2192
Views
416
Downloads
7
Crossref
N/A
WoS
N/A
Scopus
N/A
CSCD
Electric power systems provide the backbone of modern industrial societies. Enabling scalable grid analytics is the keystone to successfully operating large transmission and distribution systems. However, today’s power systems are suffering from ever-increasing computational burdens in sustaining the expanding communities and deep integration of renewable energy resources, as well as managing huge volumes of data accordingly. These unprecedented challenges call for transformative analytics to support the resilient operations of power systems. Recently, the explosive growth of quantum computing techniques has ignited new hopes of revolutionizing power system computations. Quantum computing harnesses quantum mechanisms to solve traditionally intractable computational problems, which may lead to ultra-scalable and efficient power grid analytics. This paper reviews the newly emerging application of quantum computing techniques in power systems. We present a comprehensive overview of existing quantum-engineered power analytics from different operation perspectives, including static analysis, transient analysis, stochastic analysis, optimization, stability, and control. We thoroughly discuss the related quantum algorithms, their benefits and limitations, hardware implementations, and recommended practices. We also review the quantum networking techniques to ensure secure communication of power systems in the quantum era. Finally, we discuss challenges and future research directions. This paper will hopefully stimulate increasing attention to the development of quantum-engineered smart grids.
Electric power systems provide the backbone of modern industrial societies. Enabling scalable grid analytics is the keystone to successfully operating large transmission and distribution systems. However, today’s power systems are suffering from ever-increasing computational burdens in sustaining the expanding communities and deep integration of renewable energy resources, as well as managing huge volumes of data accordingly. These unprecedented challenges call for transformative analytics to support the resilient operations of power systems. Recently, the explosive growth of quantum computing techniques has ignited new hopes of revolutionizing power system computations. Quantum computing harnesses quantum mechanisms to solve traditionally intractable computational problems, which may lead to ultra-scalable and efficient power grid analytics. This paper reviews the newly emerging application of quantum computing techniques in power systems. We present a comprehensive overview of existing quantum-engineered power analytics from different operation perspectives, including static analysis, transient analysis, stochastic analysis, optimization, stability, and control. We thoroughly discuss the related quantum algorithms, their benefits and limitations, hardware implementations, and recommended practices. We also review the quantum networking techniques to ensure secure communication of power systems in the quantum era. Finally, we discuss challenges and future research directions. This paper will hopefully stimulate increasing attention to the development of quantum-engineered smart grids.
Kurt, M. N., Yılmaz, Y., Wang, X. D. (2020). Secure distributed dynamic state estimation in wide-area smart grids. IEEE Transactions on Information Forensics and Security, 15: 800–815.
Nelson, J. R., Johnson, N. G. (2020). Model predictive control of microgrids for real-time ancillary service market participation. Applied Energy, 269: 114963.
Jia, Y. W., Lyu, X., Xie, P., Xu, Z., Chen, M. H. (2020). A novel retrospect-inspired regime for microgrid real-time energy scheduling with heterogeneous sources. IEEE Transactions on Smart Grid, 11: 4614–4625.
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo, S., Brandao, F. G. S. L., Buell, D. A., et al. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574: 505–510.
Lara, P. D. M., Maldonado-Ruiz, D. A., Díaz, S. D. A., López, L. I. B., Caraguay, Á. L. V. (2019). Trends on computer security: Cryptography, user authentication, denial of service and intrusion detection. arXiv preprint: 1903.08052.
Feng, F., Zhou, Y. F., Zhang, P. (2021). Quantum power flow. IEEE Transactions on Power Systems, 36: 3810–3812.
Zhou, Y. F., Feng, F., Zhang, P. (2021). Quantum electromagnetic transients program. IEEE Transactions on Power Systems, 36: 3813–3816.
Tang, Z. F., Qin, Y. Y., Jiang, Z. M., Krawec, W. O., Zhang, P. (2021). Quantum-secure microgrid. IEEE Transactions on Power Systems, 36: 1250–1263.
Tang, Z. F., Zhang, P., Krawec, W. O., Jiang, Z. M. (2020). Programmable quantum networked microgrids. IEEE Transactions on Quantum Engineering, 1: 4101013.
Tang, Z. F., Zhang, P., Krawec, W. O. (2021). A quantum leap in microgrids security: The prospects of quantum-secure microgrids. IEEE Electrification Magazine, 9: 66–73.
