 37: 603–606.

[11]

Sinyavsky, Y. V., Brodyansky, V. M. (1992). Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body. Ferroelectrics, 131: 321–325.

[12]

Shebanovs, L., Borman, K., Lawless, W. N., Kalvane, A. (2002). Electrocaloric effect in some perovskite ferroelectric ceramics and multilayer capacitors. Ferroelectrics, 273: 137–142.

[13]

Lu, S. G., Rožič, B., Zhang, Q. M., Kutnjak, Z., Pirc, R., Lin, M., Li, X., Gorny, L. (2010). Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers. Applied Physics Letters, 97: 202901.

[14]

Nair, B., Usui, T., Crossley, S., Kurdi, S., Guzmán-Verri, G. G., Moya, X., Hirose, S., Mathur, N. D. (2019). Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature, 575: 468–472.

[15]

Li, X., Qian, X. S., Lu, S. G., Cheng, J., Fang, Z., Zhang, Q. M. (2011). Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Applied Physics Letters, 99: 052907.

[16]

Zhang, G., Li, Q., Gu, H., Jiang, S., Han, K., Gadinski, M. R., Haque, M. A., Zhang, Q., Wang, Q. (2015). Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration. Advanced Materials, 27: 1450–1454.

[17]

Bai, Y., Zheng, G., Shi, S. (2010). Direct measurement of giant electrocaloric effect in BaTiO3 multilayer thick film structure beyond theoretical prediction. Applied Physics Letters, 96: 192902.

[18]
Kutnjak, Z., Rožič, B., Pirc, R. (2015). Electrocaloric effect: Theory, measurements, and applications. In: Webster, J. G. (Ed.), Wiley Encyclopedia of Electrical and Electronics Engineering, https://doi.org/10.1002/047134608X.W8244.
[19]

Rožič, B., Malič, B., Uršič, H., Holc, J., Kosec, M., Kutnjak, Z. (2011). Direct measurements of the electrocaloric effect in bulk PbMg1/3Nb2/3O3 (PMN) ceramics. Ferroelectrics, 421: 103–107.

[20]

Guo, D., Gao, J., Yu, Y.J., Santhanam, S., Fedder, G. K., McGaughey, A. J. H., Yao, S. C. (2014). Electrocaloric characterization of a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer by infrared imaging. Applied Physics Letters, 105: 031906.

[21]

Qian, X., Han, D., Zheng, L., Chen, J., Tyagi, M., Li, Q., Du, F., Zheng, S., Huang, X., Zhang, S., et al. (2021). High-entropy polymer produces a giant electrocaloric effect at low fields. Nature, 600: 664–669.

[22]

Lu, S. G., Rožič, B., Zhang, Q. M., Kutnjak, Z., Li, X., Furman, E., Gorny, L. J., Lin, M., Malič, B., Kosec, M., et al. (2010). Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Applied Physics Letters, 97: 162904.

[23]

Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W., Mathur, N. D. (2006). Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 311: 1270–1271.

[24]

Neese, B., Chu, B., Lu, S.G., Wang, Y., Furman, E., Zhang, Q. M. (2008). Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 321: 821–823.

[25]

Chen, X., Li, S., Jian, X., Hambal, Y., Lu, S.G., Shvartsman, V. V., Lupascu, D. C., Zhang, Q. M. (2021). Maxwell relation, giant (negative) electrocaloric effect, and polarization hysteresis. Applied Physics Letters, 118: 122904.

[26]

Sanlialp, M., Shvartsman, V. V., Acosta, M., Dkhil, B., Lupascu, D. C. (2015). Strong electrocaloric effect in lead-free 0.65Ba(Zr0.2Ti0.8)O3-0.35(Ba0.7Ca0.3)TiO3 ceramics obtained by direct measurements. Applied Physics Letters, 106: 062901.

[27]

Chen, X., Shvartsman, V. V., Lupascu, D. C., Zhang, Q. M. (2022). Electrocaloric cooling—From materials to devices. Journal of Applied Physics, 132: 240901.

[28]

Lu, S. G., Rožič, B., Zhang, Q. M., Kutnjak, Z., Neese, B. (2011). Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol% copolymer at ferroelectric-paraelectric transition. Applied Physics Letters, 98: 122906.

[29]

Li, X., Qian, X.S., Gu, H., Chen, X., Lu, S. G., Lin, M., Bateman, F., Zhang, Q. M. (2012). Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Applied Physics Letters, 101: 132903.

[30]

Pirc, R., Kutnjak, Z., Blinc, R., Zhang, Q. M. (2011). Upper bounds on the electrocaloric effect in polar solids. Applied Physics Letters, 98: 021909.

