Journal Home > Volume 1 , Issue 4

Metal halide perovskite solar cells (PSCs) have made substantial progress in power conversion efficiency (PCE) and stability in the past decade thanks to the advancements in perovskite deposition methodology, charge transport layer (CTL) optimization, and encapsulation technology. Solution-based methods have been intensively investigated and a 25.7% certified efficiency has been achieved. Vacuum vapor deposition protocols were less studied, but have nevertheless received increasing attention from industry and academia due to the great potential for large-area module fabrication, facile integration with tandem solar cell architectures, and compatibility with industrial manufacturing approaches. In this article, we systematically discuss the applications of several promising vacuum vapor deposition techniques, namely thermal evaporation, chemical vapor deposition (CVD), atomic layer deposition (ALD), magnetron sputtering, pulsed laser deposition (PLD), and electron beam evaporation (e-beam evaporation) in the fabrication of CTLs, perovskite absorbers, encapsulants, and connection layers for monolithic tandem solar cells.


menu
Abstract
Full text
Outline
About this article

Applications of vacuum vapor deposition for perovskite solar cells: A progress review

Show Author's information Hang Li1Mingzhen Liu2Meicheng Li3Hyesung Park4Nripan Mathews5Yabing Qi6Xiaodan Zhang7Henk J. Bolink8Karl Leo9Michael Graetzel10Chenyi Yi1( )
State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China
Department of Materials Science and Engineering, Graduate School of Semiconductor Materials and Devices Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Singapore 637553, Singapore
Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Conversion Center, Nankai University, Tianjin 300350, China
Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático J. Beltrán 2, 46980 Paterna, Spain
Integrated Centre for Applied Physics and Photonic Materials (IAPP) and the Centre for Advancing Electronics Dresden (CFAED), Technische Universitaet Dresden, 01062 Dresden, Germany
Laboratory of Photonics and Interfaces(LPI), Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland

Abstract

Metal halide perovskite solar cells (PSCs) have made substantial progress in power conversion efficiency (PCE) and stability in the past decade thanks to the advancements in perovskite deposition methodology, charge transport layer (CTL) optimization, and encapsulation technology. Solution-based methods have been intensively investigated and a 25.7% certified efficiency has been achieved. Vacuum vapor deposition protocols were less studied, but have nevertheless received increasing attention from industry and academia due to the great potential for large-area module fabrication, facile integration with tandem solar cell architectures, and compatibility with industrial manufacturing approaches. In this article, we systematically discuss the applications of several promising vacuum vapor deposition techniques, namely thermal evaporation, chemical vapor deposition (CVD), atomic layer deposition (ALD), magnetron sputtering, pulsed laser deposition (PLD), and electron beam evaporation (e-beam evaporation) in the fabrication of CTLs, perovskite absorbers, encapsulants, and connection layers for monolithic tandem solar cells.

Keywords: efficiency, stability, Perovskite solar cells, thermal evaporation, vacuum vapor deposition, industrial manufacture

References(122)

[1]

Lin, D. X., Zhan, Z. Y., Huang, X. L., Liu, P. Y., Xie, W. G. (2022). Advances in components engineering in vapor deposited perovskite thin film for photovoltaic application. Materials Today Advances, 16: 100277.

[2]
National Renewable Energy Laboratory. Best research-cell efficiency chart. Available at https://www.nrel.gov/pv/cell-efficiency.html.
[3]

Jiang, Y., He, S. S., Qiu, L. B., Zhao, Y. X., Qi, Y. B. (2022). Perovskite solar cells by vapor deposition based and assisted methods. Applied Physics Reviews, 9: 021305.

[4]

Li, H., Zhou, J., Tan, L., Li, M., Jiang, C., Wang, S., Zhao, X., Liu, Y., Zhang, Y., Ye, Y., et al. (2022). Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Science Advances, 8: eabo7422.

[5]

Wang, S. H., Li, X. T., Wu, J. B., Wen, W. J., Qi, Y. B. (2018). Fabrication of efficient metal halide perovskite solar cells by vacuum thermal evaporation: A progress review. Current Opinion in Electrochemistry, 11: 130–140.

[6]

Gil-Escrig, L., Roß, M., Sutter, J., Al-Ashouri, A., Becker, C., Albrecht, S. (2021). Fully vacuum-processed perovskite solar cells on pyramidal microtextures. Solar RRL, 5: 2000553.

[7]

Du, P. P., Wang, L., Li, J. H., Luo, J. J., Ma, Y., Tang, J., Zhai, T. Y. (2022). Thermal evaporation for halide perovskite optoelectronics: Fundamentals, progress, and outlook. Advanced Optical Materials, 10: 2101770.

[8]

Du, P. P., Li, J. H., Wang, L., Sun, L., Wang, X., Xu, X., Yang, L. B., Pang, J. C., Liang, W. X., Luo, J. J., et al. (2021). Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nature Communications, 12: 4751.

[9]

Li, Z. Z., Zhou, F. G., Yao, H. H., Ci, Z. P., Yang, Z., Jin, Z. W. (2021). Halide perovskites for high-performance X-ray detector. Materials Today, 48: 155–175.

