Journal Home > Volume 1 , Issue 3

menu
Full text
Outline
About this article

Machine learning application in complicated burning plasmas for future magnetic fusion exploration

Show Author's information Xiaolong ZhuHui LiYifei ZhaoZhengxiong Wang( )
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
Keywords: Machine learning, magnetic confinement fusion, burning plasmas, multiple mode-number instabilities

References(13)

[1]
National Research Council (2004). Burning Plasma: Bringing a Star to Earth. The National Academies Press: Washington, DC.
[2]

Podestà, M., Bell, R. E., Bortolon, A., Crocker, N. A., Darrow, D. S., Diallo, A., Fredrickson, E. D., Fu, G. Y., Gorelenkov, N. N., Heidbrink, W. W., et al. (2012). Study of chirping toroidicity-induced alfvén eigenmodes in the national spherical torus experiment. Nuclear Fusion, 52: 094001.

[3]

Zhu, X. L., Chen, W., Podestà, M., Wang, F., Liu, D., Wang, Z. X. (2022). Avalanche transport of energetic-ions in magnetic confinement plasmas: Nonlinear multiple wave-number simulation. Nuclear Fusion, 62: 016012.

[4]

Bierwage, A., Shinohara, K., Todo, Y., Aiba, N., Ishikawa, M., Matsunaga, G., Takechi, M., Yagi, M. (2018). Simulations tackle abrupt massive migrations of energetic beam ions in a tokamak plasma. Nature Communications, 9: 3282.

[5]

Podestà, M., Bardóczi, L., Collins, C. S., Gorelenkov, N. N., Heidbrink, W. W., Duarte, V. N., Kramer, G. J., Fredrickson, E. D., Gorelenkova, M., Kim, D., et al. (2019). Reduced energetic particle transport models enable comprehensive time-dependent tokamak simulations. Nuclear Fusion, 59: 106013.

[6]

Hernandez, J. V., Vannucci, A., Tajima, T., Lin, Z., Horton, W., McCool, S. C. (1996). Neural network prediction of some classes of tokamak disruptions. Nuclear Fusion, 36: 1009–1017.

[7]

Cannas, B., Fanni, A., Marongiu, E., Sonato, P. (2004). Disruption forecasting at JET using neural networks. Nuclear Fusion, 44: 68–76.

[8]

Rea, C., Montes, K. J., Erickson, K. G., Granetz, R. S., Tinguely, R. A. (2019). A real-time machine learning-based disruption predictor in DIII-D. Nuclear Fusion, 59: 096016.

[9]

Li, H., Li, J. Q., Fu, Y. L., Wang, Z. X., Jiang, M. (2022). Simulation prediction of micro-instability transition and associated particle transport in tokamak plasmas. Nuclear Fusion, 62: 036014.

[10]

Tinguely, R. A., Montes, K. J., Rea, C., Sweeney, R., Granetz, R. S. (2019). An application of survival analysis to disruption prediction via Random Forests. Plasma Physics and Controlled Fusion, 61: 095009.

[11]

Zhao, Y. F., Liu, Y. Q., Wang, S., Hao, G. Z., Wang, Z. X., Yang, Z. Y., Li, B., Li, J. X., Chen, H. T., Xu, M., et al. (2022). Neural network based fast prediction of βN limits in HL-2M. Plasma Physics and Controlled Fusion, 64: 045010.

[12]

Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de las Casas, D., et al. (2022). Magnetic control of tokamak plasmas through deep reinforcement learning. Nature, 602: 414–419.

[13]

Georgescu, I. (2022). Machine learning helps control tokamak plasmas. Nature Reviews Physics, 4: 148.

Publication history
Copyright
Rights and permissions

Publication history

Accepted: 14 September 2022
Published: 20 September 2022
Issue date: September 2022

Copyright

© The author(s)

Rights and permissions

Copyright: by the author(s). The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return