AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iEnergy Article
PDF (6.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Recent progress on dielectric polymers and composites for capacitive energy storage

Zhubing HanQing Wang( )
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
Show Author Information

Abstract

Polymer dielectrics-based capacitors are indispensable to the development of increasingly complex, miniaturized and sustainable electronics and electrical systems. However, the current polymer dielectrics are limited by their relatively low discharged energy density, efficiency and poor high-temperature performance. Here, we review the recent advances in the development of high-performance polymer and composite dielectrics for capacitive energy storage applications at both ambient and elevated temperature (≥ 150 °C). We highlight the underlying rationale behind the material development by constructing the relationship between the physical properties of materials and their energy-storage capability. Challenges and future opportunities are discussed at the end of the review.

References

1

Sarjeant, W. J., Zirnheld. J., MacDougall, F. W. (1998). Capacitors. IEEE Transactions on Plasma Science, 26: 1368–1392.

2

Christen, T., Carlen, M. W. (2000). Theory of ragone plots. Journal of Power Sources, 91: 210–216.

3

Sarjeant, W. J., Clelland, I. W., Price, R. A. (2001). Capacitive components for power electronics. Proceedings of the IEEE, 89: 846–855.

4

Johnson, R. W., Evans, J. L., Jacobsen, P., Thompson, J. R., Christopher, M. (2004). The changing automotive environment: High-temperature electronics. IEEE Transactions on Electronics Packaging Manufacturing, 27: 164–176.

5

Wang, Y., Zhou, X., Chen, Q., Chu, B. J., Zhang, Q. M. (2010). Recent development of high energy density polymers for dielectric capacitors. IEEE Transactions on Dielectrics and Electrical Insulation, 17: 1036–1042.

6

Zhu, L., Wang, Q. (2012). Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules, 45: 2937–2954.

7

Chen, Q., Shen, Y., Zhang, S. H., Zhang, Q. M. (2015). Polymer-based dielectrics with high energy storage density. Annual Review of Materials Research, 45: 433–458.

8

Li, Q., Wang, Q. (2016). Ferroelectric polymers and their energy-related applications. Macromolecular Chemistry and Physics, 217: 1228–1244.

9

Li, H., Liu, F. H., Fan, B. Y., Ai, D., Peng, Z. R., Wang, Q. (2018). Nanostructured ferroelectric-polymer composites for capacitive energy storage. Small Methods, 2: 1700399.

10

Li, Q., Yao, F. Z., Liu, Y., Zhang, G. Z., Wang, H., Wang, Q. (2018). High-temperature dielectric materials for electrical energy storage. Annual Review of Materials Research, 48: 219–243.

11

Li, Q., Cheng, S. (2020). Polymer nanocomposites for high-energy-density capacitor dielectrics: Fundamentals and recent progress. IEEE Electrical Insulation Magazine, 36: 7–28.

12

Zhou, Y., Wang, Q. (2020). Advanced polymer dielectrics for high temperature capacitive energy storage. Journal of Applied Physics, 127: 240902.

13

Li, H., Zhou, Y., Liu, Y., Li, L., Liu, Y., Wang, Q. (2021). Dielectric polymers for high-temperature capacitive energy storage. Chemical Society Reviews, 50: 6369–6400.

14

Feng, M. J., Feng, Y., Zhang, T. D., Li, J. L., Chen, Q. G., Chi, Q. G., Lei, Q. Q. (2021). Recent advances in multilayer-structure dielectrics for energy storage application. Advanced Science, 8: 2102221.

15

Michalczyk, P., Bramoulle, M. (2003). Ultimate properties of the polypropylene film for energy storage capacitors. IEEE Transactions on Magnetics, 39: 362–365.

16

Rabuffi, M., Picci, G. (2002). Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Transactions on Plasma Science, 30: 1939–1942.

17

Li, W. J., Meng, Q. J., Zheng, Y. S., Zhang, Z. C., Xia, W. M., Xu, Z. (2010). Electric energy storage properties of poly(vinylidene fluoride). Applied Physics Letters, 96: 192905.

18

Meng, N., Ren, X. T., Santagiuliana, G., Ventura, L., Zhang, H., Wu, J. Y., Yan, H. X., Reece, M. J., Bilotti, E. (2019). Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nature Communications, 10: 4535.

19

Zhou, X., Chu, B. J., Neese, B., Lin, M. R., Zhang, Q. M. (2007). Electrical energy density and discharge characteristics of a poly(vinylidene fluoride-chlorotrifluoroethylene)copolymer. IEEE Transactions on Dielectrics and Electrical Insulation, 14: 1133–1138.

20

Zhou, X., Zhao, X. H., Suo, Z. G., Zou, C., Runt, J., Liu, S., Zhang, S. H., Zhang, Q. M. (2009). Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer. Applied Physics Letters, 94: 162901.

21

Gadinski, M. R., Han, K., Li, Q., Zhang, G. Z., Reainthippayasakul, W., Wang, Q. (2014). High energy density and breakdown strength from β and γ phases in poly(vinylidene fluoride-co-bromotrifluoroethylene) copolymers. ACS Applied Materials & Interfaces, 6: 18981–18988.

22

Chu, B. J., Zhou, X., Neese, B., Zhang, Q. M., Bauer, F. (2006). Relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer for high energy density storage capacitors. IEEE Transactions on Dielectrics and Electrical Insulation, 13: 1162–1169.

23

Zhang, Z. C., Chung, T. C. M. (2007). Study of VDF/TrFE/CTFE terpolymers for high pulsed capacitor with high energy density and low energy loss. Macromolecules, 40: 783–785.

24

Zhang, Z. C., Chung, T. C. M. (2007). The structure-property relationship of poly(vinylidene difluoride)-based polymers with energy storage and loss under applied electric fields. Macromolecules, 40: 9391–9397.

25

Luo, B. C., Wang, X. H., Tian, E. K., Song, H. Z., Wang, H. X., Li, L. T. (2017). Enhanced energy-storage density and high efficiency of lead-free CaTiO3-BiScO3 linear dielectric ceramics. ACS Applied Materials & Interfaces, 9: 19963–19972.

26

Love, G. R. (1990). Energy storage in ceramic dielectrics. Journal of the American Ceramic Society, 73: 323–328.

27

Ogihara, H., Randall, C. A., Trolier-McKinstry, S. (2009). High-energy density capacitors utilizing 0.7BaTiO3-0.3 BiScO3 ceramics. Journal of the American Ceramic Society, 92: 1719–1724.