[10]

Fan, Y., Qin, H. L., Mi, B. X., Gao, Z. Q., Huang, W. (2014). Progress in the fabrication of Cu2ZnSnS4 thin film for solar cells. Acta Chimica Sinica, 72: 643.

[11]

Era, M., Hattori, T., Taira, T., Tsutsui, T. (1997). Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition. Chemistry of Materials, 9: 8–10.

[12]

Liu, M. Z., Johnston, M. B., Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501: 395–398.

[13]

Malinkiewicz, O., Yella, A., Lee, Y. H., Espallargas, G. M., Graetzel, M., Nazeeruddin, M. K., Bolink, H. J. (2014). Perovskite solar cells employing organic charge-transport layers. Nature Photonics, 8: 128–132.

[14]

Malinkiewicz, O., Roldán-Carmona, C., Soriano, A., Bandiello, E., Camacho, L., Nazeeruddin, M. K., Bolink, H. J. (2014). Metal-oxide-free methylammonium lead iodide perovskite-based solar cells: The influence of organic charge transport layers. Advanced Energy Materials, 4: 1400345.

[15]

Li, J., Wang, H., Chin, X. Y., Dewi, H. A., Vergeer, K., Goh, T. W., Lim, J. W. M., Lew, J. H., Loh, K. P., Soci, C., et al. (2020). Highly efficient thermally Co-evaporated perovskite solar cells and mini-modules. Joule, 4: 1035–1053.

[16]

Dewi, H. A., Li, J., Wang, H., Chaudhary, B., Mathews, N., Mhaisalkar, S., Bruno, A. (2021). Excellent intrinsic long-term thermal stability of Co-evaporated MAPbI3 solar cells at 85 °C. Advanced Functional Materials, 31: 2100557.

[17]

Borchert, J., Levchuk, I., Snoek, L. C., Rothmann, M. U., Haver, R., Snaith, H. J., Brabec, C. J., Herz, L. M., Johnston, M. B. (2019). Impurity tracking enables enhanced control and reproducibility of hybrid perovskite vapor deposition. ACS Applied Materials & Interfaces, 11: 28851–28857.

[18]

Borchert, J., Milot, R. L., Patel, J. B., Davies, C. L., Wright, A. D., Martínez Maestro, L., Snaith, H. J., Herz, L. M., Johnston, M. B. (2017). Large-area, highly uniform evaporated formamidinium lead triiodide thin films for solar cells. ACS Energy Letters, 2: 2799–2804.

[19]

Lohmann, K. B., Motti, S. G., Oliver, R. D. J., Ramadan, A. J., Sansom, H. C., Yuan, Q., Elmestekawy, K. A., Patel, J. B., Ball, J. M., Herz, L. M., et al. (2022). Solvent-free method for defect reduction and improved performance of p-i-n vapor-deposited perovskite solar cells. ACS Energy Lett, 7: 1903–1911.

[20]

Chiang, Y. H., Anaya, M., Stranks, S. D. (2020). Multisource vacuum deposition of methylammonium-free perovskite solar cells. ACS Energy Letters, 5: 2498–2504.

[21]

Gil-Escrig, L., Dreessen, C., Kaya, I. C., Kim, B. S., Palazon, F., Sessolo, M., Bolink, H. J. (2020). Efficient vacuum-deposited perovskite solar cells with stable cubic FA1-xMAxPbI3. ACS Energy Letters, 5: 3053–3061.

[22]

Gil-Escrig, L., Dreessen, C., Palazon, F., Hawash, Z., Moons, E., Albrecht, S., Sessolo, M., Bolink, H. J. (2021). Efficient wide-bandgap mixed-cation and mixed-halide perovskite solar cells by vacuum deposition. ACS Energy Letters, 6: 827–836.

[23]

Juarez-Perez, E. J., Ono, L. K., Qi, Y. B. (2019). Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis. Journal of Materials Chemistry A, 7: 16912–16919.

[24]

Ball, J. M., Buizza, L., Sansom, H. C., Farrar, M. D., Klug, M. T., Borchert, J., Patel, J., Herz, L. M., Johnston, M. B., Snaith, H. J. (2019). Dual-source coevaporation of low-bandgap FA1-xCsxSn1-yPbyI3 perovskites for photovoltaics. ACS Energy Letters, 4: 2748–2756.

[25]

Igual-Muñoz, A. M., Ávila, J., Boix, P. P., Bolink, H. J. (2020). FAPb0.5Sn0.5I3: A narrow bandgap perovskite synthesized through evaporation methods for solar cell applications. Solar RRL, 4: 2070024.

[26]

Lin, H. Y., Chen, C. Y., Hsu, B. W., Cheng, Y. L., Tsai, W. L., Huang, Y. C., Tsao, C. S., Lin, H. W. (2019). Efficient cesium lead halide perovskite solar cells through alternative thousand-layer rapid deposition. Advanced Functional Materials, 29: 1905163.