Jiang, Z. M., Tang, Z. F., Qin, Y. Y., Kang, C. Q., Zhang, P. (2021). Quantum internet for resilient electric grids. International Transactions on Electrical Energy Systems, 31: e12911.
Humble, T. S., Thapliyal, H., Muñoz-Coreas, E., Mohiyaddin, F. A., Bennink, R. S. (2019). Quantum computing circuits and devices. IEEE Design & Test, 36: 69–94.
Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2: 79.
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., McClean, J. R., Mitarai, K., Yuan, X., Cincio, L., et al. (2021). Variational quantum algorithms. Nature Reviews Physics, 3: 625–644.
García, D. P., Cruz-Benito, J., García-Peñalvo, F. J. (2022). Systematic literature review: Quantum machine learning and its applications. arXiv preprint: 2201.04093.
Preskill, J. (2012). Quantum computing and the entanglement frontier. arXiv preprint: 1203.5813.
Harrow, A. W., Montanaro, A. (2017). Quantum computational supremacy. Nature, 549: 203–209.
Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21: 467–488.
Freedman, M. H., Larsen, M., Wang, Z. H. (2002). A modular functor which is universal for quantum computation. Communications in Mathematical Physics, 227: 605–622.
Harrow, A. W., Hassidim, A., Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Physical Review Letters, 103: 150502.
Wang, H., Qin, J., Ding, X., Chen, M. C., Chen, S., You, X., He, Y. M., Jiang, X., You, L., Wang, Z., et al. (2019). Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Physical Review Letters, 123: 250503.
Pednault, E., Gunnels, J. A., Nannicini, G., Horesh, L., Wisnieff, R. (2019). Leveraging secondary storage to simulate deep 54-qubit sycamore circuits. arXiv preprint: 1910.09534.
Huang, C. , Zhang, F., Newman, M., Cai, J. J., Gao, X., Tian, Z. X., Wu, J. Y., Xu, H. H., Yu, H. J., Yuan, B., et al. (2020). Classical simulation of quantum supremacy circuits. arXiv preprint: 2005.06787.
Pan, F., Zhang, P. (2021). Simulating the Sycamore quantum supremacy circuits. arXiv preprint: 2103.03074.
Ball, P. (2020). Physicists in China challenge Google’s ‘quantum advantage’. Nature, 588: 380.
Zhou, Y. F., Zhang, P. (2020). Reachable power flow. IEEE Transactions on Power Systems, 35: 3290–3293.
Zhou, Y. F., Zhang, P. (2021). Reachable power flow: Theory to practice. IEEE Transactions on Power Systems, 36: 2532–2541.
Feng, F., Zhang, P. (2020). Enhanced microgrid power flow incorporating hierarchical control. IEEE Transactions on Power Systems, 35: 2463–2466.
Feng, F., Zhang, P. (2020). Implicit Zbus Gauss algorithm revisited. IEEE Transactions on Power Systems, 35: 4108–4111.
Stott, B., Alsac, O. (1974). Fast decoupled load flow. IEEE Transactions on Power Apparatus and Systems, PAS-93: 859–869.
Feng, F., Zhang, P., Zhou, Y. F. (2022). Authentic microgrid state estimation. IEEE Transactions on Power Systems, 37: 1657–1660.
Larson, R. E., Tinney, W. F., Peschon, J. (1970). State estimation in power systems part I: Theory and feasibility. IEEE Transactions on Power Apparatus and Systems, PAS-89: 345–352.
Dervovic, D., Herbster, M., Mountney, P., Severini, S., Usher, N., Wossnig, L. (2018). Quantum linear systems algorithms: A primer. arXiv preprint: 1802.08227.
Bravo-Prieto, C., LaRose, R., Cerezo, M., Subasi, Y., Cincio, L., Coles, P. J. (2019). Variational quantum linear solver. arXiv preprint: 1909.05820.
Zhou, Y. F., Zhang, P., Yue, M. (2021). Reachable dynamics of networked microgrids with large disturbances. IEEE Transactions on Power Systems, 36: 2416–2427.
Zhou, Y. F., Zhang, P. (2022). Neuro-reachability of networked microgrids. IEEE Transactions on Power Systems, 37: 142–152.
Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K. (2018). Quantum circuit learning. Physical Review A, 98: 032309.
Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N. (2019). Evaluating analytic gradients on quantum hardware. Physical Review A, 99: 032331.