28

Correia, T. M., McMillen, M., Rokosz, M. K., Weaver, P. M., Gregg, J. M., Viola, G., Cain, M. G. (2013). A lead-free and high-energy density ceramic for energy storage applications. Journal of the American Ceramic Society, 96: 2699–2702.

29

Ahn, C. W., Amarsanaa, G., Won, S. S., Chae, S. A., Lee, D. S., Kim, I. W. (2015). Antiferroelectric thin-film capacitors with high energy-storage densities, low energy losses, and fast discharge times. ACS Applied Materials & Interfaces, 7: 26381–26386.

30

Zhu, X. P., Shi, P., Lou, X. J., Gao, Y. F., Guo, X. D., Sun, H. N., Liu, Q. D., Ren, Z. J. (2020). Remarkably enhanced energy storage properties of lead-free Ba0.53Sr0.47TiO3 thin films capacitors by optimizing bottom electrode thickness. Journal of the European Ceramic Society, 40: 5475–5482.

31

Ieda, M. (1980). Dielectric breakdown process of polymers. IEEE Transactions on Electrical Insulation, EI-15: 206–224.

32

Zebouchi, N., Bendaoud, M., Essolbi, R., Malec, D., Ai, B., Giam, H. T. (1996). Electrical breakdown theories applied to polyethylene terephthalate films under the combined effects of pressure and temperature. Journal of Applied Physics, 79: 2497–2501.

33

Watson, J., Castro, G. (2015). A review of high-temperature electronics technology and applications. Journal of Materials Science: Materials in Electronics, 26: 9226–9235.

34

Lovinger, A. J. (1983). Ferroelectric polymers. Science, 220: 1115–1121.

35

Martins, P., Lopes, A. C., Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39: 683–706.

36

Furukawa, T. (1989). Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions, 18: 143–211.

37

Zhang, Q. M., Bharti, V. V., Zhao, X. (1998). Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science, 280: 2101–2104.

38

Chu, B. J., Zhou, X., Ren, K. L., Neese, B., Lin, M. R., Wang, Q., Bauer, F., Zhang, Q. M. (2006). A dielectric polymer with high electric energy density and fast discharge speed. Science, 313: 334–336.

39

Khanchaitit, P., Han, K., Gadinski, M. R., Li, Q., Wang, Q. (2013). Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nature Communications, 4: 2845.

40

Chen, X. Z., Li, Z. W., Cheng, Z. X., Zhang, J. Z., Shen, Q. D., Ge, H. X., Li, H. T. (2011). Greatly enhanced energy density and patterned films induced by photo cross-linking of poly(vinylidene fluoride-chlorotrifluoroethylene). Macromolecular Rapid Communications, 32: 94–99.

41

Guan, F. X., Pan, J. L., Wang, J., Wang, Q., Zhu, L. (2010). Crystal orientation effect on electric energy storage in poly(vinylidene fluoride-co-hexafluoropropylene) copolymers. Macromolecules, 43: 384–392.

42

Hu, H. L., Zhang, F., Luo, S. B., Chang, W. K., Yue, J. L., Wang, C. H. (2020). Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy, 74: 104844.

43

Hu, J., Zhang, S. F., Tang, B. T. (2021). 2D filler-reinforced polymer nanocomposite dielectrics for high-k dielectric and energy storage applications. Energy Storage Materials, 34: 260–281.

44

Bai, Y., Cheng, Z. Y., Bharti, V., Xu, H. S., Zhang, Q. M. (2000). High-dielectric-constant ceramic-powder polymer composites. Applied Physics Letters, 76: 3804–3806.

45

Li, J. J., Claude, J., Norena-Franco, L. E., Seok, S. I., Wang, Q. (2008). Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles. Chemistry of Materials, 20: 6304–6306.

46

Kim, P., Doss, N. M., Tillotson, J. P., Hotchkiss, P. J., Pan, M. J., Marder, S. R., Li, J. Y., Calame, J. P., Perry, J. W. (2009). High energy density nanocomposites based on surface-modified BaTiO(3) and a ferroelectric polymer. ACS Nano, 3: 2581–2592.

47

Yu, K., Niu, Y. J., Zhou, Y. C., Bai, Y. Y., Wang, H. (2013). Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density. Journal of the American Ceramic Society, 96: 2519–2524.

48

Yu, K., Wang, H., Zhou, Y. C., Bai, Y. Y., Niu, Y. J. (2013). Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications. Journal of Applied Physics, 113: 034105.

49

Fu, J., Hou, Y. D., Zheng, M. P., Wei, Q. Y., Zhu, M. K., Yan, H. (2015). Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO3 particles derived by molten salt method. ACS Applied Materials & Interfaces, 7: 24480–24491.

50

Luo, H., Zhang, D., Jiang, C., Yuan, X., Chen, C., Zhou, K. C. (2015). Improved dielectric properties and energy storage density of poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite with hydantoin epoxy resin coated BaTiO3. ACS Applied Materials & Interfaces, 7: 8061–8069.

51

Pan, Z. B., Yao, L. M., Zhai, J. W., Shen, B., Wang, H. T. (2017). Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes. Composites Science and Technology, 147: 30–38.

52

Xie, Y. C., Yu, Y. Y., Feng, Y. F., Jiang, W. R., Zhang, Z. C. (2017). Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly(dopamine) encapsulated BaTiO3. ACS Applied Materials & Interfaces, 9: 2995–3005.

53

Hu, P. H., Gao, S. M., Zhang, Y. Y., Zhang, L., Wang, C. C. (2018). Surface modified BaTiO3 nanoparticles by titanate coupling agent induce significantly enhanced breakdown strength and larger energy density in PVDF nanocomposite. Composites Science and Technology, 156: 109–116.

54

Niu, Y. J., Xiang, F., Wang, Y. F., Chen, J., Wang, H. (2018). Effect of the coverage level of carboxylic acids as a modifier for Barium titanate nanoparticles on the performance of poly(vinylidene fluoride)-based nanocomposites for energy storage applications. Physical Chemistry Chemical Physics, 20: 6598–6605.

55

Ma, J. C., Zhang, Y. B., Zhang, Y., Zhang, L. Q., Zhang, S. X., Jiang, X. C., Liu, H. (2022). Constructing nanocomposites with robust covalent connection between nanoparticles and polymer for high discharged energy density and excellent tensile properties. Journal of Energy Chemistry, 68: 195–205.

56

Song, Y., Shen, Y., Liu, H. Y., Lin, Y. H., Li, M., Nan, C. W. (2012). Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites. Journal of Materials Chemistry, 22: 8063–8068.

