Journal Home > Volume 1 , Issue 4

The construction of the future energy structure of China under the 2050 carbon-neutral vision requires compact direct current (DC) gas-insulation equipment as important nodes and solutions to support electric power transmission and distribution of long-distance and large-capacity. This paper reviews China's 10-year progress in DC gas-insulated equipment. Important progresses in basic research and industry perspective are presented, with related scientific issues and technical bottlenecks being discussed. The progress in DC gas-insulated equipment worldwide (Europe, Japan, America) is also reported briefly.


menu
Abstract
Full text
Outline
About this article

China’s 10-year progress in DC gas-insulated equipment: From basic research to industry perspective

Show Author's information Chuanyang Li1Changhong Zhang2Jinzhuang Lv3Fangwei Liang1Zuodong Liang1Xianhao Fan1Uwe Riechert4Zhen Li5Peng Liu6Jianyi Xue7Cheng Pan8Geng Chen9Lei Zhang10Zheming Wang10Wu Lu10Hucheng Liang11Zijun Pan8Weijian Zhuang1Giovanni Mazzanti12Davide Fabiani12Bo Liu13Shaohua Cao13Jianying Zhong14Yuan Deng14Zhenle Nan15Jingen Tang16Jinliang He1( )
State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
Maintenance & Test Center of EHV Power Transmission Company China Southern Power Grid, Guangzhou 510663, China
EHV Power Transmission Company China Southern Power Grid, Guangzhou 510663, China
Hitachi Energy Switzerland Ltd, Zürich, Switzerland
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
Department of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna 40136, Italy
Shandong Taikai Electrical Insulation Co., Ltd., Tai’an 271000, China
PingGao Group CO., Ltd., Pingdingshan 467001, China
China XD Group Co., Ltd., Xi’an 710075, China
Jiangsu Jinxin Electric Appliance Co., Ltd., Yangzhou 225202, China

Abstract

The construction of the future energy structure of China under the 2050 carbon-neutral vision requires compact direct current (DC) gas-insulation equipment as important nodes and solutions to support electric power transmission and distribution of long-distance and large-capacity. This paper reviews China's 10-year progress in DC gas-insulated equipment. Important progresses in basic research and industry perspective are presented, with related scientific issues and technical bottlenecks being discussed. The progress in DC gas-insulated equipment worldwide (Europe, Japan, America) is also reported briefly.

Keywords: surface charge, flashover, DC gas-insulated switchgear (GIS), DC gas-insulated power transmission line (GIL), metal particle, offshore projects

References(176)

[1]

Li, C., Yang, Y., Xu, G., Zhou, Y., Jia, M., Zhong, S., Gao, Y., Park, C., Liu, Q., Wang, Y., Akram, S. (2022). Insulating materials for realising carbon neutrality: Opportunities, remaining issues and challenges. High Voltage, 7: 610–632.

[2]

Zhang, L., Lin, C., Li, C., Suraci, S., Chen, G., Riechert, U., Shahsavarian, T., Hikita, M., Tu, Y., Zhang, Z., Fabiani, D., He, J. (2020). Gas–solid interface charge characterisation techniques for HVDC GIS/GIL insulators. High Voltage, 5: 95–109.

[3]

Li, C., Zhu, Y., Hu, J., Li, Q., Zhang, B., He, J. (2020). Charge cluster triggers unpredictable insulation surface flashover in pressurized SF6. Journal of Physics D: Applied Physics, 54: 015308.

[4]

Li, C., Lin, C., Chen, G., Tu, Y. Zhou, Y., Li, Q., Zhang, B., He, J. (2019). Field-dependent charging phenomenon of HVDC spacers based on dominant charge behaviors. Applied Physics Letters, 114: 202904.

[5]

Chen, X., Chen, S., Zhang, B., Li, G., Chang, Z., Zhang, G. (2020). Promotion of epoxy resin surface electrical insulation performance and its stability by atmospheric fluorocarbon dielectric barrier discharge. IEEE Transactions on Dielectrics and Electrical Insulation, 27: 1973–1981.

[6]

Chen, J., Xue, J., Dong, J., Li, Y., Deng, J., Zhang, G. (2020). Effects of surface conductivity on surface charging behavior of DC-GIL spacers. IEEE Transactions on Dielectrics and Electrical Insulation, 27: 1038–1045.

[7]
Qiang, D., He, M., Chen, G., Andritsch, T. (2015). Influence of nano-SiO2 and BN on space charge and AC/DC performance of epoxy nanocomposites. In: Proceedings of the 2015 IEEE Electrical Insulation Conference (EIC), Seattle, WA, USA.
DOI
[8]
Cai, Z., Li, M., Wang, W., Min, D., Li, S., Zhang, L., Yang, W., Chen, Y., Wang, K. (2020). Influence of surface trap parameters on AC/DC flashover of epoxy resin. In: Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China.
DOI
[9]

Du, B., Tian, M., Su, J., Han, T. (2020). Temperature gradient dependence on electrical tree in epoxy resin with harmonic superimposed DC voltage. IEEE Transactions on Dielectrics and Electrical Insulation, 27: 270–278.

[10]
Zhang, B., Zhong, J., Han, G., Yao, Y., Wang, Z., Zhong, L., Liu, Y., Zhang, H. (2020). Modification of HVDC GIS/GIL basin insulators based on electrical and mechanical collaborative design. In: Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China.
DOI
[11]
Jia, Y., Gao, L., Ji, S., Li, X., Li, Z., Liu, Y. (2020). Electrical performance optimization for tri-post insulator on 1100 kV gas-insulated metal-enclosed transmission line. Journal of Xi’an Jiaotong University, 54(7): 168–179. (in Chinese)
[12]
Hu, Q., Li, Q., Liu, Z., Liu, H. (2021). Impact analysis of charge accumulation on electric field distribution of DC GIL tri-post insulator under temperature gradients. Advanced Technology of Electrical Engineering and Energy, 40(7): 20–27. (in Chinese)
[13]

Li, C., Hu, J., Lin, C., He, J. (2017). The potentially neglected culprit of DC surface flashover-electron migration under temperature gradients. Scientific Reports, 7: 3271.

