Journal Home > Volume 2 , Issue 1

Quantum power flow (QPF) offers an inspiring direction for overcoming the computation challenge of power flow through quantum computing. However, the practical implementation of existing QPF algorithms in today’s noisy-intermediate-scale quantum (NISQ) era remains limited because of their sensitivity to noise. This paper establishes an NISQ-QPF algorithm that enables power flow computation on noisy quantum devices. The main contributions include: (1) a variational quantum circuit (VQC)-based alternating current (AC) power flow formulation, which enables QPF using short-depth quantum circuits; (2) NISQ-compatible QPF solvers based on the variational quantum linear solver (VQLS) and modified fast decoupled power flow; and (3) an error-resilient QPF scheme to relieve the QPF iteration deviations caused by noise; (3) a practical NISQ-QPF framework for implementable and reliable power flow analysis on noisy quantum machines. Extensive simulation tests validate the accuracy and generality of NISQ-QPF for solving practical power flow on IBM’s real, noisy quantum computers.


menu
Abstract
Full text
Outline
About this article

Noise-resilient quantum power flow

Show Author's information Fei FengYi-Fan ZhouPeng Zhang( )
Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA

Abstract

Quantum power flow (QPF) offers an inspiring direction for overcoming the computation challenge of power flow through quantum computing. However, the practical implementation of existing QPF algorithms in today’s noisy-intermediate-scale quantum (NISQ) era remains limited because of their sensitivity to noise. This paper establishes an NISQ-QPF algorithm that enables power flow computation on noisy quantum devices. The main contributions include: (1) a variational quantum circuit (VQC)-based alternating current (AC) power flow formulation, which enables QPF using short-depth quantum circuits; (2) NISQ-compatible QPF solvers based on the variational quantum linear solver (VQLS) and modified fast decoupled power flow; and (3) an error-resilient QPF scheme to relieve the QPF iteration deviations caused by noise; (3) a practical NISQ-QPF framework for implementable and reliable power flow analysis on noisy quantum machines. Extensive simulation tests validate the accuracy and generality of NISQ-QPF for solving practical power flow on IBM’s real, noisy quantum computers.

Keywords: quantum computing, Quantum AC power flow, variational quantum linear solver, fast decoupled load flow, noisy-intermediate-scale quantum device

References(31)

[1]

Feng, F., Zhang, P. (2020). Enhanced microgrid power flow incorporating hierarchical control. IEEE Transactions on Power Systems, 35: 2463–2466.

[2]

Wang, Y., Zhong, H., Xia, Q., Kirschen, D. S., Kang C. (2016). An approachfor integrated generation and transmission maintenance scheduling considering N-1 contingencies. IEEE Transactions on Power Systems, 31: 2225–2233.

[3]

Yang, Y., Yang, Z., Yu, J., Zhang, B., Zhang, Y., Yu, H. (2020). Fast calculation of probabilistic power flow: A model-based deep learning approach. IEEE Transactions on Smart Grid, 11: 2235–2244.

[4]

Feng, F., Zhang, P., Zhou, Y., Wang, L. (2023). Distributed networked microgrids power flow. IEEE Transactions on Power Systems, 38: 1405–1419.

[5]
Dommel, H. W. (1975). Analysis of large power systems. Available at: https://ntrs.nasa.gov/api/citations/19750021777/downloads/19750021777.pdf.
[6]

Ren, Z., Li, W., Billinton, R., Yan, W. (2016). Probabilistic power flow analysis based on the stochastic response surface method. IEEE Transactions on Power Systems, 31: 2307–2315.

[7]

Zhou, Y., Tang, Z., Nikmehr, N., Babahajiani, P., Feng, F., Wei, T. C., Zheng, H., Zhang, P. (2022). Quantum computing in power systems. iEnergy, 1: 170–187.

[8]

Chen, C. C., Shiau, S. Y., Wu, M.F., Wu, Y. R. (2019). Hybrid classical-quantum linear solver using Noisy Intermediate-Scale Quantum machines. Scientfic Reports, 9: 16251.