57

Tang, H. X., Lin, Y. R., Sodano, H. A. (2013). Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors. Advanced Energy Materials, 3: 451–456.

58

Wang, G. Y., Huang, X. Y., Jiang, P. K. (2017). Bio-inspired fluoro-polydopamine meets Barium titanate nanowires: a perfect combination to enhance energy storage capability of polymer nanocomposites. ACS Applied Materials & Interfaces, 9: 7547–7555.

59

Xie, B., Zhang, H., Zhang, Q., Zang, J., Yang, C., Wang, Q., Li, M., Jiang, S. (2017). Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires. Journal of Materials Chemistry A, 5: 6070–6078.

60

Yao, L. M., Pan, Z. B., Zhai, J. W., Chen, H. H. D. (2017). Novel design of highly[110]-oriented Barium titanate nanorod array and its application in nanocomposite capacitors. Nanoscale, 9: 4255–4264.

61

Song, Y., Shen, Y., Hu, P. H., Lin, Y. H., Li, M., Nan, C. W. (2012). Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba0.6Sr0.4TiO3 nanofibers. Applied Physics Letters, 101: 152904.

62

Xia, W. M., Xu, Z., Wen, F., Zhang, Z. C. (2012). Electrical energy density and dielectric properties of poly(vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3 nanocomposites. Ceramics International, 38: 1071–1075.

63

Tang, H. X., Sodano, H. A. (2013). Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Letters, 13: 1373–1379.

64

Liu, S., Zhai, J. (2014). A small loading of surface-modified Ba0.6Sr0.4TiO3 nanofiber-filled nanocomposites with enhanced dielectric constant and energy density. RSC Advances, 4: 40973–40979.

65

Liu, S. H., Zhai, J. W., Wang, J. W., Xue, S. X., Zhang, W. Q. (2014). Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers. ACS Applied Materials & Interfaces, 6: 1533–1540.

66

Shen, Y., Hu, Y. H., Chen, W. W., Wang, J. J., Guan, Y. H., Du, J. W., Zhang, X., Ma, J., Li, M., Lin, Y. H., et al. (2015). Modulation of topological structure induces ultrahigh energy density of graphene/Ba0.6Sr0.4TiO3 nanofiber/polymer nanocomposites. Nano Energy, 18: 176–186.

67

Tang, H. X., Lin, Y. R., Sodano, H. A. (2012). Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Advanced Energy Materials, 2: 469–476.

68

Zhang, D., Liu, W. W., Guo, R., Zhou, K. C., Luo, H. (2018). High discharge energy density at low electric field using an aligned titanium dioxide/lead zirconate titanate nanowire array. Advanced Science, 5: 1700512.

69

Liu, S. H., Zhai, J. W. (2015). Improving the dielectric constant and energy density of poly(vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone. Journal of Materials Chemistry A, 3: 1511–1517.

70

Yao, L. M., Pan, Z. B., Zhai, J. W., Zhang, G. Z., Liu, Z. Y., Liu, Y. H. (2018). High-energy-density with polymer nanocomposites containing of SrTiO3 nanofibers for capacitor application. Composites Part A: Applied Science and Manufacturing, 109: 48–54.

71

Liu, S. H., Xue, S. X., Xiu, S. M., Shen, B., Zhai, J. W. (2016). Surface-modified Ba(Zr0.3Ti0.7)O3 nanofibers by polyvinylpyrrolidone filler for poly(vinylidene fluoride) composites with enhanced dielectric constant and energy storage density. Scientific Reports, 6: 26198.

72

Luo, H., Roscow, J., Zhou, X. F., Chen, S., Han, X. H., Zhou, K. C., Zhang, D., Bowen, C. R. (2017). Ultra-high discharged energy density capacitor using high aspect ratio Na0.5Bi0.5TiO3 nanofibers. Journal of Materials Chemistry A, 5: 7091–7102.

73

Pan, Z. B., Yao, L. M., Zhai, J. W., Wang, H. T., Shen, B. (2017). Ultrafast discharge and enhanced energy density of polymer nanocomposites loaded with 0.5(Ba0.7Ca0.3)TiO3-0.5Ba(Zr0.2Ti0.8)O3 one-dimensional nanofibers. ACS Applied Materials & Interfaces, 9: 14337–14346.

74

Li, J. J., Seok, S. I., Chu, B. J., Dogan, F., Zhang, Q. M., Wang, Q. (2009). Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Advanced Materials, 21: 217–221.

75

Li, J. J., Khanchaitit, P., Han, K., Wang, Q. (2010). New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chemistry of Materials, 22: 5350–5357.

76

Tang, H. X., Sodano, H. A. (2013). High energy density nanocomposite capacitors using non-ferroelectric nanowires. Applied Physics Letters, 102: 063901.

77

Chen, S. S., Hu, J., Gao, L., Zhou, Y., Peng, S. M., He, J. L., Dang, Z. M. (2016). Enhanced breakdown strength and energy density in PVDF nanocomposites with functionalized MgO nanoparticles. RSC Advances, 6: 33599–33605.

78

Yao, L. M., Pan, Z. B., Liu, S. H., Zhai, J. W., Chen, H. H. D. (2016). Significantly enhanced energy density in nanocomposite capacitors combining the TiO2 nanorod array with poly(vinylidene fluoride). ACS Applied Materials & Interfaces, 8: 26343–26351.

79

Li, L., Feng, R., Zhang, Y., Dong, L. J. (2017). Flexible, transparent and high dielectric-constant fluoropolymer-based nanocomposites with a fluoride-constructed interfacial structure. Journal of Materials Chemistry C, 5: 11403–11410.

80

Wang, G. Y., Huang, X. Y., Jiang, P. K. (2017). Bio-inspired polydopamine coating as a facile approach to constructing polymer nanocomposites for energy storage. Journal of Materials Chemistry C, 5: 3112–3120.

81

Li, H., Yang, T. N., Zhou, Y., Ai, D., Yao, B., Liu, Y., Li, L., Chen, L. Q., Wang, Q. (2021). Enabling high-energy-density high-efficiency ferroelectric polymer nanocomposites with rationally designed nanofillers. Advanced Functional Materials, 31: 2006739.

82

Zhang, Q. L., Zhang, Z., Xu, N. X., Yang, H. (2020). Dielectric properties of P(VDF-TrFE-CTFE) composites filled with surface-coated TiO2 nanowires by SnO2 nanoparticles. Polymers, 12: 85.