[14]

Yan, W., Zhang, Z., Deng, B., Zhang, Z. (2019). Influence of temperature and positive voltage on surface charge accumulation for the disc insulator of GIL under DC voltage. High Voltage Engineering, 45: 3889–3897.

[15]

Jia, Z., Gan, D., Li, J. (2011). Design of insulation dimension for ±500 kV DC gas insulated transmission line. Power System Technology, 35: 192–196.

[16]

Liang, Z., Lin, C., Liang, F., Zhuang, W., Xu, Y., Tang, L., Zeng, Y., Hu, J., Zhang, B., Li, C., He, J. (2022). Designing HVDC GIS/GIL spacer to suppress charge accumulation. High Voltage, 7: 645–651.

[17]

Ma, G., Zhou, H., Li, C., Jiang, J. and Chen, X. (2015). Designing epoxy insulators in SF6-filled DC-GIL with simulations of ionic conduction and surface charging. IEEE Transactions on Dielectrics and Electrical Insulation, 22: 3312–3320.

[18]

Li, C., Lin, C., Yang, Y., Zhang, B., Liu, W., Li, Q., Hu, J., He, S., Liu, X., He, J. (2018). Novel HVDC spacers by adaptively controlling surface charges – part ii: Experiment. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1248–1258.

[19]

Hu, Q., Li, Q., Liu, Z., Liu, H., Manu, H. (2022). Interfacial electric field optimization of DC tri-post insulator based on gradient surface conductance regulation. Transactions of China Electrotechnical Society, 37: 1856–1865.

[20]

Tu, Y., Chen, G., Li, C., Wang, C., Ma, G., Zhou, H., Ai, X., Cheng, Y. (2020). ±100-kV HVDC SF6/N2 gas-insulated transmission line. IEEE Transactions on Power Delivery, 35: 735–744.

[21]

Li, C., Zhu, Y., Zhu, Y., Zhi, Q., Song, S., Connelly, L., Li, Z., Chen, G., Lei, Z., Yang, Y., Mazzanti, G. (2021). Dust figures as a way for mapping surface charge distribution—A review. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 853–863.

[22]

Zhang, B., Xue, J., Chen, X., Chen, S., Mu, H., Xu, Y., Zhang, G. (2021). Review of surface transient charge measurement on solid insulating materials via the Pockels technique. High Voltage, 6: 608–624.

[23]

Chen, J., Li, J., Dong, J., Sun, P., Deng, J., Li, Y., Zhang, G. J. (2022). Surface discharge propagation in C4F7N/CO2 mixture under positive impulse voltages. Applied Physics Letters, 120: 061601.

[24]

Chen, J., Sun, P., Li, J., Li, W., Li, Y., Deng, J., Ji, S., Zhang, G. J. (2022). Surface discharge pattern of C4F7N/CO2 mixture under negative impulse voltages. Applied Physics Letters, 121: 171602.

[25]

Zhang, Y., Wang, F., Li, Z., Zhou, X., He, R. (2014). Development of surface charge detection device for DC composite insulator. High Voltage Engineering, 40: 1514–1519.

[26]

Gao, C., Qi, B., Li, C., Huang, M., Lv, Y. (2020). The surface charge of Al2O3 ceramic insulator under nanosecond pulse voltage in high vacuum: characteristics and its impact on surface electric field. Journal of Physics D: Applied Physics, 53: 055501.

[27]

Wang, F., Liang, F., Chen, S., Tan, Y., Zhong, L., Sun, Q. (2021). Surface charge inversion method on cylindrical insulators based on surface potentials measured online. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 192–197.

[28]

Fan, L., Yin, Y., Wang, Y. (2022). Surface potential dynamics of polyimide under DC corona based on noninvasive measurement. IEEE Transactions on Dielectrics and Electrical Insulation, 29: 1307–1315.

[29]

Fan, L., Yin, Y., Wang, Y. (2022). Surface potential dynamics and flashover resistance evaluation of epoxy resin under DC flashover. IEEE Transactions on Dielectrics and Electrical Insulation, 29: 575–582.

[30]

Davies, D. (1967). The examination of the electrical properties of insulators by surface charge measurement. Journal of Scientific Instruments, 44: 521–524.

[31]

Takuma, T., Yashima, M., Kawamoto, T. (1998). Principle of surface charge measurement for thick insulating specimens. IEEE Transactions on Dielectrics and Electrical Insulation, 5: 497–504.

[32]

Rerup, T., Crichton, G., McAllister, I. (1997). Using the λ function to evaluate probe measurements of charged dielectric surfaces. IEEE Transactions on Dielectrics and Electrical Insulation, 3: 770–777.

[33]

Faircloth, D., Allen, N. (2003). High resolution measurements of surface charge densities on insulator surfaces. IEEE Transactions on Dielectrics and Electrical Insulation, 10: 285–290.

[34]

Ootera, H., Nakanishi, K. (1988). Analytical method for evaluating surface charge distribution on a dielectric from capacitive probe measurement-application to a cone-type spacer in ±500 kV DC-GIS. IEEE Transactions on Power Delivery, 3: 165–172.

[35]

Zhang, B., Gao, W., Qi, Z. Zhang, G. (2017). Inversion algorithm to calculate charge density on solid dielectric surface based on surface potential measurement. IEEE Transactions on Instrumentation and Measurement, 66: 3316–3326.

[36]

Kumada, A., Okabe, S. (2004). Charge distribution measurement on a truncated cone spacer under DC voltage. IEEE Transactions on Dielectrics and Electrical Insulation, 11: 929–938.

[37]
Luo, Y. (2022). Surface charge accumulation characteristics and shape optimization of insulator under DC voltage. PhD Thesis, Wuhan University, China.
[38]

Lin, C., Li, C., He, J. Hu, J., Zhang, B. (2017). Surface charge inversion algorithm based on bilateral surface potential measurements of cone-type spacer. IEEE Transactions on Dielectrics and Electrical Insulation, 24: 1905–1912.