[27]

Zhang, Z. B., Ji, R., Kroll, M., Hofstetter, Y. J., Jia, X. K., Becker-Koch, D., Paulus, F., Löffler, M., Nehm, F., Leo, K., et al. (2021). Efficient thermally evaporated γ-CsPbI3 perovskite solar cells. Advanced Energy Materials, 11: 2100299.

[28]

Antrack, T., Kroll, M., Sudzius, M., Cho, C., Imbrasas, P., Albaladejo-Siguan, M., Benduhn, J., Merten, L., Hinderhofer, A., Schreiber, F., et al. (2022). Optical properties of perovskite-organic multiple quantum wells. Advanced Science, 9: 2200379.

[29]

Kroll, M., Dilara Öz, S., Zhang, Z. B., Ji, R., Schramm, T., Antrack, T., Vaynzof, Y., Olthof, S., Leo, K. (2022). Insights into the evaporation behaviour of FAI: Material degradation and consequences for perovskite solar cells. Sustainable Energy & Fuels, 6: 3230–3239.

[30]

La-Placa, M. G., Guo, D. Y., Gil-Escrig, L., Palazon, F., Sessolo, M., Bolink, H. J. (2020). Dual-source vacuum deposition of pure and mixed halide 2D perovskites: Thin film characterization and processing guidelines. Journal of Materials Chemistry C, 8: 1902–1908.

[31]

Lin, D. X., Gao, Y. J., Zhang, T. K., Zhan, Z. Y., Pang, N. N., Wu, Z. W., Chen, K., Shi, T. T., Pan, Z. Q., Liu, P. Y., et al. (2022). Vapor deposited pure α-FAPbI3 perovskite solar cell via moisture-induced phase transition strategy. Advanced Functional Materials, 32: 2208392.

[32]
Lee, J. H., Kim, B. S., Park, J., Lee, J. W., Kim, K. (2022). Opportunities and challenges for perovskite solar cells based on vacuum thermal evaporation. Advanced Materials Technologies, https://doi.org/10.1002/admt.202200928.
[33]

Feng, J. S., Jiao, Y. X., Wang, H., Zhu, X. J., Sun, Y. M., Du, M. Y., Cao, Y. X., Yang, D., Liu, S. F. (2021). High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells. Energy & Environmental Science, 14: 3035–3043.

[34]

Choi, Y., Koo, D., Jeong, G., Kim, U., Kim, H., Huang, F. Z., Park, H. (2022). A vertically oriented two-dimensional Ruddlesden-Popper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells. Energy & Environmental Science, 15: 3369–3378.

[35]
Li, H., Tan, L., Jiang, C., Li, M., Zhou, J., Ye, Y., Liu, Y., Yi, C. (2022). Molten salt strategy for reproducible evaporation of efficient perovskite solar cells. Advanced Functional Materials, https://doi.org/10.1002/adfm.202211232.
[36]

Ullah, S., Wang, J. M., Yang, P. X., Liu, L. L., Li, Y. Q., Rehman, A. U., Yang, S. E., Xia, T. Y., Guo, H. Z., Chen, Y. S. (2021). Evaporation deposition strategies for all-inorganic CsPb(I1-xBrx)3 perovskite solar cells: Recent advances and perspectives. Solar RRL, 5: 2100172.

[37]

Mitzi, D. B., Prikas, M. T., Chondroudis, K. (1999). Thin film deposition of organic−inorganic hybrid materials using a single source thermal ablation technique. Chemistry of Materials, 11: 542–544.

[38]
Longo, G., Gil-Escrig, L., Degen, M. J., Sessolo, M., Bolink, H. J. (2015). Perovskite solar cells prepared by flash evaporation. Chemical Communications (Cambridge, England), 51: 7376–7378.
[39]

El Ajjouri, Y., Palazon, F., Sessolo, M., Bolink, H. J. (2018). Single-source vacuum deposition of mechanosynthesized inorganic halide perovskites. Chemistry of Materials, 30: 7423–7427.

[40]

Fan, P., Gu, D., Liang, G. X., Luo, J. T., Chen, J. L., Zheng, Z. H., Zhang, D. P. (2016). High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Scientific Reports, 6: 29910.

[41]

Li, J., Gao, R. R., Gao, F., Lei, J., Wang, H. X., Wu, X., Li, J. B., Liu, H., Hua, X. D., Liu, S. Z. (2020). Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation. Journal of Alloys and Compounds, 818: 152903.

[42]

Nasi, L., Calestani, D., Mezzadri, F., Mariano, F., Listorti, A., Ferro, P., Mazzeo, M., Mosca, R. (2020). All-inorganic CsPbBr3 perovskite films prepared by single source thermal ablation. Frontiers in Chemistry, 8: 313.

[43]

Klipfel, N., Haris, M. P. U., Kazim, S., Sutanto, A. A., Shibayama, N., Kanda, H., Asiri, A. M., Momblona, C., Ahmad, S., Nazeeruddin, M. K. (2022). Structural and photophysical investigation of single-source evaporation of CsFAPbI3 and FAPbI3 perovskite thin films. Journal of Materials Chemistry C, 10: 10075–10082.