[31]

Liu, Z. K., Li, X., Zhang, Q. M. (2012). Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics. Applied Physics Letters, 101: 082904.

[32]

Qian, X.S., Ye, H.J., Zhang, Y.T., Gu, H., Li, X., Randall, C. A., Zhang, Q. M. (2014). Giant electrocaloric response over A broad temperature range in modified BaTiO3 ceramics. Advanced Functional Materials, 24: 1300–1305.

[33]
Cheng, A. (2015). Nascent Devices, Inc.
[34]

Nouchokgwe, Y., Lheritier, P., Hong, C. H., Torelló, A., Faye, R., Jo, W., Bahl, C. R. H., Defay, E. (2021). Giant electrocaloric materials energy efficiency in highly ordered lead scandium tantalate. Nature Communications, 12: 3298.

[35]
Nalwa, H. S. (1995). Ferroelectric Polymers: Chemistry, Physics, and Applications. New York: M. Dekker, Inc.
[36]

Zhang, Q. M., Bharti, V., Zhao, X. (1998). Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science, 280: 2101–2104.

[37]

Xia, F., Cheng, Z. Y., Xu, H. S., Li, H. F., Zhang, Q. M., Kavarnos, G. J., Ting, R. Y., Abdul-Sadek, G., Belfield, K. D. (2002). High electromechanical responses in a poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) terpolymer. 3.0.CO;2-#">Advanced Materials, 14: 1574–1577.

[38]

Qian, X., Ye, H. J., Yang, T., Shao, W. Z., Zhen, L., Furman, E., Chen, L. Q., Zhang, Q. (2015). Internal biasing in relaxor ferroelectric polymer to enhance the electrocaloric effect. Advanced Functional Materials, 25: 5134–5139.

[39]

Gu, H., Qian, X., Li, X., Craven, B., Zhu, W., Cheng, A., Yao, S. C., Zhang, Q. M. (2013). A chip scale electrocaloric effect based cooling device. Applied Physics Letters, 102: 122904.

[40]
Annapragada, S. R., Verma, P., Sur, A., Xie, W. (2017). High-efficiency solid state heat pump module. Available at https://www.energy.gov/sites/prod/files/2017/04/f34/7_312111_Annapragada_031517-1430.pdf.
[41]

Gu, H., Qian, X.S., Ye, H.J., Zhang, Q. M. (2014). An electrocaloric refrigerator without external regenerator. Applied Physics Letters, 105: 162905.

[42]

Zhang, T., Qian, X. S., Gu, H., Hou, Y., Zhang, Q. M. (2017). An electrocaloric refrigerator with direct solid to solid regeneration. Applied Physics Letters, 110: 243503.

[43]

Torelló, A., Lheritier, P., Usui, T., Nouchokgwe, Y., Gérard, M., Bouton, O., Hirose, S., Defay, E. (2020). Giant temperature span in electrocaloric regenerator. Science, 370: 125–129.

[44]

Wang, Y., Zhang, Z., Usui, T., Benedict, M., Hirose, S., Lee, J., Kalb, J., Schwartz, D. (2020). A high-performance solid-state electrocaloric cooling system. Science, 370: 129–133.

[45]

Ma, R., Zhang, Z., Tong, K., Huber, D., Kornbluh, R., Ju, Y. S., Pei, Q. (2017). Highly efficient electrocaloric cooling with electrostatic actuation. Science, 357: 1130–1134.

[46]

Meng, Y., Zhang, Z., Wu, H., Wu, R., Wu, J., Wang, H., Pei, Q. (2020). A cascade electrocaloric cooling device for large temperature lift. Nature Energy, 5: 996–1002.

[47]
Gu, H. (2014). Chip-scale cooling devices based on electrocaloric effect. Ph.D. Thesis, The Pennsylvania State University, USA .
[48]

Hong, W. T., Tai, N. H. (2008). Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diamond and Related Materials, 17: 1577–1581.

[49]

Biercuk, M. J., Llaguno, M. C., Radosavljevic, M., Hyun, J. K., Johnson, A. T., Fischer, J. E. (2002). Carbon nanotube composites for thermal management. Applied Physics Letters, 80: 2767–2769.

[50]

Shen, H., Guo, J., Wang, H., Zhao, N., Xu, J. (2015). Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Applied Materials & Interfaces, 7: 5701–5708.

[51]

Chen, X., Qin, H., Zhu, W., Zhang, B., Lu, W., Bernholc, J., Zhang, Q. M. (2023). Giant electrostriction enabled by defect-induced critical phenomena in relaxor ferroelectric polymers. Macromolecules, 56: 690–696.