[39]

Kumada, A., Okabe, S., Hidaka, K. (2004). Resolution and signal processing technique of surface charge density measurement with electrostatic probe. IEEE Transactions on Dielectrics and Electrical Insulation, 11: 122–129.

[40]
Deng, J., Wang, H., Xue, J. (2018). Improved reverse algorithm of surface charge density distribution and electric field distribution based on electrostatic probe. Proceedings of the CSEE, 38(4): 1239–1247. (in Chinese)
[41]

Pan, Z., Tang, J., Hu, B. Pan, C., Luo, Y., Mao, S. (2021). Inversion algorithm for surface charge distribution on insulator in shift-invariant system based on constrained least square filter. IEEE Transactions on Instrumentation and Measurement, 70: 1–12.

[42]

Winter, A., Kindersberger, J. (2014). Transient field distribution in gas–solid insulation systems under DC voltages. IEEE Transactions on Dielectrics and Electrical Insulation, 21: 116–128.

[43]

Winter, A., Kindersberger, J. (2012). Stationary resistive field distribution along epoxy resin insulators in air under DC voltage. IEEE Transactions on Dielectrics and Electrical Insulation, 19: 1732–1739.

[44]

Yan, W., Li, C., Lei, Z., Han, T., Zhang, Z., Fabiani, D. (2019). Surface charging on HVDC spacers considering time-varying effect of temperature and electric fields. IEEE Transactions on Dielectrics and Electrical Insulation, 26: 1316–1324.

[45]

Li, C., Deng, B., Zhang, Z., Yan, W., Li, Q., Zhang, Z., Lin, C., Zhou, Y., Han, T., Lei, Z., et al. (2019). Full life property of surface charge accumulation on HVDC spacers considering transient and steady states. IEEE Transactions on Dielectrics and Electrical Insulation, 26: 1686–1692.

[46]

Ma, G. M., Zhou, H. Y., Lu, S. J., Wang, Y., Liu, S. P., Li, C. R., Tu, Y. P. (2018). Effect of material volume conductivity on surface charges accumulation on spacers under dc electro-thermal coupling stress. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1211–1220.

[47]

Zhang, Z., Deng, B., Li, C., Li, Q., Zhang, Z., Yan, W. (2019). Multiphysics coupled modelling in HVDC GILs: Critical re-examination of ion mobility selection. IEEE Transactions on Dielectrics and Electrical Insulation, 26: 835–842.

[48]
Xue, J. et al. (2022). A temperature dependent adaptive conductivity coating for surface charge release and electric field control under electro-thermal coupling field. High Voltage. https://doi.org/10.1049/hve2.12309
[49]

Niu, H., Chen, Z., Zhang, H., Luo, X., Zhuang, X., Li, X., Yang, B. (2020). Multi-physical coupling field study of 500 kV GIL: Simulation, characteristics, and analysis. IEEE Access, 8: 131439–131448.

[50]

Zhou, H. Y., Ma, G. M., Li, C. R., Shi, C., Qin, S. C. (2017). Impact of temperature on surface charges accumulation on insulators in SF6-filled DC-GIL. IEEE Transactions on Dielectrics and Electrical Insulation, 24: 601–610.

[51]

Du, B. X., Liang, H. C., Ran, Z. Y. (2018). Electrical field distribution along SG6/N2 filled DC-GIS/GIL epoxy spacer. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1202–1210.

[52]

Du, B. X., Dong, J. N., Li, J., Liang, H. C., Kong, X. X. (2021). Gas convection affecting surface charge and electric field distribution around tri-post insulators in ±800 kV GIL. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 1372–1379.

[53]

Li, X., Wan, M., Zhang, G., Lin, X. (2022). Surface charge characteristics of DC-GIL insulator under multiphysics coupled field: Effects of ambient temperature, load current, and gas pressure. IEEE Transactions on Dielectrics and Electrical Insulation, 29: 1530–1539.

[54]

Li, X., Zhang, G., Jia, J., Cao, C., Lin, X. (2022). Improved method in calculating the surface charge distribution of DC-GIL insulators with 3D geometry models. IET Science, Measurement & Technology, 16: 400–411.

[55]

Wang, Q, Zhang, G., Wang, X. (2012). Characteristics and mechanisms of surface charge accumulation on a cone-type insulator under DC voltage. IEEE Transactions on Dielectrics and Electrical Insulation, 19: 150–155.

[56]

Pan, C., Tîang, J., Wang, D., Zhuo, R., Yang, D., Ye, G., Fu, M. (2017). Influence of temperature on the characteristics of surface charge accumulation on PTFE model insulators. IEEE Transactions on Dielectrics and Electrical Insulation, 24: 1210–1219.

[57]

Qi, B., Gao, C., Liu, S., Zhao, L., Li, C. (2017). Surface charge distribution on GIS insulator under DC/AC voltage. IEEE Transactions on Dielectrics and Electrical Insulation, 24: 3173–3181.

[58]

Wang, T. Y., Zhang, B. Y., Li, D. Y., Hou, Y. C., Zhang, G. X. (2020). Metal nanoparticle-doped epoxy resin to suppress surface charge accumulation on insulators under DC voltage. Nanotechnology, 31: 324001.

[59]

Xue, J., Chen, J., Dong, J., Sun, G., Deng, J., Zhang, G. J. (2020). A novel sight for understanding surface charging phenomena on downsized HVDC GIL spacers with non-uniform conductivity. International Journal of Electrical Power & Energy Systems, 120: 105979.

[60]

Zhang, B., Qi, Z, Zhang, G. (2017). Charge accumulation patterns on spacer surface in HVDC gas-insulated system: Dominant uniform charging and random charge speckles. IEEE Transactions on Dielectrics and Electrical Insulation, 24: 1229–1238.