83

Li, Q., Han, K., Gadinski, M. R., Zhang, G. Z., Wang, Q. (2014). High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Advanced Materials, 26: 6244–6249.

84

Li, Q., Zhang, G. Z., Liu, F. H., Han, K., Gadinski, M. R., Xiong, C. X., Wang, Q. (2015). Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy & Environmental Science, 8: 922–931.

85

Jiang, J. Y., Shen, Z. H., Cai, X. K., Qian, J. F., Dan, Z. K., Lin, Y. H., Liu, B. L., Nan, C. W., Chen, L. Q., Shen, Y. (2019). Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density. Advanced Energy Materials, 9: 1803411.

86

Zhu, Y. K., Zhu, Y. J., Huang, X. Y., Chen, J., Li, Q., He, J. L., Jiang, P. K. (2019). High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Advanced Energy Materials, 9: 1901826.

87

Li, Y. X., Wang, Z., Kong, M. L., Yi, Z. H. (2021). Improved thermal conductivity and breakdown strength of PVDF-based composites by improving the dispersion of BN. High Voltage.

88

Liu, Y. H., Wen, Y. Y., Xu, W. W., Li, B., Song, Z. M., Li, Y. Y., Xia, F. (2021). Improving the energy density of P(VDF-HFP)/boron nitride nanosheets nanocomposites by using the third phase filler with high dielectric constant. Journal of Polymer Research, 28: 411.

89

Shang, Y. N., Feng, Y., Li, C. M., Zhang, C. H., Zhang, T. D., Zhang, Y. Q., Zhang, Y., Song, C. H., Chi, Q. G. (2022). Energy storage properties of P(VDF-TrFE-CTFE)-based composite dielectrics with uniform and gradient-doped boron nitride nanosheets. IET Nanodielectrics, 5: 50–61.

90

Han, K., Li, Q., Chen, Z. Y., Gadinski, M. R., Dong, L. J., Xiong, C. X., Wang, Q. (2013). Suppression of energy dissipation and enhancement of breakdown strength in ferroelectric polymer-graphene percolative composites. Journal of Materials Chemistry C, 1: 7034–7042.

91

Jia, Q. C., Huang, X. Y., Wang, G. Y., Diao, J. C., Jiang, P. K. (2016). MoS2 nanosheet superstructures based polymer composites for high-dielectric and electrical energy storage applications. The Journal of Physical Chemistry C, 120: 10206–10214.

92

Zhang, X., Shen, Y., Zhang, Q. H., Gu, L., Hu, Y. H., Du, J. W., Lin, Y. H., Nan, C. W. (2015). Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Advanced Materials, 27: 819–824.

93

Zhang, X., Shen, Y., Xu, B., Zhang, Q. H., Gu, L., Jiang, J. Y., Ma, J., Lin, Y. H., Nan, C. W. (2016). Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Advanced Materials, 28: 2055–2061.

94

Pan, Z. B., Yao, L. M., Zhai, J. W., Fu, D. Z., Shen, B., Wang, H. T. (2017). High-energy-density polymer nanocomposites composed of newly structured one-dimensional BaTiO3@Al2O3 nanofibers. ACS Applied Materials & Interfaces, 9: 4024–4033.

95

Jiang, Y. C., Wang, J. B., Zhang, Q. L., Yang, H., Shen, D., Zhou, F. M. (2019). Enhanced dielectric performance of P(VDF-HFP) composites filled with Ni@polydopamine@BaTiO3 nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 576: 55–62.

96

Jiang, Y. C., Zhang, Z., Zhou, Z., Yang, H., Zhang, Q. L. (2019). Enhanced dielectric performance of P(VDF-HFP) composites with satellite-core-structured Fe2O3@BaTiO3 nanofillers. Polymers, 11: 1541.

97

Luo, S. B., Yu, J. Y., Yu, S. H., Sun, R., Cao, L. Q., Liao, W. H., Wong, C. P. (2019). Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Advanced Energy Materials, 9: 1803204.

98

Li, Y. S., Zhou, Y., Zhu, Y. J., Cheng, S., Yuan, C., Hu, J., He, J. L., Li, Q. (2020). Polymer nanocomposites with high energy density and improved charge-discharge efficiency utilizing hierarchically-structured nanofillers. Journal of Materials Chemistry A, 8: 6576–6585.

99

Wang, P. J., Zhou, D., Li, J., Pang, L. X., Liu, W. F., Su, J. Z., Singh, C., Trukhanov, S., Trukhanov, A. (2020). Significantly enhanced electrostatic energy storage performance of P(VDF-HFP)/BaTiO3-Bi(Li0.5Nb0.5)O3 nanocomposites. Nano Energy, 78: 105247.

100

Xiong, X. Y., Zhang, Q. L., Zhang, Z., Yang, H., Tong, J. X., Wen, J. Y. (2021). Superior energy storage performance of PVDF-based composites induced by a novel nanotube structural BST@SiO2 filler. Composites Part A: Applied Science and Manufacturing, 145: 106375.

101

Huang, X. Y., Jiang, P. K. (2015). Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Advanced Materials, 27: 546–554.

102

Yang, K., Huang, X. Y., Huang, Y. H., Xie, L. Y., Jiang, P. K. (2013). Fluoro-Polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chemistry of Materials, 25: 2327–2338.

103

Zhu, M., Huang, X. Y., Yang, K., Zhai, X., Zhang, J., He, J. L., Jiang, P. K. (2014). Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: Understanding the role of polymer shells in the interfacial regions. ACS Applied Materials & Interfaces, 6: 19644–19654.

104

Rahimabady, M., Mirshekarloo, M. S., Yao, K., Lu, L. (2013). Dielectric behaviors and high energy storage density of nanocomposites with core-shell BaTiO3@TiO2 in poly(vinylidene fluoride-hexafluoropropylene). Physical Chemistry Chemical Physics, 15: 16242–16248.

105

Yu, K., Niu, Y. J., Bai, Y. Y., Zhou, Y. C., Wang, H. (2013). Poly(vinylidene fluoride) polymer based nanocomposites with significantly reduced energy loss by filling with core-shell structured BaTiO3/SiO2 nanoparticles. Applied Physics Letters, 102: 102903.

106

Liu, S. H., Xue, S. X., Shen, B., Zhai, J. W. (2015). Reduced energy loss in poly(vinylidene fluoride) nanocomposites by filling with a small loading of core-shell structured BaTiO3/SiO2 nanofibers. Applied Physics Letters, 107: 032907.