[52]

Ye, H.J., Qian, X.S., Jeong, D. Y., Zhang, S., Zhou, Y., Shao, W.Z., Zhen, L., Zhang, Q. M. (2014). Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film. Applied Physics Letters, 105: 152908.

[53]

Bai, Y., Zheng, G. P., Ding, K., Qiao, L., Shi, S. Q., Guo, D. (2011). The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film. Journal of Applied Physics, 110: 094103.

[54]
Bai, Y., Ding, K., Zheng, G.P., Shi, S.Q., Qiao, L. (2012). Entropy-change measurement of electrocaloric effect of BaTiO3 single crystal. Physica Status Solidi (a), 209: 941–944.
[55]

Sebald, G., Seveyrat, L., Guyomar, D., Lebrun, L., Guiffard, B., Pruvost, S. (2006). Electrocaloric and pyroelectric properties of 0.75Pb(Mg1∕3Nb2∕3)O3–0.25PbTiO3 single crystals. Journal of Applied Physics, 100: 124112.

[56]

Rožič, B., Kosec, M., Uršič, H., Holc, J., Malič, B., Zhang, Q. M., Blinc, R., Pirc, R., Kutnjak, Z. (2011). Influence of the critical point on the electrocaloric response of relaxor ferroelectrics. Journal of Applied Physics, 110: 064118.

[57]

Lu, B., Chen, X., Zhang, T., Lu, S. G., Zhang, Q. M. (2018). Enhancing the electrocaloric effect in a relaxor polymer by including minor normal ferroelectric phase. Applied Physics Letters, 113: 153903.

[58]

Jiang, Z. Y., Zheng, X. C., Zheng, G. P. (2015). The enhanced electrocaloric effect in P(VDF-TrFE) copolymer with Barium strontium titanate nano-fillers synthesized via an effective hydrothermal method. RSC Advances, 5: 61946–61954.

[59]

Li, Q., Zhang, G., Zhang, X., Jiang, S., Zeng, Y., Wang, Q. (2015). Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy. Advanced Materials, 27: 2236–2241.

[60]

Zhang, G., Fan, B., Zhao, P., Hu, Z., Liu, Y., Liu, F., Jiang, S., Zhang, S., Li, H., Wang, Q. (2018). Ferroelectric polymer nanocomposites with complementary nanostructured fillers for electrocaloric cooling with high power density and great efficiency. ACS Applied Energy Materials, 1: 1344–1354.

[61]

Zhang, G., Zhang, X., Yang, T., Li, Q., Chen, L. Q., Jiang, S., Wang, Q. (2015). Colossal room-temperature electrocaloric effect in ferroelectric polymer nanocomposites using nanostructured Barium strontium titanates. ACS Nano, 9: 7164–7174.

[62]

Zhang, G., Weng, L., Hu, Z., Liu, Y., Bao, R., Zhao, P., Feng, H., Yang, N., Li, M.Y., Zhang, S., et al. (2019). Nanoconfinement-induced giant electrocaloric effect in ferroelectric polymer nanowire array integrated with aluminum oxide membrane to exhibit record cooling power density. Advanced Materials, 31: 1806642.

[63]

Yang, L., Qian, X., Koo, C., Hou, Y., Zhang, T., Zhou, Y., Lin, M., Qiu, J. H., Zhang, Q. M. (2016). Graphene enabled percolative nanocomposites with large electrocaloric efficient under low electric fields over a broad temperature range. Nano Energy, 22: 461–467.

[64]

Qian, J., Peng, R., Shen, Z., Jiang, J., Xue, F., Yang, T., Chen, L., Shen, Y. (2018). Interfacial coupling boosts giant electrocaloric effects in relaxor polymer nanocomposites: in situ characterization and phase-field simulation. Advanced Materials, 31: 1801949.

[65]

Li, M. D., Shen, X. Q., Chen, X., Gan, J. M., Wang, F., Li, J., Wang, X. L., Shen, Q. D. (2022). Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration. Nature Communications, 13: 5849.

[66]

Lu, Y.C., Yu, J., Huang, J., Yu, S., Zeng, X., Sun, R., Wong, C. P. (2019). Enhanced electrocaloric effect for refrigeration in lead-free polymer composite films with an optimal filler loading. Applied Physics Letters, 114: 233901.