[61]

Xue, J., Wang, H., Liu, Y., Li, K., Liu, X., Fan, X., Deng, J., Zhang, G., Guo, B. (2018). Surface charge distribution patterns of a truncated cone-type spacer for high-voltage direct current gas-insulated metal-enclosed transmission line/gas-insulated metal-enclosed switchgear. IET Science, Measurement & Technology, 12: 436–442.

[62]

Zhou, H. Y., Ma, G. M., Wang, Y., Li, C. R., Tu, Y. P., Ye, S. P., Zhang, B., Guo, X. F., Yan, X. L. (2018). Surface charge accumulation on 500kV cone-type GIS spacer under residual DC voltage. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1230–1237.

[63]

Xue, J., Chen, J., Dong, J., Deng, J., Zhang, G. J. (2020). Enhancing flashover performance of alumina/epoxy spacers by adaptive surface charge regulation using graded conductivity coating. Nanotechnology, 31: 364002.

[64]

Luo, Y., Tang, J., Pan, C., Pan, Z., Meng, G. (2020). Transition of the dominant charge accumulation mechanism at a Gas–solid interface under DC voltage. IET Generation Transmission & Distribution, 14: 3078–3088.

[65]
Zhang, B., Qi, Z., Gao, W., Zhang, G. (2018). Accumulation characteristics of surface charge on a cone-type model insulator under DC voltage. In: Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece.
[66]

Li, C., Fu, J., Zi, Y., Cao, Y. (2022). Insulator surface charge behaviors: From hazards to functionality. IEEE Electrical Insulation Magazine, 38: 6–14.

[67]

Zhang, Z., Wang, Z., Teyssedre, G., Shahsavarian, T., Arab Baferani, M., Chen, G., Lin, C., Zhang, B., Riechert, U., Lei, Z., et al. (2021). Gas–solid interface charge tailoring techniques: What we grasped and where to go. Nanotechnology, 32: 122001.

[68]

Du, B., Du, Q., Li, J., Liang, H. (2018). Carrier mobility and trap distribution dependent flashover characteristics of epoxy resin. IET Generation, Transmission & Distribution, 12: 466–471.

[69]

Liu, Y., An, Z., Yin, Q., Zheng, F., Zhang, Y., Lei, Q. (2013). Rapid potential decay on surface fluorinated epoxy resin samples. Journal of Applied Physics, 113: 164105.

[70]

An, Z., Yin, Q., Liu, Y., Zheng, F., Lei, Q., Zhang, Y. (2015). Modulation of surface electrical properties of epoxy resin insulator by changing fluorination temperature and time. IEEE Transactions on Dielectrics and Electrical Insulation, 22: 526–534.

[71]

Shao, T., Kong, F., Lin, H., Ma, Y., Xie, Q., Zhang, C. (2018). Correlation between surface charge and DC surface flashover of plasma treated epoxy resin. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1267–1274.

[72]
Gao, Y., Du, B. X., Cui, J. D., Wu, K. (2011). Effect of gamma-ray irradiation on lateral charge motion on surface of laminated polymer insulating materials. In: Proceedings of the 2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Cancun, Mexico.
[73]

Wang, F., Liang, F., Zhong, L., Chen, S., Li, C., Xie, Y. (2021). Short-time X-ray irradiation as a non-contact charge dissipation solution for insulators in HVDC GIS/GIL. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 704–709.

[74]
Huang, Y., Min, D., Xie, D., Li, S., Wang, X., Lin, S. (2017). Surface flashover performance of epoxy resin microcomposites infulenced by ozone treatment. In: Proceedings of the 2017 International Symposium on Electrical Insulating Materials (ISEIM), Toyohashi, Japan.
[75]

Tu, Y., Zhou, F., Cheng, Y., Jiang, H., Wang, C., Bai, F., Lin, J. (2018). The control mechanism of micron and nano SiO2/epoxy composite coating on surface charge in epoxy resin. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1275–1284.

[76]

Du, B. X., Li, Z. L. (2015). Hydrophobicity, surface charge and DC flashover characteristics of direct-fluorinated RTV silicone rubber. IEEE Transactions on Dielectrics and Electrical Insulation, 22: 934–940.

[77]

Du, B., Huang, P., Xing, Y. (2017). Surface charge and flashover characteristics of fluorinated PP under pulse voltage. IET Science, Measurement & Technology, 11: 18–24.

[78]

Du, B. X., Li, Z. L. (2014). Surface charge and dc flashover characteristics of direct-fluorinated SiR/SiO2 nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation, 21: 2602–2610.

[79]

Que, L., An, Z., Ma, Y., Xie, D., Zheng, F., Zhang, Y. (2017). Improved DC flashover performance of epoxy insulators in SF6 gas by direct fluorination. IEEE Transactions on Dielectrics and Electrical Insulation, 24: 1153–1161.

[80]

Zhang, B., Zhang, G., Wang, Q., Li, C., He, J., An, Z. (2015). Suppression of surface charge accumulation on Al2O3-filled epoxy resin insulator under dc voltage by direct fluorination. AIP Advances, 5: 127207.

[81]

Li, C., He, J., Hu, J. (2016). Surface morphology and electrical characteristics of direct fluorinated epoxy-resin/alumina composite. IEEE Transactions on Dielectrics and Electrical Insulation, 23: 3071–3077.

[82]

Shao, T., Yang, W., Zhang, C., Niu, Z., Yan, P., Schamiloglu, E. (2014). Enhanced surface flashover strength in vacuum of polymethylmethacrylate by surface modification using atmospheric-pressure dielectric barrier discharge. Applied Physics Letters, 105: 071607.

[83]

Zhang, C., Lin, H., Zhang, S., Xie, Q., Ren, C., Shao, T. (2017). Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages. Journal of Physics D: Applied Physics, 50: 405203.

[84]

Shao, T., Liu, F., Hai, B., Ma, Y., Wang, R., Ren, C. (2017). Surface modification of epoxy using an atmospheric pressure dielectric barrier discharge to accelerate surface charge dissipation. IEEE Transactions on Dielectrics and Electrical Insulation, 24: 1557–1565.