[44]

Li, Y. C., Shi, B., Xu, Q. J., Yan, L. L., Ren, N. Y., Chen, Y. L., Han, W., Huang, Q., Zhao, Y., Zhang, X. D. (2021). Wide bandgap interface layer induced stabilized perovskite/silicon tandem solar cells with stability over ten thousand hours. Advanced Energy Materials, 11: 2102046.

[45]

Mao, L., Yang, T., Zhang, H., Shi, J. H., Hu, Y. C., Zeng, P., Li, F. M., Gong, J., Fang, X. Y., Sun, Y. Q., et al. (2022). Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Advanced Materials, 34: 2206193.

[46]

Wang, S. Y., Tan, L. G., Zhou, J. J., Li, M. H., Zhao, X., Li, H., Tress, W., Ding, L. M., Graetzel, M., Yi C. (2022). Over 24% efficient MA-free CsxFA1−xPbX3 perovskite solar cells. Joule, 6: 1344–1356.

[47]

Seo, S., Jeong, S., Park, H., Shin, H., Park, N. G. (2019). Atomic layer deposition for efficient and stable perovskite solar cells. Chemical Communications, 55: 2403–2416.

[48]

Polander, L. E., Pahner, P., Schwarze, M., Saalfrank, M., Koerner, C., Leo, K. (2014). Hole-transport material variation in fully vacuum deposited perovskite solar cells. APL Materials, 2: 081503.

[49]

Cheng, Q. R., Chen, H. Y., Yang, F., Chen, Z. Y., Chen, W. J., Yang, H. Y., Shen, Y. X., Ou, X. M., Wu, Y. Y., Li, Y. W., et al. (2022). Molecular self-assembly regulated dopant-free hole transport materials for efficient and stable n-i-p perovskite solar cells and scalable modules. Angewandte Chemie International Edition, 61: e202210613.

[50]

Du, G. Z., Yang, L., Zhang, C. P., Zhang, X. L., Rolston, N., Luo, Z. D., Zhang, J. B. (2022). Evaporated undoped spiro-OMeTAD enables stable perovskite solar cells exceeding 20% efficiency. Advanced Energy Materials, 12: 2270092.

[51]

Choi, Y., Koo, D., Jeong, M., Jeong, G., Lee, J., Lee, B., Choi, K. J., Yang, C., Park, H. (2021). Toward all-vacuum-processable perovskite solar cells with high efficiency, stability, and scalability enabled by fluorinated spiro-OMeTAD through thermal evaporation. Solar RRL, 5: 2100415.

[52]

Ji, R., Zhang, Z. B., Cho, C., An, Q. Z., Paulus, F., Kroll, M., Löffler, M., Nehm, F., Rellinghaus, B., Leo, K., et al. (2020). Thermally evaporated methylammonium-free perovskite solar cells. Journal of Materials Chemistry C, 8: 7725–7733.

[53]
Tavakoli, M. M., Tavakoli, R. (2021). All-vacuum-processing for fabrication of efficient, large-scale, and flexible inverted perovskite solar cells. Physica Status Solidi (RRL) – Rapid Research Letters, 15: 2000449.
[54]

Wang, Q. R., Lin, Z. H., Su, J., Hu, Z. S., Chang, J. J., Hao, Y. (2021). Recent progress of inorganic hole transport materials for efficient and stable perovskite solar cells. Nano Select, 2: 1055–1080.

[55]

Ke, W. J., Zhao, D. W., Grice, C. R., Cimaroli, A. J., Fang, G. J., Yan, Y. F. (2015). Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers. Journal of Materials Chemistry A, 3: 23888–23894.

[56]

Guo, Y. X., Lei, H. W., Xiong, L. B., Li, B. R., Fang, G. J. (2018). An integrated organic-inorganic hole transport layer for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 6: 2157–2165.

[57]

Momblona, C., Gil-Escrig, L., Bandiello, E., Hutter, E. M., Sessolo, M., Lederer, K., Blochwitz-Nimoth, J., Bolink, H. J. (2016). Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy & Environmental Science, 9: 3456–3463.

[58]

Pérez-Del-Rey, D., Boix, P. P., Sessolo, M., Hadipour, A., Bolink, H. J. (2018). Interfacial modification for high-efficiency vapor-phase-deposited perovskite solar cells based on a metal oxide buffer layer. The Journal of Physical Chemistry Letters, 9: 1041–1046.

[59]

Leyden, M. R., Ono, L. K., Raga, S. R., Kato, Y., Wang, S. H., Qi, Y. B. (2014). High performance perovskite solar cells by hybrid chemical vapor deposition. Journal of Materials Chemistry A, 2: 18742–18745.

[60]

Qiu, L. B., He, S. S., Jiang, Y., Son, D. Y., Ono, L. K., Liu, Z. H., Kim, T., Bouloumis, T., Kazaoui, S., Qi, Y. B. (2019). Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm2 approaching 10% efficiency. Journal of Materials Chemistry A, 7: 6920–6929.