107

Pan, Z. B., Yao, L. M., Zhai, J. W., Shen, B., Liu, S. H., Wang, H. T., Liu, J. H. (2016). Excellent energy density of polymer nanocomposites containing BaTiO3@Al2O3 nanofibers induced by moderate interfacial area. Journal of Materials Chemistry A, 4: 13259–13264.

108

Prateek, Bhunia, R., Siddiqui, S., Garg, A., Gupta, R. K. (2019). Significantly enhanced energy density by tailoring the interface in hierarchically structured TiO2-BaTiO3-TiO2 nanofillers in PVDF-based thin-film polymer nanocomposites. ACS Applied Materials & Interfaces, 11: 14329–14339.

109

Wang, P. J., Zhou, D., Guo, H. H., Liu, W. F., Su, J. Z., Fu, M. S., Singh, C., Trukhanov, S., Trukhanov, A. (2020). Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core-shell BaTiO3@MgO structures as the filler. Journal of Materials Chemistry A, 8: 11124–11132.

110

Chen, J., Zhang, X. Y., Yang, X., Li, C. Y., Wang, Y. F., Chen, W. X. (2021). High breakdown strength and energy storage density in aligned SrTiO3@SiO2 core-shell platelets incorporated polymer composites. Membranes, 11: 756.

111

Pan, Z. B., Zhai, J. W., Shen, B. (2017). Multilayer hierarchical interfaces with high energy density in polymer nanocomposites composed of BaTiO3@TiO2@Al2O3 nanofibers. Journal of Materials Chemistry A, 5: 15217–15226.

112

Jiang, J. Y., Shen, Z. H., Qian, J. F., Dan, Z. K., Guo, M. F., He, Y., Lin, Y. H., Nan, C. W., Chen, L. Q., Shen, Y. (2019). Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy, 62: 220–229.

113

Zhou, X., Chen, Q., Zhang, Q. M., Zhang, S. H. (2011). Dielectric behavior of bilayer films of P(VDF-CTFE) and low temperature PECVD fabricated Si3N4. IEEE Transactions on Dielectrics and Electrical Insulation, 18: 463–470.

114

Chen, C., Xing, J. W., Cui, Y., Zhang, C. H., Feng, Y., Zhang, Y. Q., Zhang, T. D., Chi, Q. G., Wang, X., Lei, Q. Q. (2020). Designing of ferroelectric/linear dielectric bilayer films: An effective way to improve the energy storage performances of polymer-based capacitors. The Journal of Physical Chemistry C, 124: 5920–5927.

115

Pei, J. Y., Zhong, S. L., Zhao, Y., Yin, L. J., Feng, Q. K., Huang, L., Liu, D. F., Zhang, Y. X., Dang, Z. M. (2021). All-organic dielectric polymer films exhibiting superior electric breakdown strength and discharged energy density by adjusting the electrode-dielectric interface with an organic nano-interlayer. Energy & Environmental Science, 14: 5513–5522.

116

Wang, Y. F., Cui, J., Yuan, Q. B., Niu, Y. J., Bai, Y. Y., Wang, H. (2015). Significantly enhanced breakdown strength and energy density in sandwich-structured Barium titanate/poly(vinylidene fluoride) nanocomposites. Advanced Materials, 27: 6658–6663.

117

Wang, Y. F., Wang, L. X., Yuan, Q. B., Niu, Y. J., Chen, J., Wang, Q., Wang, H. (2017). Ultrahigh electric displacement and energy density in gradient layer-structured BaTiO3/PVDF nanocomposites with an interfacial barrier effect. Journal of Materials Chemistry A, 5: 10849–10855.

118

Jiang, Y. D., Zhang, X., Shen, Z. H., Li, X. H., Yan, J. J., Li, B. W., Nan, C. W. (2020). Ultrahigh breakdown strength and improved energy density of polymer nanocomposites with gradient distribution of ceramic nanoparticles. Advanced Functional Materials, 30: 1906112.

119

Zhang, X., Jiang, J. Y., Shen, Z. H., Dan, Z. K., Li, M., Lin, Y. H., Nan, C. W., Chen, L. Q., Shen, Y. (2018). Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions. Advanced Materials, 30: 1707269.

120

Liu, F. H., Li, Q., Cui, J., Li, Z. Y., Yang, G., Liu, Y., Dong, L. J., Xiong, C. X., Wang, H., Wang, Q. (2017). High-energy-density dielectric polymer nanocomposites with trilayered architecture. Advanced Functional Materials, 27: 1606292.

121

Cui, Y., Zhang, T. D., Feng, Y., Zhang, C. H., Chi, Q. G., Zhang, Y. Q., Chen, Q. G., Wang, X., Lei, Q. Q. (2019). Excellent energy storage density and efficiency in blend polymer-based composites by design of core-shell structured inorganic fibers and sandwich structured films. Composites Part B: Engineering, 177: 107429.

122

Lin, Y., Sun, C., Zhan, S. L., Zhang, Y. J., Yuan, Q. B. (2020). Ultrahigh discharge efficiency and high energy density in sandwich structure K0.5Na0.5NbO3 nanofibers/poly(vinylidene fluoride) composites. Advanced Materials Interfaces, 7: 2000033.

123

Lin, Y., Zhang, Y. J., Zhan, S. L., Sun, C., Hu, G. L., Yang, H. B., Yuan, Q. B. (2020). Synergistically ultrahigh energy storage density and efficiency in designed sandwich-structured poly(vinylidene fluoride)-based flexible composite films induced by doping Na0.5Bi0.5TiO3 whiskers. Journal of Materials Chemistry A, 8: 23427–23435.

124

Marwat, M. A., Yasar, M., Ma, W. G., Fan, P. Y., Liu, K., Lu, D. J., Tian, Y., Samart, C., Ye, B. H., Zhang, H. B. (2020). Significant energy density of discharge and charge-discharge efficiency in Ag@BNN nanofillers-modified heterogeneous sandwich structure nanocomposites. ACS Applied Energy Materials, 3: 6591–6601.

125

Li, Z. Y., Shen, Z. H., Yang, X., Zhu, X. M., Zhou, Y., Dong, L. J., Xiong, C. X., Wang, Q. (2021). Ultrahigh charge-discharge efficiency and enhanced energy density of the sandwiched polymer nanocomposites with poly(methyl methacrylate) layer. Composites Science and Technology, 202: 108591.

126

Sun, S. B., Shi, Z. C., Liang, L., Li, T., Zhang, S. L., Xu, W. F., Han, M. L., Zhang, M. Y. (2021). Simultaneous realization of significantly enhanced breakdown strength and moderately enhanced permittivity in layered PMMA/P(VDF-HFP) nanocomposites via inserting an Al2O3/P(VDF-HFP) layer. The Journal of Physical Chemistry C, 125: 22379–22387.