Zhang, P., Marti, J. R., Dommel, H. W. (2007). Synchronous machine modeling based on shifted frequency analysis. IEEE Transactions on Power Systems, 22: 1139–1147.
Zhang, P., Marti, J. R., Dommel, H. W. (2009). Induction machine modeling based on shifted frequency analysis. IEEE Transactions on Power Systems, 24: 157–164.
Zhang, P., Marti, J. R., Dommel, H. W. (2010). Shifted-frequency analysis for EMTP simulation of power-system dynamics. IEEE Transactions on Circuits and Systems I: Regular Papers, 57: 2564–2574.
Jooshaki, M., Abbaspour, A., Fotuhi-Firuzabad, M., Muñoz-Delgado, G., Contreras, J., Lehtonen, M., Arroyo, J. M. (2022). An enhanced MILP model for multistage reliability-constrained distribution network expansion planning. IEEE Transactions on Power Systems, 37: 118–131.
Bie, Z. H., Zhang, P., Li, G. F., Hua, B. W., Meehan, M., Wang, X. F. (2012). Reliability evaluation of active distribution systems including microgrids. IEEE Transactions on Power Systems, 27: 2342–2350.
Montanaro, A. (2015). Quantum speedup of Monte Carlo methods. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471: 20150301.
Heinrich, S. (2002). Quantum summation with an application to integration. Journal of Complexity, 18: 1–50.
Brassard, G., Hoyer, P., Mosca, M., Tapp, A. (2002). Quantum amplitude amplification and estimation. Contemporary Mathematics, 305: 53–74.
Wocjan, P., Chiang, C. F., Nagaj, D., Abeyesinghe, A. (2009). Quantum algorithm for approximating partition functions. Physical Review A, 80: 022340.
Grover, L. K. (1997). Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 79: 325–328.
Yan, B., Luh, P. B., Warner, G., Zhang, P. (2017). Operation and design optimization of microgrids with renewables. IEEE Transactions on Automation Science and Engineering, 14: 573–585.
Zhou, Y. F., Hu, W., Min, Y., Dai, Y. H. (2019). Integrated power and heat dispatch considering available reserve of combined heat and power units. IEEE Transactions on Sustainable Energy, 10: 1300–1310.
Cao, Y. J., Tang, S. W., Li, C. B., Zhang, P., Tan, Y., Zhang, Z. K., Li, J. X. (2012). An optimized EV charging model considering TOU price and SOC curve. IEEE Transactions on Smart Grid, 3: 388–393.
Wan, W. F., Bragin, M. A., Yan, B., Qin, Y. Y., Philhower, J., Zhang, P., Luh, P. B. (2020). Distributed and asynchronous active fault management for networked microgrids. IEEE Transactions on Power Systems, 35: 3857–3868.
Farhi, E., Goldstone, J., Gutmann, S. (2014). A quantum approximate optimization algorithm. arXiv preprint: 1411.4028.
Moll, N., Barkoutsos, P., Bishop, L. S., Chow, J. M., Cross, A., Egger, D. J., Filipp, S., Fuhrer, A., Gambetta, J. M., Ganzhorn, M., et al. (2018). Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology, 3: 030503.
Tanahashi, K., Takayanagi, S., Motohashi, T., Tanaka, S. (2019). Application of Ising machines and a software development for Ising machines. Journal of the Physical Society of Japan, 88: 061010.
Eskandarpour, R., Khodaei, A. (2018). Leveraging accuracy-uncertainty tradeoff in SVM to achieve highly accurate outage predictions. IEEE Transactions on Power Systems, 33: 1139–1141.
Yadav, R., Raj, S., Pradhan, A. K. (2019). Real-time event classification in power system with renewables using kernel density estimation and deep neural network. IEEE Transactions on Smart Grid, 10: 6849–6859.
Huang, Q. H., Huang, R. K., Hao, W. T., Tan, J., Fan, R., Huang, Z. Y. (2020). Adaptive power system emergency control using deep reinforcement learning. IEEE Transactions on Smart Grid, 11: 1171–1182.
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S. (2017). Quantum machine learning. Nature, 549: 195–202.
Lloyd, S., Mohseni, M., Rebentrost, P. (2014). Quantum principal component analysis. Nature Physics, 10: 631–633.