[61]

Liu, J. J., Shi, B., Xu, Q. J., Li, Y. C., Chen, B. B., Wang, Q., Wang, P. Y., Zhao, Y., Zhang, X. D. (2021). Crystalline quality control in sequential vapor deposited perovskite film toward high efficiency and large scale solar cells. Solar Energy Materials and Solar Cells, 233: 111382.

[62]

Jiang, Y., Remeika, M., Hu, Z. H., Juarez-Perez, E. J., Qiu, L. B., Liu, Z. H., Kim, T., Ono, L. K., Son, D. Y., Hawash, Z., et al. (2019). Negligible-Pb-waste and upscalable perovskite deposition technology for high-operational-stability perovskite solar modules. Advanced Energy Materials, 9: 1803047.

[63]

Qiu, L. B., He, S. S., Liu, Z. H., Ono, L. K., Son, D. Y., Liu, Y. Q., Tong, G. Q., Qi, Y. B. (2020). Rapid hybrid chemical vapor deposition for efficient and hysteresis-free perovskite solar modules with an operation lifetime exceeding 800 hours. Journal of Materials Chemistry A, 8: 23404–23412.

[64]

Smirnov, Y., Schmengler, L., Kuik, R., Repecaud, P. A., Najafi, M., Zhang, D., Theelen, M., Aydin, E., Veenstra, S., De Wolf, S., et al. (2021). Scalable pulsed laser deposition of transparent rear electrode for perovskite solar cells. Advanced Materials Technologies, 6: 2000856.

[65]

Raiford, J. A., Oyakhire, S. T., Bent, S. F. (2020). Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells. Energy & Environmental Science, 13: 1997–2023.

[66]

Zhou, J., Tian, X. Y., Wang, B. K., Zhang, S. S., Liu, Z. H., Chen, W. (2022). Application of low temperature atomic layer deposition packaging technology in OLED and its implications for organic and perovskite solar cell packaging. Acta Chimica Sinica, 80: 395.

[67]

Lv, Y. F., Xu, P. H., Ren, G. Q., Chen, F., Nan, H. R., Liu, R. Q., Wang, D., Tan, X., Liu, X. Y., Zhang, H., et al. (2018). Low-temperature atomic layer deposition of metal oxide layers for perovskite solar cells with high efficiency and stability under harsh environmental conditions. ACS Applied Materials & Interfaces, 10: 23928–23937.

[68]

Altinkaya, C., Aydin, E., Ugur, E., Isikgor, F. H., Subbiah, A. S., De Bastiani, M., Liu, J., Babayigit, A., Allen, T. G., Laquai, F., et al. (2021). Tin oxide electron-selective layers for efficient, stable, and scalable perovskite solar cells. Advanced Materials, 33: 2005504.

[69]

Qiu, L. B., Ono, L. K., Jiang, Y., Leyden, M. R., Raga, S. R., Wang, S. H., Qi, Y. B. (2018). Engineering interface structure to improve efficiency and stability of organometal halide perovskite solar cells. The Journal of Physical Chemistry B, 122: 511–520.

[70]

Lee, Y. H., Lee, S., Seo, G., Paek, S., Cho, K. T., Huckaba, A. J., Calizzi, M., Choi, D. W., Park, J. S., Lee, D., et al. (2018). Efficient planar perovskite solar cells using passivated tin oxide as an electron transport layer. Advanced Science, 5: 1800130.

[71]

Correa Baena, J. P., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsui, T., Giordano, F., Jacobsson, T. J., Srimath Kandada, A. R., Zakeeruddin, S. M., et al. (2015). Highly efficient planar perovskite solar cells through band alignment engineering. Energy & Environmental Science, 8: 2928–2934.

[72]

Correa-Baena, J. P., Tress, W., Domanski, K., Anaraki, E. H., Turren-Cruz, S. H., Roose, B., Boix, P. P., Grätzel, M., Saliba, M., Abate, A., et al. (2017). Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy & Environmental Science, 10: 1207–1212.

[73]

Wang, C. L., Zhao, D. W., Grice, C. R., Liao, W. Q., Yu, Y., Cimaroli, A., Shrestha, N., Roland, P. J., Chen, J., Yu, Z. H., et al. (2016). Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. Journal of Materials Chemistry A, 4: 12080–12087.

[74]

Seo, S., Park, I. J., Kim, M., Lee, S., Bae, C., Jung, H. S., Park, N. G., Kim, J. Y., Shin, H. (2016). An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. Nanoscale, 8: 11403–11412.

[75]

Xiao, K., Lin, R. X., Han, Q. L., Hou, Y., Qin, Z. Y., Nguyen, H. T., Wen, J., Wei, M. Y., Yeddu, V., Saidaminov, M. I., et al. (2020). All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy, 5: 870–880.

[76]

Zhu, S. J., Yao, X., Ren, Q. S., Zheng, C. C., Li, S. Z., Tong, Y. P., Shi, B., Guo, S., Fan, L., Ren, H. Z., et al. (2018). Transparent electrode for monolithic perovskite/silicon-heterojunction two-terminal tandem solar cells. Nano Energy, 45: 280–286.

