AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iEnergy Article
PDF (874.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
News & Views | Open Access

High-entropy strategy applied to dielectric energy storage

Qi Li( )
Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

References

[1]
Yang, B., Zhang, Y., Pan, H., Si, W., Zhang, Q., Shen, Z., Yu, Y., Lan, S., Meng, F., Liu, Y., et al. (2022). High-entropy enhanced capacitive energy storage. Nature Materials, https://doi.org/10.1038/s41563-022-01274-6.
[2]

Chen, L., Deng, S., Liu, H., Wu, J., Qi, H., Chen, J. (2022). Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nature Communications, 13: 3089.

[3]

Oses, C., Toher, C., Curtarolo, S. (2020). High-entropy ceramics. Nature Reviews Materials, 5: 295–309.

[4]

Wang, Q. S., Sarkar, A., Wang, D., Velasco, L., Azmi, R., Bhattacharya, S. S., Bergfeldt, T., Duvel, A., Heitjans, P., Brezesinski, T., et al. (2019). Multi-anionic and -cationic compounds: New high entropy materials for advanced Li-ion batteries. Energy & Environmental Science, 12: 2433–2442.

[5]

Sarkar, A., Velasco, L., Wang, D., Wang, Q., Talasila, G., de Biasi, L., Kubel, C., Brezesinski, T., Bhattacharya, S. S., Hahn, H., et al. (2018). High entropy oxides for reversible energy storage. Nature Communications, 9: 3400.

[6]

Zhao, C., Ding, F., Lu, Y., Chen, L., Hu, Y. S. (2020). High-entropy layered oxide cathodes for sodium-ion batteries. Angewandte Chemie International edtion, 59: 264–269.

[7]

Wang, J., Cui, Y., Wang, Q., Wang, K., Huang, X., Stenzel, D., Sarkar, A., Azmi, R., Bergfeldt, T., Bhattacharya, S. S., et al. (2020). Lithium containing layered high entropy oxide structures. Scientific Reports, 10: 18430.

[8]

Jin, T., Sang, X., Unocic, R. R., Kinch, R. T., Liu, X., Hu, J., Liu, H., Dai, S. (2018). Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Advanced Materials, 30: e1707512.

[9]

Jiang, B., Yu, Y., Cui, J., Liu, X., Xie, L., Liao, J., Zhang, Q., Huang, Y., Ning, S., Jia, B., et al. (2021). High-entropy-stabilized chalcogenides with high thermoelectric performance. Science, 371: 830–834.

[10]

Zheng, Y. P., Zou, M. C., Zhang, W. Y., Yi, D., Lan, J. L., Nan, C. W., Lin, Y. H. (2021). Electrical and thermal transport behaviours of high-entropy perovskite thermoelectric oxides. Journal of Advanced Ceramics, 10: 377–384.

iEnergy
Pages 270-271
Cite this article:
Li Q. High-entropy strategy applied to dielectric energy storage. iEnergy, 2022, 1(3): 270-271. https://doi.org/10.23919/IEN.2022.0023

717

Views

26

Downloads

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Accepted: 12 July 2022
Published: 20 September 2022
© The author(s)

Copyright: by the author(s). The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return