Li, Z. K., Chai, Z. H., Guo, Y. H., Ji, W. T., Wang, M. Q., Shi, F. Z., Wang, Y., Lloyd, S., Du, J. F. (2021). Resonant quantum principal component analysis. Science Advances, 7: eabg2589.
Schuld, M., Killoran, N. (2019). Quantum machine learning in feature Hilbert spaces. Physical Review Letters, 122: 040504.
Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567: 209–212.
Rebentrost, P., Mohseni, M., Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical Review Letters, 113: 130503.
Dallaire-Demers, P. L., Killoran, N. (2018). Quantum generative adversarial networks. Physical Review A, 98: 012324.
Niu, M. Y., Zlokapa, A., Broughton, M., Boixo, S., Mohseni, M., Smelyanskyi, V., Neven, H. (2021). Entangling quantum generative adversarial networks. arXiv preprint: 2105.00080.
Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R. (2018). Quantum Boltzmann machine. Physical Review X, 8: 021050.
Jerbi, S., Trenkwalder, L. M., Poulsen Nautrup, H., Briegel, H. J., Dunjko, V. (2021). Quantum enhancements for deep reinforcement learning in large spaces. PRX Quantum, 2: 010328.
Beer, K., Bondarenko, D., Farrelly, T., Osborne, T. J., Salzmann, R., Scheiermann, D., Wolf, R. (2020). Training deep quantum neural networks. Nature Communications, 11: 808.
Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., Killoran, N. (2020). Quantum embeddings for machine learning. arXiv preprint: 2001.03622.
Yu, J. J. Q., Hill, D. J., Lam, A. Y. S., Gu, J. T., Li, V. O. K. (2018). Intelligent time-adaptive transient stability assessment system. IEEE Transactions on Power Systems, 33: 1049–1058.
Sim, S., Johnson, P. D., Aspuru-Guzik, A. (2019). Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies, 2: 1900070.
Rasmussen, S. E., Loft, N. J. S., Bækkegaard, T., Kues, M., Zinner, N. T. (2020). Reducing the amount of single-qubit rotations in VQE and related algorithms. Advanced Quantum Technologies, 3: 2000063.
Kim, J., Kim, J., Rosa, D. (2021). Universal effectiveness of high-depth circuits in variational eigenproblems. Physical Review Research, 3: 023203.
Chen, S. Y. C., Wei, T. C., Zhang, C., Yu, H. W., Yoo, S. (2021). Hybrid quantum-classical graph convolutional network. arXiv preprint: 2101.06189.
Wan, W. F., Zhang, P., Bragin, M. A., Luh, P. B. (2022). Cooperative fault management for resilient integration of renewable energy. Electric Power Systems Research, 211: 108147.
Yu, F. R., Zhang, P., Xiao, W. D., Choudhury, P. (2011). Communication systems for grid integration of renewable energy resources. IEEE Network, 25: 22–29.
Babahajiani, P., Wang, L. Z., Liu, J., Zhang, P. (2021). Push-sum-enabled resilient microgrid control. IEEE Transactions on Smart Grid, 12: 3661–3664.
Molzahn, D. K., Dörfler, F., Sandberg, H., Low, S. H., Chakrabarti, S., Baldick, R., Lavaei, J. (2017). A survey of distributed optimization and control algorithms for electric power systems. IEEE Transactions on Smart Grid, 8: 2941–2962.
Nguyen, D. H., Khazaei, J. (2021). Unified distributed control of battery storage with various primary control in power systems. IEEE Transactions on Sustainable Energy, 12: 2332–2341.
Chen, Y. L., Qi, D. L., Dong, H. N., Li, C. Y., Li, Z. M., Zhang, J. L. (2021). A FDI attack-resilient distributed secondary control strategy for islanded microgrids. IEEE Transactions on Smart Grid, 12: 1929–1938.
Wright, K., Beck, K. M., Debnath, S., Amini, J. M., Nam, Y., Grzesiak, N., Chen, J. S., Pisenti, N. C., Chmielewski, M., Collins, C., et al. (2019). Benchmarking an 11-qubit quantum computer. Nature Communications, 10: 5464.
Yu, Y., Ma, F., Luo, X. Y., Jing, B., Sun, P. F., Fang, R. Z., Yang, C. W., Liu, H., Zheng, M. Y., Xie, X. P., et al. (2020). Entanglement of two quantum memories via fibres over dozens of kilometres. Nature, 578: 240–245.