[77]

Palmstrom, A. F., Eperon, G. E., Leijtens, T., Prasanna, R., Habisreutinger, S. N., Nemeth, W., Gaulding, E. A., Dunfield, S. P., Reese, M., Nanayakkara, S., et al. (2019). Enabling flexible all-perovskite tandem solar cells. Joule, 3: 2193–2204.

[78]

Lu, Q., Yang, Z. C., Meng, X., Yue, Y. F., Ahmad, M. A., Zhang, W. J., Zhang, S. S., Zhang, Y. Q., Liu, Z. H., Chen, W. (2021). A review on encapsulation technology from organic light emitting diodes to organic and perovskite solar cells. Advanced Functional Materials, 31: 2100151.

[79]

Choi, E. Y., Kim, J., Lim, S., Han, E., Ho-Baillie, A. W. Y., Park, N. (2018). Enhancing stability for organic-inorganic perovskite solar cells by atomic layer deposited Al2O3 encapsulation. Solar Energy Materials and Solar Cells, 188: 37–45.

[80]

Ramos, F. J., Maindron, T., Béchu, S., Rebai, A., Frégnaux, M., Bouttemy, M., Rousset, J., Schulz, P., Schneider, N. (2018). Versatile perovskite solar cell encapsulation by low-temperature ALD-Al2O3 with long-term stability improvement. Sustainable Energy & Fuels, 2: 2468–2479.

[81]

Lee, Y. I., Jeon, N. J., Kim, B. J., Shim, H., Yang, T. Y., Seok, S. I., Seo, J., Im, S. G. (2018). A low-temperature thin-film encapsulation for enhanced stability of a highly efficient perovskite solar cell. Advanced Energy Materials, 8: 1701928.

[82]

Yin, X. T., Guo, Y. X., Xie, H. X., Que, W. X., Kong, L. B. (2019). Nickel oxide as efficient hole transport materials for perovskite solar cells. Solar RRL, 3: 1900001.

[83]

Li, G. J., Jiang, Y. B., Deng, S. B., Tam, A., Xu, P., Wong, M., Kwok, H. S. (2017). Overcoming the limitations of sputtered nickel oxide for high-efficiency and large-area perovskite solar cells. Advanced Science, 4: 1700463.

[84]

Bai, G. F., Wu, Z. L., Li, J., Bu, T. L., Li, W. N., Li, W., Huang, F. Z., Zhang, Q., Cheng, Y. B., Zhong, J. (2019). High performance perovskite sub-module with sputtered SnO2 electron transport layer. Solar Energy, 183: 306–314.

[85]

Qiu, L. B., Liu, Z. H., Ono, L. K., Jiang, Y., Son, D. Y., Hawash, Z., He, S. S., Qi, Y. B. (2019). Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer. Advanced Functional Materials, 29: 1806779.

[86]

Aydin, E., Altinkaya, C., Smirnov, Y., Yaqin, M. A., Zanoni, K. P. S., Paliwal, A., Firdaus, Y., Allen, T. G., Anthopoulos, T. D., Bolink, H. J., et al. (2021). Sputtered transparent electrodes for optoelectronic devices: Induced damage and mitigation strategies. Matter, 4: 3549–3584.

[87]

Lim, S. H., Seok, H. J., Kwak, M. J., Choi, D. H., Kim, S. K., Kim, D. H., Kim, H. K. (2021). Semi-transparent perovskite solar cells with bidirectional transparent electrodes. Nano Energy, 82: 105703.

[88]

Wei, Z. F., Smith, B., De Rossi, F., Searle, J. R., Worsley, D. A., Watson, T. M. (2019). Efficient and semi-transparent perovskite solar cells using a room-temperature processed MoOx/ITO/Ag/ITO electrode. Journal of Materials Chemistry C, 7: 10981–10987.

[89]

Gao, B., Hu, J., Tang, S., Xiao, X. Y., Chen, H., Zuo, Z., Qi, Q., Peng, Z. Y., Wen, J. C., Zou, D. C. (2021). Organic-inorganic perovskite films and efficient planar heterojunction solar cells by magnetron sputtering. Advanced Science, 8: e2102081.

[90]

Gao, B., Hu, J., Zuo, Z., Qi, Q., Peng, Z. Y., Chen, H., Yan, K., Hou, S. C., Zou, D. C. (2022). Doping mechanism of perovskite films with PbCl2 prepared by magnetron sputtering for enhanced efficiency of solar cells. ACS Applied Materials & Interfaces, 14: 40062–40071.

[91]

Xu, F., Li, Y. J., Yuan, B. L., Zhang, Y. Z., Wei, H. M., Wu, Y. Q., Cao, B. Q. (2021). Large-area CsPbBr3 perovskite films grown with effective one-step RF-magnetron sputtering. Journal of Applied Physics, 129: 245303.

[92]
VacCoat (2022). What is pulsed laser deposition (PLD)? Available at https://vaccoat.com/blog/what-is-pulsed-laser-deposition-pld/.
[93]
European Synchrotron Radiation Facility. Pulsed laser deposition. Available at: https://www.esrf.fr/UsersAndScience/Experiments/CRG/BM25/inhouseresearch/supportlaboratory/PLD.
[94]

Smirnov, Y., Repecaud, P. A., Tutsch, L., Florea, I., Zanoni, K. P. S., Paliwal, A., Bolink, H. J., i Cabarrocas, P. R., Bivour, M., Morales-Masis, M. (2022). Wafer-scale pulsed laser deposition of ITO for solar cells: Reduced damage vs. interfacial resistance. Materials Advances, 3: 3469–3478.