127

Xie, H. R., Wang, L., Gao, X., Luo, H., Liu, L. H., Zhang, D. (2020). High breakdown strength and energy density in multilayer-structured ferroelectric composite. ACS Omega, 5: 32660–32666.

128

Li, L., Cheng, J. S., Cheng, Y. Y., Han, T., Liang, X., Zhao, Y., Zhao, G. H., Dong, L. J. (2020). Polymer dielectrics exhibiting an anomalously improved dielectric constant simultaneously achieved high energy density and efficiency enabled by CdSe/Cd1-xZnxS quantum dots. Journal of Materials Chemistry A, 8: 13659–13670.

129

Li, L., Cheng, J. S., Cheng, Y. Y., Han, T., Liu, Y., Zhou, Y., Zhao, G. H., Zhao, Y., Xiong, C. X., Dong, L. J., et al. (2021). Significant improvements in dielectric constant and energy density of ferroelectric polymer nanocomposites enabled by ultralow contents of nanofillers. Advanced Materials, 33: 2102392.

130

Rahimabady, M., Chen, S. T., Yao, K., Eng Hock Tay, F., Lu, L. (2011). High electric breakdown strength and energy density in vinylidene fluoride oligomer/poly(vinylidene fluoride) blend thin films. Applied Physics Letters, 99: 142901.

131

Zhang, C. H., Zhang, T. Q., Feng, M. J., Cui, Y., Zhang, T. D., Zhang, Y. Q., Feng, Y., Zhang, Y., Chi, Q. G., Liu, X. L. (2021). Significantly improved energy storage performance of PVDF ferroelectric films by blending PMMA and filling PCBM. ACS Sustainable Chemistry & Engineering, 9: 16291–16303.

132

Ma, R., Baldwin, A. F., Wang, C. C., Offenbach, I., Cakmak, M., Ramprasad, R., Sotzing, G. A. (2014). Rationally designed polyimides for high-energy density capacitor applications. ACS Applied Materials & Interfaces, 6: 10445–10451.

133

Wei, J. J., Zhang, Z. B., Tseng, J. K., Treufeld, I., Liu, X. B., Litt, M. H., Zhu, L. (2015). Achieving high dielectric constant and low loss property in a dipolar glass polymer containing strongly dipolar and small-sized sulfone groups. ACS Applied Materials & Interfaces, 7: 5248–5257.

134

Zhang, Z. B., Wang, D. H., Litt, M. H., Tan, L. S., Zhu, L. (2018). High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide). Angewandte Chemie International Edition, 57: 1528–1531.

135

Li, Z. Z., Treich, G. M., Tefferi, M., Wu, C., Nasreen, S., Scheirey, S. K., Ramprasad, R., Sotzing, G., Cao, Y. (2019). High energy density and high efficiency all-organic polymers with enhanced dipolar polarization. Journal of Materials Chemistry A, 7: 15026–15030.

136

Zhang, Z. B., Zheng, J. F., Premasiri, K., Kwok, M. H., Li, Q., Li, R. P., Zhang, S. B., Litt, M. H., Gao, X. P. A., Zhu, L. (2020). High-κ polymers of intrinsic microporosity: A new class of high temperature and low loss dielectrics for printed electronics. Materials Horizons, 7: 592–597.

137

Feng, Y., Jiang, L. H., Yang, A. Q., Liu, X., Yang, L. Q., Lu, G. H., Li, S. T. (2022). Interfacial effect on dielectric properties of self-assembled polythiourea-based copolymers for ultrahigh energy storage. Macromolecular Rapid Communications, 43: 2100700.

138

Wu, Z. Q., Guo, Q., Liu, Y., Zhou, H. H., Zheng, H., Lei, X. F., Gong, L., Chen, Y. H., Liu, Z. G., Zhang, Q. Y. (2021). Excellent polyimide dielectrics containing conjugated ACAT for high-temperature polymer film capacitor. Macromolecular Materials and Engineering, 306: 2100456.

139

Li, H., Yao, B., Zhou, Y., Xu, W. H., Ren, L. L., Ai, D., Wang, Q. (2020). Bilayer-structured polymer nanocomposites exhibiting high breakdown strength and energy density via interfacial barrier design. ACS Applied Energy Materials, 3: 8055–8063.

140

Jiang, J. H., Li, J. P., Qian, J., Liu, X. Y., Zuo, P. Y., Yuan, Y., Zhuang, Q. X. (2021). Benzoxazole-polymer@CCTO hybrid nanoparticles prepared via RAFT polymerization: toward poly(p-phenylene benzobisoxazole) nanocomposites with enhanced high-temperature dielectric properties. Journal of Materials Chemistry A, 9: 26010–26018.

141

Li, L., Cheng, J. S., Cheng, Y. Y., Han, T., Liu, Y., Zhou, Y., Han, Z. B., Zhao, G. H., Zhao, Y., Xiong, C. X., et al. (2021). Significantly enhancing the dielectric constant and breakdown strength of linear dielectric polymers by utilizing ultralow loadings of nanofillers. Journal of Materials Chemistry A, 9: 23028–23036.

142

Li, Y. P., Yin, J. H., Feng, Y., Li, J. L., Zhao, H., Zhu, C. C., Yue, D., Liu, Y. P., Su, B., Liu, X. X. (2022). Metal-organic Framework/Polyimide composite with enhanced breakdown strength for flexible capacitor. Chemical Engineering Journal, 429: 132228.

143

Pan, J. L., Li, K., Li, J. J., Hsu, T., Wang, Q. (2009). Dielectric characteristics of poly(ether ketone ketone) for high temperature capacitive energy storage. Applied Physics Letters, 95: 022902.

144

Tan, D., Zhang, L. L., Chen, Q., Irwin, P. (2014). High-temperature capacitor polymer films. Journal of Electronic Materials, 43: 4569–4575.

145

Cheng, Z. X., Lin, M. R., Wu, S., Thakur, Y., Zhou, Y., Jeong, D. Y., Shen, Q. D., Zhang, Q. M. (2015). Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors. Applied Physics Letters, 106: 202902.

146

Ho, J. S., Greenbaum, S. G. (2018). Polymer capacitor dielectrics for high temperature applications. ACS Applied Materials & Interfaces, 10: 29189–29218.