[67]

Chen, Y., Qian, J., Yu, J., Guo, M., Zhang, Q., Jiang, J., Shen, Z., Chen, L.Q., Shen, Y. (2020). An all-scale hierarchical architecture induces colossal room-temperature electrocaloric effect at ultralow electric field in polymer nanocomposites. Advanced Materials, 32: 1907927.

[68]

Zhang, G., Zhang, X., Huang, H., Wang, J., Li, Q., Chen, L. Q., Wang, Q. (2016). Toward wearable cooling devices: Highly flexible electrocaloric Ba0.67Sr0.33TiO3Nanowire arrays. Advanced Materials, 28: 4811–4816.

[69]

Zou, K., Shao, C., Bai, P., Zhang, C., Yang, Y., Guo, R., Huang, H., Luo, W., Ma, R., Cao, Y., et al. (2022). Giant room-temperature electrocaloric effect of polymer-ceramic composites with orientated BaSrTiO3 nanofibers. Nano Letters, 22: 6560–6566.

[70]

Plaznik, U., Kitanovski, A., Rožič, B., Malič, B., Uršič, H., Drnovšek, S., Cilenšek, J., Vrabelj, M., Poredoš, A., Kutnjak, Z. (2015). Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device. Applied Physics Letters, 106: 043903.

[71]

Correia, T. M., Young, J. S., Whatmore, R. W., Scott, J. F., Mathur, N. D., Zhang, Q. (2009). Investigation of the electrocaloric effect in a PbMg2/3Nb1/3O3-PbTiO3 relaxor thin film. Applied Physics Letters, 95: 182904.

[72]

Peng, B., Fan, H., Zhang, Q. (2013). A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature. Advanced Functional Materials, 23: 2987–2992.

[73]

Saranya, D., Chaudhuri, A. R., Parui, J., Krupanidhi, S. B. (2009). Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary. Bulletin of Materials Science, 32: 259–262.

[74]

Shirsath, S. E., Cazorla, C., Lu, T., Zhang, L., Tay, Y. Y., Lou, X., Liu, Y., Li, S., Wang, D. (2020). Interface-charge induced giant electrocaloric effect in lead free ferroelectric thin-film bilayers. Nano Letters, 20: 1262–1271.

[75]

Zhao, Y., Hao, X., Zhang, Q. (2015). A giant electrocaloric effect of a Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 antiferroelectric thick film at room temperature. Journal of Materials Chemistry C, 3: 1694–1699.

[76]

Zhang, M., Liu, L., Yang, R., Yu, P., Zhang, Q., Peng, B. (2022). Giant electrocaloric effect in BiFeO3 and La codoped PbZr0.7Ti0.3O3 epitaxial thin films in a broad temperature range. Journal of Materiomics, 8: 156–165.

[77]

Liu, X., Dai, Y., Pei, X., Chen, W. (2023). Giant room-temperature electrocaloric effect within wide temperature span in Sn-doped Ba0.85Ca0.15Zr0.1Ti0.9O3 lead-free thin films. Ceramics International, 49: 1846–1854.

[78]

Kumar, R., Singh, S. (2018). Giant electrocaloric and energy storage performance of[(K0.5Na0.5)NbO3](1−x)-[LiSbO3]x nanocrystalline ceramics. Scientific Reports, 8: 3186.

[79]

Liu, P. F., Wang, J. L., Meng, X. J., Yang, J., Dkhil, B., Chu, J. H. (2010). Huge electrocaloric effect in Langmuir–Blodgett ferroelectric polymer thin films. New Journal of Physics, 12: 023035.

[80]

Tokkan, M., Demir, M. M., Adem, U. (2023). Enhanced electrocaloric effect of P(VDF-TrFE)-based nanocomposites with Ca and Sn co-doped BaTiO3 particles. Ceramics International, 49: 2904–2910.

[81]

Kawai, T., Kakimoto, K. I. (2021). Large electrocaloric effect of BCTZ/P(VDF-TrFE) 0-3 composites. Materials Letters, 301: 130277.

[82]

Pirc, R., Rožič, B., Koruza, J., Malič, B., Kutnjak, Z. (2014). Negative electrocaloric effect in antiferroelectric PbZrO 3. Europhysics Letters, 107: 17002.

iEnergy
Pages 100-108
Cite this article:
Chen X, Zhu W, M. Zhang Q. Electrocaloric cooling technologies for a sustainable world. iEnergy, 2023, 2(2): 100-108. https://doi.org/10.23919/IEN.2023.0012

1008

Views

82

Downloads

6

Crossref

6

Scopus

Altmetrics

Received: 09 April 2023
Revised: 11 May 2023
Accepted: 16 May 2023
Published: 01 June 2023
© The author(s) 2023.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return