[9]

Zhou, Y., Feng, F., Zhang, P. (2021). Quantum electromagnetic transients program. IEEE Transactions on Power Systems, 36: 3813–3816.

[10]

Berry, D. W., Childs, A. M., Ostrander, A., Wang, G. (2017). Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Communications in Mathematical Physics, 356: 1057–1081.

[11]

Feng, F., Zhou, Y., Zhang, P. (2021). Quantum power flow. IEEE Transactions on Power Systems, 36: 3810–3812.

[12]
Dervovic, D., Herbster, M., Mountney, P., Severini, S., Usher, N., Wossnig, L. (2018). Quantum linear systems algorithms: A primer. arXiv preprint: 1802.08227.
[13]
Nielsen, M. A., Chuang, I. L. (2012). Quantum Computation and QuantumInformation. Cambridge, UK: Cambridge University Press.
[14]

Feng, F., Zhang, P., Zhou, Y., Tang, Z. (2022). Quantum microgrid state estimation. Electric Power Systems Research, 212: 108386.

[15]

Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., McClean, J. R., Mitarai, K., Yuan, X., Cincio, L., Coles, P. J. (2021). Variational quantum algorithms. Nature Reviews Physics, 3: 625–644.

[16]

Stott, B., Alsac, O. (1974). Fast decoupled load flow. IEEE Transactions on Power Apparatus and Systems, PAS-93: 859–869.

[17]

Brown, A. R., Susskind, L. (2018). Second law of quantum complexity. Physical Review D, 97: 086015.

[18]

Córcoles, A. D., Takita, M., Inoue, K., Lekuch, S., Minev, Z. K., Chow, J. M., Gambetta, J. M. (2021). Exploiting dynamic quantum circuits in a quantum algorithm with superconducting qubits. Physical Review Letters, 127: 100501.

[19]

Zhou, Y., Zhang, P., Feng, F. (2023). Noisy-intermediate-scale quantum electromagnetic transients program. IEEE Transactions on Power Systems, 38: 1558–1571.

[20]

Bravo-Prieto, C., LaRose, R., Cerezo, M., Subasi, Y., Cincio, L., Coles, P. J. (2020). Variational quantum linear solver: A hybrid algorithm for linear systems. Bulletin of the American Physical Society, 65: F07.00005.

[21]
Aharonov, D., Jones, V., Landau, Z. (2006). A polynomial quantum algorithm for approximating the Jones polynomial. In: Proceedings of the thirty-eighth annual ACM symposium on Theory of Computing, Seattle, WA, USA.
DOI
[22]

Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., Gambetta, J. M. (2017). Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549: 242–246.

[23]

Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K. (2018). Quantum circuit learning. Physical Review A, 98: 032309.

[24]
Zimmerman, R. (1996). Comprehensive distribution power flow: Modeling, formulation, solution algorithms and analysis. PhD thesis, Cornell University, Ithaca, NY, USA.
[25]

Feng F., Zhang, P. (2020). Implicit Zbus Gauss algorithm revisited. IEEE Transactions on Power Systems, 35: 4108–4111.

[26]
Kingma, D. P., Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint: 1412.6980.
[27]
Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint: 1609.04747.
[28]
Wille R., Van Meter, R., Naveh, (2019). Y. IBM’s Qiskit tool chain: Working with and developing for real quantum computers. In: Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy.
DOI
[29]
Shekar, M. C., Aarthi, N. (2018). Contingency analysis of IEEE 9 bus system. In: Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India.
DOI
[30]
(2020). IBM promises 1000-qubit quantum computer—a milestone—by 2023. Available at: https://doi.org/10.1126/science.abe8122.
DOI
[31]
Feng F., Zhang, P., Bragin, M. A., Zhou, Y. (2022). Novel resolution of unit commitment problems through quantum surrogate Lagrangian relaxation. IEEE Transactions on Power Systems, https://doi.org/10.1109/TPWRS.2022.3181221.
DOI
Publication history
Copyright
Rights and permissions

Publication history

Received: 11 March 2023
Revised: 05 April 2023
Accepted: 12 April 2023
Published: 01 March 2023
Issue date: March 2023

Copyright

© The author(s) 2023.

Rights and permissions

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return