[85]
Yue, W., Min, D., Nie, Y., Li, S. (2018). Plasma treatment enhances surface flashover performance of EP/AI2O3 micro-composite in vacuum. In: Proceedings of the 2018 12th International Conference on the Properties and Applications of Dielectric Materials, Xi’an, China.
[86]

Tu, Y., Zhou, F., Jiang, H., Bai, F., Wang, C., Lin, J., Cheng, Y. (2018). Effect of nano-TiO2/EP composite coating on dynamic characteristics of surface charge in epoxy resin. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1308–1317.

[87]

Zhang, B., Wang, Q., Zhang, Y., Gao, W., Hou, Y., Zhang, G. (2019). A self-assembled, nacre-mimetic, nano-laminar structure as a superior charge dissipation coating on insulators for HVDC gas-insulated systems. Nanoscale, 11: 18046–18051.

[88]

Xue, J., Wang, H., Chen, J., Li, K., Liu, Y., Song, B., Deng, J., Zhang, G. (2018). Effects of surface roughness on surface charge accumulation characteristics and surface flashover performance of alumina-filled epoxy resin spacers. Journal of Applied Physics, 124: 083302.

[89]

Baytekin, H. T., Baytekin, B., Hermans, T. M., Kowalczyk, B., Grzybowski, B. A. (2013). Control of surface charges by radicals as a principle of antistatic polymers protecting electronic circuitry. Science, 341: 1368–1371.

[90]

Li, C., Hu, J., Lin, C., He, J. (2016). The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites. Journal of Physics D: Applied Physics, 49: 445304.

[91]
Li, C., Hu, J., Lin, C., He, J. (2016). Hot electron injection regulation in Al2O3-filled epoxy resin composite using Cr2O3 coatings. In: Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Toronto, Canada.
[92]

He, S., Lin, C., Hu, J., Li, C., He, J. (2018). Tailoring charge transport in epoxy based composite under temperature gradient using K2Ti6O13 and asbestine whiskers. Journal of Physics D: Applied Physics, 51: 215306.

[93]

Li, S., Yin, G., Bai, S., Li, J. (2011). A new potential barrier model in epoxy resin nanodielectrics. IEEE Transactions on Dielectrics and Electrical Insulation, 18: 1535–1543.

[94]

Chu, P., Zhang, H., Zhao, J., Gao, F., Guo, Y., Dang, B., Zhang, Z. (2017). On the volume resistivity of silica nanoparticle filled epoxy with different surface modifications. Composites Part A: Applied Science and Manufacturing, 99: 139–148.

[95]

Du, B. X., Liang, H. C., Li, J. (2019). Surface coating affecting charge distribution and flashover voltage of cone-type insulator under DC stress. IEEE Transactions on Dielectrics and Electrical Insulation, 26: 706–713.

[96]

Zhang, B., Gao, W., Hou, Y., Zhang, G. (2018). Surface charge accumulation and suppression on fullerene-filled epoxy-resin insulator under DC voltage. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 2011–2019.

[97]
Hanna, R., Lesaint, O., Zavattoni, L. (2016). Dark current measurements in humid SF6 at high uniform electric field. In: Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Toronto, Canada.
[98]

Zavattoni, L., Hanna, R., Lesaint, O., Gallot-Lavallée, O. (2015). Dark current measurements in humid SF6: Influence of electrode roughness, relative humidity and pressure. Journal of Physics D: Applied Physics, 48: 375501.

[99]
Zavattoni, L., Lesaint, O., Gallot-Lavallée, O. (2013). Dark current measurements in pressurized air, N2, and SF6. In: Proceedings of the 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Chenzhen, China.
[100]

Liang, H., Du, B., Li, J., Li, Z., Li, A. (2018). Effects of non-linear conductivity on charge trapping and de-trapping behaviours in epoxy/SiC composites under DC stress. IET Science Measurement & Technology, 12: 83–89.

[101]

Pan, Z., Tang, J., Pan, C., Luo Y., Liu Q., He H. (2020). Contribution of nano-SiC/epoxy coating with nonlinear conduction characteristics to surface charge accumulation under DC voltage. Journal of Physics D: Applied Physics, 53: 365303.

[102]
Wang, T., Liu, C., Li, D., Hou, Y., Zhang, G., Zhang, B. (2020) Nano ZnO/epoxy coating to promote surface charge dissipation on insulators in DC gas-insulated systems. IEEE Transactions on Dielectrics and Electrical Insulation, 27(4): 1322–1329.
[103]

Liang, H., Du, B., Kong, X. (2022). Basin-type spacer for DC-GIL—part II: Surface charge and electric field regulation. IEEE Transactions on Dielectrics and Electrical Insulation, 29: 1119–1126.

[104]

Xue, J., Li, Y., Dong, J., Chen, J., Li, W., Deng, J., Zhang, G. (2020). Surface charge transport behavior and flashover mechanism on alumina/epoxy spacers coated by SiC/epoxy composites with varied SiC particle size. Journal of Physics D: Applied Physics, 53: 155503.

[105]
Dong, J., Xue, J., Chen, J., Deng, J. (2020) Mechanism of SiC coating on surface charge behavior of epoxy/alumina spacers. In: Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application, Beijing, China.
[106]

Li, J., Liang, H. C., Du, B. X., Wang, Z. H. (2019). Surface functional graded spacer for compact HVDC gaseous insulated system. IEEE Transactions on Dielectrics and Electrical Insulation, 26: 664–667.

[107]

Du, B., Yao, H., Liang, H., Dong, J. (2022). Multidimensional functionally graded materials (ε/σ-MFGM) for HVDC GIL/GIS spacers. IEEE Transactions on Dielectrics and Electrical Insulation, 29: 1966–1973.

[108]

Yao, H., Du, B., Liang, H., Kong, X., Dong, J. (2022). Electric field relaxation of HVDC GIL spacer with surface conductivity gradient material (σ-SFGM) using electrospinning technology. IEEE Transactions on Dielectrics and Electrical Insulation, 29: 1167–1174.