Wehner, S., Elkouss, D., Hanson, R. (2018). Quantum internet: A vision for the road ahead. Science, 362: eaam9288.
Castelvecchi, D. (2021). Quantum network is step towards ultrasecure Internet. Nature, 590: 540–541.
Azuma, K., Mizutani, A., Lo, H. K. (2016). Fundamental rate-loss trade-off for the quantum internet. Nature Communications, 7: 13523.
Pirandola, S., Braunstein, S. L. (2016). Physics: Unite to build a quantum internet. Nature, 532: 169–171.
Castelvecchi, D. (2018). The quantum internet has arrived (and it hasn’t). Nature, 554: 289–292.
Qi, R. Y., Sun, Z., Lin, Z. S., Niu, P. H., Hao, W. T., Song, L. Y., Huang, Q., Gao, J. C., Yin, L. G., Long, G. L. (2019). Implementation and security analysis of practical quantum secure direct communication. Light: Science & Applications, 8: 22.
Awschalom, D., Berggren, K. K., Bernien, H., Bhave, S., Carr, L. D., Davids, P., Economou, S. E., Englund, D., Faraon, A., Fejer, M., et al. (2021). Development of quantum interconnects (QuICs) for next-generation information technologies. PRX Quantum, 2: 017002.
Tang, Z. F., Zhang, P., Muto, K., Sawasawa, M., Simonelli, M., Gutierrez, C., Yang, J., Astitha, M., Ferrante, D. A., Debs, J. N., et al. (2018). Extreme photovoltaic power analytics for electric utilities. IEEE Transactions on Sustainable Energy, 11: 93–106.
Jiao, J. Y., Tang, Z. F., Zhang, P., Yue, M., Yan, J. (2022). Cyberattack-resilient load forecasting with adaptive robust regression. International Journal of Forecasting, 38: 910–919.
Etingov, D. A., Zhang, P., Tang, Z. F., Zhou, Y. F. (2022). AI-enabled traveling wave protection for microgrids. Electric Power Systems Research, 210: 108078.
Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A. A. (2018). Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35: 53–65.
Grant, E., Benedetti, M., Cao, S. X., Hallam, A., Lockhart, J., Stojevic, V., Green, A. G., Severini, S. (2018). Hierarchical quantum classifiers. Npj Quantum Information, 4: 65.
Ekert, A., Jozsa, R. (1996). Quantum computation and Shor’s factoring algorithm. Reviews of Modern Physics, 68: 733–753.
Curty, M., Lo, H. K. (2019). Foiling covert channels and malicious classical post-processing units in quantum key distribution. Npj Quantum Information, 5: 14.
Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., Miki, S., Yamashita, T., Wang, Z., Tanaka, A., et al. (2011). Field test of quantum key distribution in the Tokyo QKD Network. Optics Express, 19: 10387–10409.
Heron, S. (2009). Advanced encryption standard (AES). Network Security, 2009: 8–12.
Wang, L. Z., Qin, Y. Y., Tang, Z. F., Zhang, P. (2020). Software-defined microgrid control: The genesis of decoupled cyber-physical microgrids. IEEE Open Access Journal of Power and Energy, 7: 173–182.
Wang, J. W., Qin, Y. Y., Tang, Z. F., Zhang, P. (2021). Software-defined cyber–energy secure underwater wireless power transfer. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2: 21–31.
Jiang, Z. M., Tang, Z. F., Zhang, P., Qin, Y. Y. (2021). Programmable adaptive security scanning for networked microgrids. Engineering, 7: 1087–1100.
Ekert, A. K. (1991). Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67: 661–663.
Bartlett, B. (2018). A distributed simulation framework for quantum networks and channels. arXiv preprint: 1808.07047.
This work was supported in part by the Advanced Grid Modeling Program under U.S. Department of Energy’s Office of Electricity under Agreement No. 37533 (P.Z.), in part by Stony Brook University’s Office of the Vice President for Research through a Quantum Information Science and Technology Seed Grant (P.Z.), and in part by the National Science Foundation under Grant No. PHY 1915165 (T.-C.W.). We would like to acknowledge the Brookhaven National Laboratory operated IBM-Q Hub. This research also used resources of the Oak Ridge Leadership Computing Facility, which is a U.S. Department of Energy Office of Science User Facility supported under Contract DE-AC05-00OR22725.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).