[1]
Philipsen, R., Morales-España, G., de Weerdt, M., de Vries, L. (2019). Trading power instead of energy in day-ahead electricity markets. Applied Energy, 233–234: 802–815.
[7]
Dommel, H. W., Tinney, W. F. (1968). Optimal power flow solutions. IEEE Transactions on Power Apparatus and Systems, 1968, PAS-87: 1866–1876.
[23]
Cplex. (2023). User's manual for CPLEX. Available at: https://www.ibm.com/docs/zh/icos/12.10.0?topic=cplex-users-manual.
[24]
Gurobi. (2023). Gurobi optimizer reference manual. Available at: https://www.gurobi.com/documentation/current/refman/index.html.
[25]
Cain, M. B., O'Neill, R., Castillo, A. (2012). History of optimal power flow and formulations optimal power flow paper 1. Available at: https://www.ferc.gov/sites/default/files/2020-04/acopf-1-history-formulation-testing.pdf.
[27]
Chen, Y., Pan, F., Qiu, F., Xavier, A. S., Zheng, T., Marwali, M., Knueven, B., Guan, Y., Luh, P. B., Wu, L., et al. (2022). Security-constrained unit commitment for electricity market: Modeling, solution methods, and future challenges. IEEE Transactions on Power Systems, https://doi.org/10.1109/TPWRS.2022.3213001.
[66]
Wood, A. J., Wollenberg, B. F., Sheblé, G. B. (2014). Power Generation, Operation, and Control Third Edition, Hoboken, NJ, USA: Wiley-Interscience.
[72]
Shahidehpour, M., Yamin, H., Li, Z. (2002). Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management. Piscataway, NJ, USA: Wiley-IEEE Press.
[95]
Ackermann, T. (2005). Wind Power in Power Systems. Chichester, UK: Wiley.
[132]
Zlotnik, A., Roald, L., Backhaus, S., Chertkov, M., Andersson, G. (2017). Coordinated scheduling for interdependent electric power and natural gas infrastructures. In: Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK.
[160]
Zhang, N., Jia, H., Hou, Q., Zhang, Z., Xia, T., Cai, X., Wang, J. (2022). Data-driven security and stability rule in high renewable penetrated power system operation. Proceedings of the IEEE, https://doi.org/10.1109/JPROC.2022.3192719.
[168]
Growe-Kuska, N., Heitsch, H., Romisch, W. (2004). Scenario reduction and scenario tree construction for power management problems. In: Proceedings of the 2003 IEEE Bologna Power Tech Conference, Bologna, Italy.
[179]
Lorca, A., Sun, A. (2014). Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind. arXiv preprint: 1409.2936.
[192]
Ela, E., Hytowitz, R. B. (2019). Ancillary Services in the United States: Technical Requirements, Market Designs and Price Trends. Available at: https://www.offshorewindadvisory.com/wp-content/uploads/2019/07/EPRI-Ancillary-Services.pdf.
[197]
Liu, L., Hu, Z., Wen, Y., Ma, Y. (2023). Modeling of frequency security constraints and quantification of frequency control reserve capacities for unit commitment. IEEE Transactions on Power Systems, https://doi.org/10.1109/TPWRS.2023.3252502.
[201]
Achterberg, T., Wunderling, R. Mixed integer programming: Analyzing 12 years of progress. Facets of Combinatorial Optimization. Berlin, Heidelberg: Springer, 2013: 449-481.
[206]
Gurobi Optimization. (2022). What’s new—Gurobi 10.0. Available at: https://www.gurobi.com/whats-new-gurobi-10-0/.
[212]
Gao, Q., Yang, Z., Li, W., Yu, J., Lu, Y. (2023). Online learning of stable integer variables in unit commitment using internal information, IEEE Transactions on Power Systems, https://doi.org/10.1109/TPWRS.2023.3258699.
[213]
Bauer, S. (2020). High-performance computing helps grid operators manage increasing complexity. Available at: https://www.pnnl.gov/news-media/high-performance-computing-helps-grid-operators-manage-increasing-complexity.