[109]

Du, B. X., Liang, H. C., Li, J. (2019). Interfacial E-field self-regulating insulator considered for DC GIL application. IEEE Transactions on Dielectrics and Electrical Insulation, 26: 801–809.

[110]

Li, C., Lin, C., Hu, J., Liu, W., Li, Q., Zhang, B., He, S., Yang, Y., Liu, F., He, J. (2018). Novel HVDC spacers by adaptively controlling surface charges–part I: Charge transport and control strategy. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1238–1247.

[111]

Qi, B., Gao, C., Li, C., Xiong, J. (2019). The influence of surface charge accumulation on flashover voltage of GIS/GIL basin insulator under various voltage stresses. International Journal of Electrical Power & Energy Systems, 105: 514–520.

[112]

Li, Z., Xu, H., Zheng, X., Zhang, L., Li, S. (2020). Unraveling the transition from secondary electron emission dominated to surface charge trap dominated electronic avalanche process along the solid dielectric surface in vacuum. Applied Physics Letters, 116: 131601.

[113]

Li, C., Lin, C., Zhang, B., Li, Q., Liu, W., Hu, J., He, J. (2018). Understanding surface charge accumulation and surface flashover on spacers in compressed gas insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1152–1166.

[114]
Zhang, B., Wang, Q., Zhang, G., Li, J. (2015). Surface charge accumulation on insulators in SF6 and its effects on the flashover characteristics of HVDC GIL. High Voltage Engineering, 41(5), 1481–1487. (in Chinese)
[115]

Li, C., Hu, J., Lin, C., Zhang, B., Zhang, G., He, J. (2017). Surface charge migration and dc surface flashover of surface-modified epoxy-based insulators. Journal of Physics D: Applied Physics, 50: 065301.

[116]

Wang, F., Liang, F., Chen, S., Zhong, L., Sun, Q., Zhang, B., Xiao, P. (2021). Effect of surface charges on flashover voltage-an examination considering charge decay rates. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 1053–1060.

[117]

Liu, Y., Wu, G., Gao, G., Xue, J., Kang, Y., Shi, C. (2019). Surface charge accumulation behavior and its influence on surface flashover performance of Al2O3-filled epoxy resin insulators under DC voltages. Plasma Science and Technology, 21: 055501.

[118]

Ma, J., Tao, F., Ma, Y., Zhao, K., Li, H., Wen, T., Zhang, Q. (2021). Quantitative analysis on the influence of surface charges on flashover of insulators in SF6. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 274–281.

[119]

Du, B. X., Xiao, M. (2014). Influence of surface charge on DC flashover characteristics of epoxy/BN nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation, 21: 529–536.

[120]

Pai, S., Marton, J. (1982). Filamentary breakdown of gases in the presence of dielectric surfaces. Journal of Applied Physics, 53: 8583–8588.

[121]
Cooke, C. M. (1982). Surface flashover of gas/solid interfaces. Gaseous Dielectrics III. In: Proceedings or the Third International Symposium on Gaseous Dielectrics, Knoxville, TN, USA.
[122]

Sudarshan, T., Dougal. R. (1986). Mechanisms of surface flashover along solid dielectrics in compressed gases: A review. IEEE Transactions on Electrical Insulation, EI-21: 727–746.

[123]

Li, C., Shahsavarian, T., Baferani, M., Cao, Y. (2021). Tailoring insulation surface conductivity for surface partial discharge mitigation. Applied Physics Letters, 119: 032903.

[124]

Yuan, M., Zou, L. Li, Z., Pang, L., Zhao, T., Zhang, L., Zhou, J., Xiao, P., Akram, S., Wang, Z., He, S. (2021). A review on factors that affect surface charge accumulation and charge-induced surface flashover. Nanotechnology, 32: 262001.

[125]

Li, S., Huang, Y., Min, D., Qu, G., Niu, H., Li, Z., Wang, W., Li, J., Liu, W. (2019). Synergic effect of adsorbed gas and charging on surface flashover. Scientific Reports, 9: 5464.

[126]

Li, Z., Li, S., Xu, H., Qu, G., Niu, H., Huang, Y., Aslam, F. (2021). The mechanism of gas pressure and temperature dependent surface flashover in compressed gas involving gas adsorption. Applied Surface Science, 539: 148107.

[127]

Li, Z., Min, D., Niu, H., Li, M., Li, S. (2021). Simulation of DC surface flashover of epoxy composites in compressed nitrogen. Journal of Applied Physics, 130: 053301.

[128]

Xing, Y., Sun, X., Yang, Y., Mazzanti, G., Fabiani, D., He, J., Li, C. (2021). Metal particle induced spacer surface charging phenomena in direct current gas-insulated transmission lines. Journal of Physics D: Applied Physics, 54: 34LT03.

[129]

You, H., Zhang, Q., Guo, C., Xu, P., Ma, J., Qin, Y., Wen, T., Li, Y. (2017). Motion and discharge characteristics of metal particles existing in GIS under DC voltage. IEEE Transactions on Dielectrics and Electrical Insulation, 24: 876–885.

[130]

Wang, J., Wang, J., Hu, Q., Chang, Y., Liu, H., Liang, R. (2020). Mechanism analysis of particle-triggered flashover in different gas dielectrics under DC superposition lightning impulse voltage. IEEE Access, 8: 182888–182897.

[131]

Xing, Y., Wang, Z., Liu, L., Xu, Y., Yang, Y., Liu, S., Zhou, F., He, S., Li, C. (2021). Defects and failure types of solid insulation in gas-insulated switchgear: in situ study and case analysis. High Voltage, 7: 158–164.

[132]

Wang, J., Hu, Q., Chang, Y., Wang, J., Liang, R., Tu, Y., Li, C., Li, Q. (2021). Metal particle contamination in gas-insulated switchgears/gas-insulated transmission lines. CSEE Journal of Power and Energy Systems, 7: 1011–1025.