147

Pan, J. L., Li, K., Chuayprakong, S., Hsu, T., Wang, Q. (2010). High-temperature poly(phthalazinone ether ketone) thin films for dielectric energy storage. ACS Applied Materials & Interfaces, 2: 1286–1289.

148

Wu, C., Deshmukh, A. A., Li, Z. Z., Chen, L. H., Alamri, A., Wang, Y. F., Ramprasad, R., Sotzing, G. A., Cao, Y. (2020). Flexible temperature-invariant polymer dielectrics with large bandgap. Advanced Materials, 32: 2000499.

149

Tang, Y. D., Xu, W. H., Niu, S., Zhang, Z. C., Zhang, Y. H., Jiang, Z. H. (2021). Crosslinked dielectric materials for high-temperature capacitive energy storage. Journal of Materials Chemistry A, 9: 10000–10011.

150

Li, H., Gadinski, M. R., Huang, Y. Q., Ren, L. L., Zhou, Y., Ai, D., Han, Z. B., Yao, B., Wang, Q. (2020). Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge-discharge efficiency. Energy & Environmental Science, 13: 1279–1286.

151

Sun, W. D., Lu, X. J., Jiang, J. Y., Zhang, X., Hu, P. H., Li, M., Lin, Y. H., Nan, C. W., Shen, Y. (2017). Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. Journal of Applied Physics, 121: 244101.

152

Xu, W. H., Yang, G., Jin, L., Liu, J., Zhang, Y. H., Zhang, Z. C., Jiang, Z. H. (2018). High-k polymer nanocomposites filled with hyperbranched phthalocyanine-coated BaTiO3 for high-temperature and elevated field applications. ACS Applied Materials & Interfaces, 10: 11233–11241.

153

Jian, G., Jiao, Y., Meng, Q. Z., Xue, F., Feng, L., Yang, N., Jiang, J. H., Lü, M. F. (2021). Polyimide composites containing confined tetragonality high TC PbTiO3 nanofibers for high-temperature energy storage. Composites Part B: Engineering, 224: 109190.

154

Miao, W. J., Chen, H. X., Pan, Z. B., Pei, X. L., Li, L., Li, P., Liu, J. J., Zhai, J. W., Pan, H. (2021). Enhancement thermal stability of polyetherimide-based nanocomposites for applications in energy storage. Composites Science and Technology, 201: 108501.

155

Liu, J., Shen, Z. H., Xu, W. H., Zhang, Y., Qian, X. S., Jiang, Z. H., Zhang, Y. H. (2020). Interface-strengthened polymer nanocomposites with reduced dielectric relaxation exhibit high energy density at elevated temperatures utilizing a facile dual crosslinked network. Small, 16: 2000714.

156

Li, Q., Chen, L., Gadinski, M. R., Zhang, S., Zhang, G., Li, H. U., Iagodkine, E., Haque, A., Chen, L. Q., Jackson, T. N., et al. (2015). Flexible high-temperature dielectric materials from polymer nanocomposites. Nature, 523: 576–579.

157

Zhang, K. Y., Ma, Z. Y., Deng, H., Fu, Q. (2022). Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer. Advanced Composites and Hybrid Materials, 5: 238–249.

158

Xu, W. H., Liu, J., Chen, T. W., Jiang, X. Y., Qian, X. S., Zhang, Y., Jiang, Z. H., Zhang, Y. H. (2019). Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature. Small, 15: 1901582.

159

Li, H., Ai, D., Ren, L. L., Yao, B., Han, Z. B., Shen, Z. H., Wang, J. J., Chen, L. Q., Wang, Q. (2019). Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Advanced Materials, 31: 1900875.

160

Klein, R. J., Barber, P., Chance, W. M., zur Loye, H. C. (2012). Covalently modified organic nanoplatelets and their use in polymer film capacitors with high dielectric breakdown and wide temperature operation. IEEE Transactions on Dielectrics and Electrical Insulation, 19: 1234–1238.

161

Ai, D., Li, H., Zhou, Y., Ren, L. L., Han, Z. B., Yao, B., Zhou, W., Zhao, L., Xu, J. M., Wang, Q. (2020). Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Advanced Energy Materials, 10: 1903881.

162

Ren, L. L., Yang, L. J., Zhang, S. Y., Li, H., Zhou, Y., Ai, D., Xie, Z. L., Zhao, X. T., Peng, Z. R., Liao, R. J., et al. (2021). Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors. Composites Science and Technology, 201: 108528.

163

Ren, L. L., Li, H., Xie, Z. L., Ai, D., Zhou, Y., Liu, Y., Zhang, S. Y., Yang, L. J., Zhao, X. T., Peng, Z. R., et al. (2021). High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core-shell nanostructured nanofillers. Advanced Energy Materials, 11: 2101297.

164

Li, H., Ren, L. L., Ai, D., Han, Z. B., Liu, Y., Yao, B., Wang, Q. (2020). Ternary polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength for high-temperature electrostatic capacitors. InfoMat, 2: 389–400.

165

Azizi, A., Gadinski, M. R., Li, Q., AlSaud, M. A., Wang, J. J., Wang, Y., Wang, B., Liu, F. H., Chen, L. Q., Alem, N., et al. (2017). High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Advanced Materials, 29: 1701864.

166

Zhou, Y., Li, Q., Dang, B., Yang, Y., Shao, T., Li, H., Hu, J., Zeng, R., He, J. L., Wang, Q. (2018). A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Advanced Materials, 30: 1805672.

167

Zhang, T. D., Yang, L. Y., Ruan, J. Y., Zhang, C. H., Chi, Q. G. (2021). Improved high-temperature energy storage performance of PEI dielectric films by introducing an SiO2 insulating layer. Macromolecular Materials and Engineering, 306: 2100514.

168

Cheng, S., Zhou, Y., Hu, J., He, J. L., Li, Q. (2020). Polyimide films coated by magnetron sputtered boron nitride for high-temperature capacitor dielectrics. IEEE Transactions on Dielectrics and Electrical Insulation, 27: 498–503.

169

Cheng, S., Zhou, Y., Li, Y. S., Yuan, C., Yang, M. C., Fu, J., Hu, J., He, J. L., Li, Q. (2021). Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Materials, 42: 445–453.

170

Liu, G., Zhang, T. D., Feng, Y., Zhang, Y. Q., Zhang, C. H., Zhang, Y., Wang, X. B., Chi, Q. G., Chen, Q. G., Lei, Q. Q. (2020). Sandwich-structured polymers with electrospun boron nitrides layers as high-temperature energy storage dielectrics. Chemical Engineering Journal, 389: 124443.