[95]

Zanoni, K. P. S., Paliwal, A., Hernández-Fenollosa, M. A., Repecaud, P. A., Morales-Masis, M., Bolink, H. J. (2022). ITO top-electrodes via industrial-scale PLD for efficient buffer-layer-free semitransparent perovskite solar cells. Advanced Materials Technologies, 7: 2101747.

[96]

Park, J. H., Seo, J., Park, S., Shin, S. S., Kim, Y. C., Jeon, N. J., Shin, H. W., Ahn, T. K., Noh, J. H., Yoon, S. C., et al. (2015). Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Advanced Materials, 27: 4013–4019.

[97]

Qiu, Z. W., Gong, H. B., Zheng, G., Yuan, S., Zhang, H. L., Zhu, X. M., Zhou, H. P., Cao, B. Q. (2017). Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency. Journal of Materials Chemistry C, 5: 7084–7094.

[98]

Feng, M. L., Wang, M., Zhou, H. P., Li, W., Wang, S. P., Zang, Z. G., Chen, S. J. (2020). High-efficiency and stable inverted planar perovskite solar cells with pulsed laser deposited Cu-doped NiOx hole-transport layers. ACS Applied Materials & Interfaces, 12: 50684–50691.

[99]

Ke, S. M., Du, B. K., Rao, Z. G., Huang, C., Lin, P., Hu, Y. M., Shu, L. L. (2019). Pulsed laser deposition of amorphous InGaZnO4 as an electron transport layer for perovskite solar cells. Journal of Advanced Dielectrics, 9: 1950042.

[100]

Gao, Y. B., Wu, Y. J., Liu, Y., Chen, C., Shen, X. Y., Bai, X., Shi, Z. F., Yu, W. W., Dai, Q. L., Zhang, Y. (2019). Improved interface charge extraction by double electron transport layers for high-efficient planar perovskite solar cells. Solar RRL, 3: 1900314.

[101]

Zhang, H., Wang, H., Ma, M. Y., Wu, Y., Dong, S., Xu, Q. Y. (2018). Application of compact TiO2 layer fabricated by pulsed laser deposition in organometal trihalide perovskite solar cells. Solar RRL, 2: 1800097.

[102]

Dunlap-Shohl, W. A., Barraza, E. T., Barrette, A., Gundogdu, K., Stiff-Roberts, A. D., Mitzi, D. B. (2018). MAPbI3 solar cells with absorber deposited by resonant infrared matrix-assisted pulsed laser evaporation. ACS Energy Letters, 3: 270–275.

[103]

Bansode, U., Naphade, R., Game, O., Agarkar, S., Ogale, S. (2015). Hybrid perovskite films by a new variant of pulsed excimer laser deposition: A room-temperature dry process. The Journal of Physical Chemistry C, 119: 9177–9185.

[104]

Bansode, U., Ogale, S. (2017). On-axis pulsed laser deposition of hybrid perovskite films for solar cell and broadband photo-sensor applications. Journal of Applied Physics, 121: 133107.

[105]
Soto-Montero, T., Soltanpoor, W., Kralj, S., Birkhölzer, Y. A., Remes, Z., Ledinsky, M., Rijnders, G., Morales-Masis, M. (2021). Single-source pulsed laser deposition of MAPbI3. In: Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA.
[106]

Wang, H., Wu, Y., Ma, M. Y., Dong, S., Li, Q., Du, J., Zhang, H., Xu, Q. Y. (2019). Pulsed laser deposition of CsPbBr3 films for application in perovskite solar cells. ACS Applied Energy Materials, 2: 2305–2312.

[107]

Jin, X., Song, S. X., Liu, Z., Wang, H., Wang, B., Guan, J., Zhang, H., Xu, Q. Y. (2021). High-stability patterned CsPbIxBr3−x thin films with tunable crystal size prepared by solid-phase reaction. Advanced Optical Materials, 9: 2101175.

[108]

Hoffmann-Urlaub, S., Zhang, Y. D., Wang, Z. D., Kressdorf, B., Meyer, T. (2020). Fabrication of tin-based halide perovskites by pulsed laser deposition. Applied Physics A, 126: 335.

[109]

Kiyek, V. M., Birkhölzer, Y. A., Smirnov, Y., Ledinsky, M., Remes, Z., Momand, J., Kooi, B. J., Koster, G., Rijnders, G., Morales-Masis, M. (2020). Single-source, solvent-free, room temperature deposition of black γ-CsSnI 3 films. Advanced Materials Interfaces, 7: 2000162.

[110]

Rodkey, N., Kaal, S., Sebastia-Luna, P., Birkhölzer, Y. A., Ledinsky, M., Palazon, F., Bolink, H. J., Morales-Masis, M. (2021). Pulsed laser deposition of Cs2AgBiBr6: From mechanochemically synthesized powders to dry, single-step deposition. Chemistry of Materials, 33: 7417–7422.