[133]

Wu, Z., Li, Z., Liu, P., Peng, Z., Wang, H., Cui, B., Li, H. (2022). Simulation and analysis on motion behavior of metal particles in AC GIL. IEEE Transactions on Dielectrics and Electrical Insulation, 29: 567–574.

[134]

Sun, J., Chen, W., Bian, K., Li, Z., Yan, X., Xu, Y. (2018). Movement characteristics of ball metallic particle between ball-plane electrodes under DC voltage. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1047–1055.

[135]

Sun, J., Chen, W., Li, Z., Yan, X., Cui, B., Wang, H. (2016). Research on experiment and simulation of charged spherical metal particle collision characteristic under DC electric field. IEEE Transactions on Dielectrics and Electrical Insulation, 23: 3117–3125.

[136]
Wang, J., Li, Q., Li, B., Liu, S., Wang, Z. (2016). Motion and discharge behavior of the free conducting wire type particle within DC GIL. Proceedings of the CSEE, 36(17): 4793–4800. (in Chinese)
[137]

Liang, R., Hu, Q., Liu, H., Wang, J., Li, Q. (2020). Research on discharge phenomenon caused by cross—Adsorption of linear insulating fibre and metal dust under DC voltage. High Voltage, 7: 269–278.

[138]
Liang, R., Hu, Q., Man, Y., Chang, Y., Wang, J. (2020). Study on kinetic behavior and adsorption mechanism of the micron metal dust near the basin-type insulator in DC GIL. In: Proceedings of the 2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Richland, WA, USA.
[139]

Wang, R., Cui, C., Zhang, C., Ren, C., Chen, G., Shao, T. (2018). Deposition of SiOx film on electrode surface by DBD to improve the lift-off voltage of metal particles. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1285–1292.

[140]

Zhang, L., Cheng, H., Wei, W., Ayubi, B. I., Bretas, A. S. (2021). Suppression on particle movement and discharge by nanocomposite film coating on DC GIL electrode surface. IEEE Access, 9: 126095–126103.

[141]
Huang, X., Ni, X., Wang, J., Li, Q., Lin, J., Wang, Z. (2018). Synthesis of phenyl-thioether polyimide as the electrode coating film and its suppression effect on motion behavior of the metal particles under DC stresses. Transactions of China Electrotechnical Society, 33(20): 4712–4721. (in Chinese)
[142]
Liang, R., Liu, H., Hu, Q., Wang, J., Li, Q. (2020). Research advances in the kinetic behavior and induced discharge characteristics of micron metal duct within GIS/GIL. Proceedings of the CSEE, 40(22): 7153–7165. (in Chinese)
[143]

Zhan, Z., Wang, D., Xie, J., Xin, W., Wang, W., Zhang, Z. (2021). Motion characteristics of metal powder particles in AC GIL and its trap design. IEEE Access, 9: 68619–68628.

[144]
Liu, P., Li, Z., Tian, H., Wu, Z., Peng, Z., Tan, S., Li, J., Wen, Y. (2022). Research on motion characteristics of metal particle and capture efficiency of particle traps in gas insulated transmission lines under DC voltage. Proceedings of the CSEE, 42(15): 5740–5751. (in Chinese)
[145]
Liu, P., Zhang, Y., Wu, Z., Li, Z., Tan, S., Peng, Z. (2022). Key parameter analysis and structure optimization of particle trap in ±320kV DC GIL. High voltage engineering, https://doi.org/10.13336/j.1003-6520.hve.20221207.
[146]
Li, Q., Chang, Y., Wang, J., Hu, Q., Wang, J., Guo, R. (2020). Methodological advances of metal particle traps design in gas insulated transmission lines. High voltage engineering, 46(12): 4182–4193. (in Chinese)
[147]

Xing, Y., Sun, X., Jiang, J., Liang, F., Liang, Z., Zhuang, W., Liu, B., Li, D., Cao, S., Li, M., He, J., Li, C. (2022). Significantly suppressing metal particle-induced surface charge accumulation of spacers in DC gas-insulated power transmission lines. Journal of Physics D: Applied Physics, 55: 504003.

[148]

Qiu, Y., Chalmers, I. D. (1993). Effect of electrode surface roughness on breakdown in SF6–N2 and SF6–CO2 gas mixtures. Journal of Physics D: Applied Physics, 26: 1928–1932.

[149]
Li, B. (2019). SF6 High-Voltage Electrical Apparatus Design 5th edition. Beijing, China: China Machine Press.
[150]

Ai, X., Tu, Y., Zhang, Y., Chen, G., Yuan, Z., Wang, C., Yan, X., Liu, W. (2020). The effect of electrode surface roughness on the breakdown characteristics of C3F7CN/CO2 gas mixtures. International Journal of Electrical Power & Energy Systems, 118: 105751.

[151]

Zheng, Y., Zhou, W., Li, H., Yan, X., Li, Z., Chen, W., Bian, K. (2019). Influence of conductor surface roughness on insulation performance of C4F7N/CO2 mixed gas. IEEE Transactions on Dielectrics and Electrical Insulation, 26: 922–929.

[152]

Zhang, L., Wang, Y., Yu, D., Pan, W., Zhang, Z., Tschentscher, M. (2021). Conductor surface roughness-dependent gas conduction process for HVDC GIL—part I: Simulation. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 511–519.

[153]

Li, C., Zhang, L., Wang, Y., Yu, D., Wang, Z., Zhang, Z., Connelly, L., Lin, C., Chen, G., Mazzanti, G., et al. (2021). Conductor surface roughness-dependent gas conduction process for HVDC GIL—part II: Experiment. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 988–995.

[154]

Chen, G., Xu, H., Xu, Y., Shao, Y., Wang, C., Li, C., Tu, Y. (2022). Standardizing conductor surface roughness for DC gas-insulated equipment-a careful analysis on local morphology. Journal of Physics D: Applied Physics, 55: 23LT01.