171

Dong, J., Hu, R., Xu, X., Chen, J., Niu, Y., Wang, F., Hao, J., Wu, K., Wang, Q., Wang, H. (2021). A facile in situ surface-functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance. Advanced Functional Materials, 31: 2102644.

172

Li, Q., Liu, F. H., Yang, T. N., Gadinski, M. R., Zhang, G. Z., Chen, L. Q., Wang, Q. (2016). Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures. Proceedings of the National Academy of Sciences of the United States of America, 113: 9995–10000.

173

Wang, P., Yao, L. M., Pan, Z. B., Shi, S. H., Yu, J. H., Zhou, Y., Liu, Y., Liu, J. J., Chi, Q. G., Zhai, J. W., et al. (2021). Ultrahigh energy storage performance of layered polymer nanocomposites over a broad temperature range. Advanced Materials, 33: 2103338.

174

Chi, Q. G., Gao, Z. Y., Zhang, T. D., Zhang, C. H., Zhang, Y., Chen, Q. G., Wang, X., Lei, Q. Q. (2019). Excellent energy storage properties with high-temperature stability in sandwich-structured polyimide-based composite films. ACS Sustainable Chemistry & Engineering, 7: 748–757.

175

Thakur, Y., Zhang, T., Iacob, C., Yang, T. N., Bernholc, J., Chen, L. Q., Runt, J., Zhang, Q. M. (2017). Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale, 9: 10992–10997.

176

Zhang, T., Chen, X., Zhang, Q. Y., Zhang, Q. M. (2020). Dielectric enhancement over a broad temperature by nanofiller at ultra-low volume content in poly(ether methyl ether urea). Applied Physics Letters, 117: 072905.

177

Zhang, T., Chen, X., Thakur, Y., Lu, B., Zhang, Q. Y., Runt, J., Zhang, Q. M. (2020). A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Science Advances, 6: eaax6622.

178

Fan, M. Z., Hu, P. H., Dan, Z. K., Jiang, J. Y., Sun, B. Z., Shen, Y. (2020). Significantly increased energy density and discharge efficiency at high temperature in polyetherimide nanocomposites by a small amount of Al2O3 nanoparticles. Journal of Materials Chemistry A, 8: 24536–24542.

179

Yuan, C., Zhou, Y., Zhu, Y., Liang, J., Wang, S., Peng, S., Li, Y., Cheng, S., Yang, M., Hu, J., et al. (2020). Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nature Communications, 11: 3919.

180

Luo, S. B., Yu, J. Y., Ansari, T. Q., Yu, S. H., Xu, P. P., Cao, L. Q., Huang, H. T., Sun, R., Wong, C. P. (2020). Elaborately fabricated polytetrafluoroethylene film exhibiting superior high-temperature energy storage performance. Applied Materials Today, 21: 100882.

181

Luo, S. B., Ansari, T. Q., Yu, J. Y., Yu, S. H., Xu, P. P., Cao, L. Q., Huang, H. T., Sun, R. (2021). Enhancement of dielectric breakdown strength and energy storage of all-polymer films by surface flattening. Chemical Engineering Journal, 412: 128476.

182

Zhang, X. M., Zhao, Y. F., Wu, Y. H., Zhang, Z. C. (2017). Poly(tetrafluoroethylene-hexafluoropropylene) films with high energy density and low loss for high-temperature pulse capacitors. Polymer, 114: 311–318.

183

Chen, S. Y., Meng, G. D., Kong, B., Xiao, B., Wang, Z. D., Jing, Z. A., Gao, Y. S., Wu, G. L., Wang, H., Cheng, Y. H. (2020). Asymmetric alicyclic amine-polyether amine molecular chain structure for improved energy storage density of high-temperature crosslinked polymer capacitor. Chemical Engineering Journal, 387: 123662.

184

Wen, F., Zhang, L., Wang, P., Li, L. L., Chen, J. G., Chen, C., Wu, W., Wang, G. F., Zhang, S. J. (2020). A high-temperature dielectric polymer poly(acrylonitrile butadiene styrene) with enhanced energy density and efficiency due to a cyano group. Journal of Materials Chemistry A, 8: 15122–15129.

185

Zhou, Y., Yuan, C., Wang, S. J., Zhu, Y. J., Cheng, S., Yang, X., Yang, Y., Hu, J., He, J. L., Li, Q. (2020). Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Storage Materials, 28: 255–263.

186

Wang, Y. G., Zhang, J. X., Zhang, B. W., Ren, K. L. (2021). Poly(lactic acid)-based film with excellent thermal stability for high energy density capacitor applications. Macromolecular Materials and Engineering, 306: 2100402.

187

Yang, Y., Dang, Z. M., Li, Q., He, J. L. (2020). Self-healing of electrical damage in polymers. Advanced Science, 7: 2002131.

188

Liu, Y., Yang, T. N., Zhang, B., Williams, T., Lin, Y. T., Li, L., Zhou, Y., Lu, W. C., Kim, S. H., Chen, L. Q., et al. (2020). Structural insight in the interfacial effect in ferroelectric polymer nanocomposites. Advanced Materials, 32: 2005431.

189

Tan, D. Q. (2020). Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Advanced Functional Materials, 30: 1808567.

190

Sharma, V., Wang, C., Lorenzini, R. G., Ma, R., Zhu, Q., Sinkovits, D. W., Pilania, G., Oganov, A. R., Kumar, S., Sotzing, G. A., et al. (2014). Rational design of all organic polymer dielectrics. Nature Communications, 5: 4845.

191

Mannodi-Kanakkithodi, A., Treich, G. M., Huan, T. D., Ma, R., Tefferi, M., Cao, Y., Sotzing, G. A., Ramprasad, R. (2016). Rational co-design of polymer dielectrics for energy storage. Advanced Materials, 28: 6277–6291.

192

Kern, J., Chen, L. H., Kim, C., Ramprasad, R. (2021). Design of polymers for energy storage capacitors using machine learning and evolutionary algorithms. Journal of Materials Science, 56: 19623–19635.

iEnergy
Pages 50-71
Cite this article:
Han Z, Wang Q. Recent progress on dielectric polymers and composites for capacitive energy storage. iEnergy, 2022, 1(1): 50-71. https://doi.org/10.23919/IEN.2022.0008

2036

Views

233

Downloads

21

Crossref

24

Scopus

Altmetrics

Received: 19 December 2021
Revised: 12 March 2022
Accepted: 13 March 2022
Published: 25 March 2022
© The author(s) 2022

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return