[111]

Schulze, P. S. C., Bett, A. J., Winkler, K., Hinsch, A., Lee, S., Mastroianni, S., Mundt, L. E., Mundus, M., Würfel, U., Glunz, S. W., et al. (2017). Novel low-temperature process for perovskite solar cells with a mesoporous TiO2 scaffold. ACS Applied Materials & Interfaces, 9: 30567–30574.

[112]

Liu, L. L., Yang, S. E., Liu, P., Chen, Y. S. (2022). High-quality and full-coverage CsPbBr3 thin films via electron beam evaporation with post-annealing treatment for all-inorganic perovskite solar cells. Solar Energy, 232: 320–327.

[113]

Qiu, W. M., Paetzold, U. W., Gehlhaar, R., Smirnov, V., Boyen, H. G., Tait, J. G., Conings, B., Zhang, W. M., Nielsen, C. B., McCulloch, I., et al. (2015). An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. Journal of Materials Chemistry A, 3: 22824–22829.

[114]

Li, Y. B., Cooper, J. K., Liu, W. J., Sutter-Fella, C. M., Amani, M., Beeman, J. W., Javey, A., Ager, J. W., Liu, Y., Toma, F. M., et al. (2016). Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nature Communications, 7: 12446.

[115]

Ma, J. J., Zheng, X. L., Lei, H. W., Ke, W. J., Chen, C., Chen, Z. L., Yang, G., Fang, G. J. (2017). Highly efficient and stable planar perovskite solar cells with large-scale manufacture of E-beam evaporated SnO2 toward commercialization. Solar RRL, 1: 1700118.

[116]

Blackburn, D., Routledge, T. J., O’Kane, M., Cassella, E. J., Game, O. S., Catley, T. E., Wood, C. J., McArdle, T., Lidzey, D. G. (2022). Low-temperature, scalable, reactive deposition of tin oxide for perovskite solar cells. Solar RRL, 6: 2270081.

[117]

Feng, J. S., Yang, Z., Yang, D., Ren, X. D., Zhu, X. J., Jin, Z. W., Zi, W., Wei, Q. B., Liu, S. Z. (2017). E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy, 36: 1–8.

[118]

Abzieher, T., Schwenzer, J. A., Moghadamzadeh, S., Sutterluti, F., Hossain, I. M., Pfau, M., Lotter, E., Hetterich, M., Richards, B. S., Lemmer, U., et al. (2019). Efficient all-evaporated pin-perovskite solar cells: A promising approach toward industrial large-scale fabrication. IEEE Journal of Photovoltaics, 9: 1249–1257.

[119]

Abzieher, T., Moghadamzadeh, S., Schackmar, F., Eggers, H., Sutterlüti, F., Farooq, A., Kojda, D., Habicht, K., Schmager, R., Mertens, A., et al. (2019). Photovoltaic devices: Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics. Advanced Energy Materials, 9: 1970035.

[120]

Liu, X., Jiang, J., Wang, F., Xiao, Y., Sharp, I. D., Li, Y. (2019). High photovoltage inverted planar heterojunction perovskite solar cells with all-inorganic selective contact layers. ACS Applied Materials & Interfaces, 11: 46894–46901.

[121]

Jiang, J. X., Mavrič, A., Pastukhova, N., Valant, M., Zeng, Q. G., Fan, Z. Y., Zhang, B. B., Li, Y. B. (2022). Coevaporation of doped inorganic carrier-selective layers for high-performance inverted planar perovskite solar cells. Solar RRL, 6: 2200091.

[122]

Du, M. Y., Zhao, S., Duan, L. J., Cao, Y. X., Wang, H., Sun, Y. M., Wang, L. K., Zhu, X. J., Feng, J. S., Liu, L., et al. (2022). Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules. Joule, 6: 1931–1943.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 December 2022
Accepted: 16 December 2022
Published: 20 December 2022
Issue date: December 2022

Copyright

© The author(s)

Acknowledgements

Acknowledgements

C.Y.Y. acknowledges financial support of the National Key Research and Development Program of China (2022YFB3803304). The project supported by Tsinghua University Initiative Scientific Research Program (20221080065, 20223080044) and National Natural Science Foundation of China (No. 21872080), State Key Laboratory of Power System and Generation Equipment (Nos. SKLD21Z03 and SKLD20M03), The Chinese Thousand Talents Program for Young Professionals, State Grid Corporation of China, National Bio Energy Co., Ltd. Grant Number 52789922000D, China Huaneng Group Co., Ltd., and grant no. HNKJ20-H88. H.J.B acknowledges financial support of the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 834431) and the Spanish Agencia estatal de investigacion (AEI) Grant PDC2021-121317-I00 funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”. Y.B.Q. acknowledges the support from the Energy Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology Graduate University. M.C.L. acknowledges the support from the National Natural Science Foundation of China (No. 52232008).

Rights and permissions

Copyright: by the author(s). The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return