[155]
Riechert, U., Hama, H., Endo; F., Juhre, K., Kindersberger, J., Meijer, S., Neumann, C., Okabe, S., Schichler, U. (2010). Gasisolierte Systeme für HGÜ. In: Isoliersysteme bei Gleich- und Mischfeldbeanspruchung. Köln, Germany: VDE Verlag GmbH. (in Germany)
[156]
Hermann, J. K. (2022). Gas Insulated Substations, 2nd Edition. Hoboken, NJ, USA: Wiley-IEEE Press.
[157]
Riechert, U. (2020). Compact high voltage direct current gas-insulated systems. In: Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China.
[158]
Makino, Y., Hara, S., Hirose, M. (2001). Commissioning of the Kii-channel HVDC link. Application of new HVDC technology and operating experience. In: Proceedings of the Seventh International Conference on AC-DC Power Transmission, London, UK.
[159]
Alvinsson, R., Borg, E., Hjortsberg, A., Höglund, T., Hörnfeldt, S. (1986). GIS for HVDC converter stations. CIGRE 1986, Report, No. 14-02.
[160]
Mendik, M., Lowder, S. M., Elliott, F. (1999) Long term performance verification of high voltage DC GIS. In: Proceedings of the 1999 IEEE Transmission and Distribution Conference, New Orleans, LA, USA.
[161]
Riechert, U., Kosse, M. (2020). HVDC gas-insulated systems for compact substation design. In: Proceedings of the 48th CIGRE Session, Paris, France.
[162]
Hering, M., Koch, H., Jurhe, K. (2019). Direct current high-voltage gas insulated switchgear up to±550 kV. In: Proceedings of the CIGRE-IEC 2019 Conference on EHV and UHV (AC&DC), Hakodate, Hokkaido, Japan.
[163]
Riechert, U., Gatzsche, M., Hassanpoor, A., Plet, C., Belda, N. (2019). Compact switchgear for meshed offshore HVDC networks – Between vision and reality. Available at https://www.promotion-offshore.net/fileadmin/PDFs/2019_WP15_HighVolt.pdf.
[164]
Abe, Y., Yasuoka, T., Shiiki, M., Karube, T. (2019). Development of 250 kV DC gas insulated switchgear. In: Proceedings of the CIGRE-IEC 2019 Conference on EHV and UHV (AC&DC), Hakodate, Japan.
[165]

Limura, M., Chiba, K., Kamoshida, S., Ogata, H., Utsumi, T., Nakano, Y. (2020). Key technologies used in Hida-Shinano HVDC link. Hitachi Review, 69: 490–491.

[166]
Kosse, M., Tuczek, M., Klein, C., Claus, M. (2022). Experiences with on-site dielectric testing during commissioning tests of world’s first offshore HVDC GIS ±320 kV. In VDE Hochspannungstechnik, Köln, Germany: VDE Verlag GmbH.
[167]
Riechert, U., Straumann, U., Gremaud, R. (2016). Compact gas-insulated systems for high voltage direct current transmission: Basic design. In: Proceedings of the 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, USA.
[168]
Sperling, E., Riechert, U. (2015). HVDC GIS RC-dividers in new GIS substations with increased dielectric requirements. In: Proceedings of the 2015 CIGRE Joint Colloquium, Nagoya, Japan.
[169]

Appelo, H. C., Groenenboom, M., Lisser, J. (1977). The zero-flux DC current transformer a high precision bipolar wide-band measuring device. IEEE Transactions on Nuclear Science, 24: 1810–1811.

[170]
Endo, F., Hama, H., Okabe, S., Juhre, K., Kindersberger, J., Meijer, S., & Schichler, U. (2012). Gas insulated systems for HVDC: DC stress at DC and AC systems. Report, Brochure No. 506, CIGRE.
[171]
CIGRE Joint Working Group D1/B3.57 (2021). Dielectric testing of gas-insulated HVDC systems. Technical Brochure No. 842, CIGRE.
[172]
Riechert, U., Blumenroth, F., Straumann, U., Kaufmann, B., Saltzer, M., Bergelin, P. (2018). Experiences in dielectric testing of gas-insulated HVDC systems. In: Proceedings of the 47th CIGRE Conference, Paris, France.
[173]
Riechert, U., Gatzsche, M. (2019). Dielectric long-term behaviour and testing of gas-insulated HVDC systems. In: Proceedings of the CIGRE SC A2, B2 & D1 International Tutorials & Colloquium, New Delhi, India.
[174]
Gatzsche, M., Riechert, U., He, H., Audichya, Y., Mor, A. R., Heredia, L. C., Muñoz, F. (2020). Prototype installation test of HVDC GIS for meshed offshore grids.In: Proceedings of the 48th CIGRE Session, Paris. France.
[175]
PROMOTioN (2018). Work Package 15, Deliverable 15.4: Test report of prototype installation test on HVDC GIS. Available at https://www.promotion-offshore.net/results/deliverables/.
[176]
Hallas, M., Tenzer, M., Neumann, C., Hinrichsen, V., Gross, D. (2022). Nachweis der Betriebstauglichkeit von gasisolierten HVDC Systemen unter betriebsnahen Bedingungen–Resümee einer Langzeitunterschung in Griesheim. In: Proceedings of the Fachtagung Hochspannungsschaltanlagen: Anwendungen, Betrieb und Erfahrungen. GIS-Anwendungsforum, Darmstadt, Germany. (in Germany)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 November 2022
Revised: 11 December 2022
Accepted: 12 December 2022
Published: 20 December 2022
Issue date: December 2022

Copyright

© The author(s)

Acknowledgements

Acknowledgement

This work was supported by the State Key Laboratory of Power System and Generation Equipment, Dept. of Electrical Engineering, Tsinghua University (Grant No. SKLD22M03) and Taikai Innovation Funding (Grant No. JTCB202209210002). Additionally, the authors would like to thank professor Guanjun Zhang for his edits and valuable comments.

Rights and permissions

Copyright: by the author(s). The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return