AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iEnergy Article
PDF (6.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Smart dielectric materials for next-generation electrical insulation

Xiaoyan Huang1,TLu Han1,TXiao Yang2,hZhiwen Huang1,TJun Hu1Qi Li1( )Jinliang He1( )
State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China

Show Author Information

Abstract

Smart dielectric materials with bioinspired and autonomous functions are expected to be designed and fabricated for next-generation electrical insulation. Similar to organisms, such dielectrics with self-adaptive, self-reporting, and self-healing capabilities can be employed to avoid, diagnose, and repair electrical damage to prevent catastrophic failure and even a blackout. Compared with traditional dielectrics, the utilization of smart materials not only increases the stability and durability of power apparatus but also reduces the costs of production and manufacturing. In this review, researches on self-adaptive, self-reporting, and self-healing dielectrics in the field of electrical insulation, and illuminating studies on smart polymers with autonomous functions in other fields are both introduced. The principles, methods, mechanisms, applications, and challenges of these materials are also briefly presented.

References

1

Tanaka, T. (2005). Dielectric nanocomposites with insulating properties. IEEE Transactions on Dielectrics and Electrical Insulation, 12: 914–928.

2

Kozako, M., Fuse, N., Ohki, Y., Okamoto, T., Tanaka, T. (2004). Surface degradation of polyamide nanocomposites caused by partial discharges using IEC (b) electrodes. IEEE Transactions on Dielectrics and Electrical Insulation, 11: 833–839.

3

Imai, T., Sawa, F., Nakano, T., Ozaki, T., Shimizu, T., Kozako, M., Tanaka, T. (2006). Effects of nano- and micro-filler mixture on electrical insulation properties of epoxy based composites. IEEE Transactions on Dielectrics and Electrical Insulation, 13: 319–326.

4

Montanari, G. C., Fabiani, D., Palmieri, F., Kaempfer, D., Thomann, R., Mulhaupt, R. (2004). Modification of electrical properties and performance of EVA and PP insulation through nanostructure by organophilic silicates. IEEE Transactions on Dielectrics and Electrical Insulation, 11: 754–762.

5

Jarvid, M., Johansson, A., Kroon, R., Bjuggren, J. M., Wutzel, H., Englund, V., Gubanski, S., Andersson, M. R., Müller, C. (2015). A new application area for fullerenes: Voltage stabilizers for power cable insulation. Advanced Materials, 27: 897–902.

6

Lewis, T. J. (1994). Nanometric dielectrics. IEEE Transactions on Dielectrics and Electrical Insulation, 1: 812–825.

7

Gorur, R. S., Cherney, E. A., Hackam, R., Orbeck, T. (1988). The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber. IEEE Transactions on Power Delivery, 3: 1157–1164.

8

Morshuis, P. H. F. (2005). Degradation of solid dielectrics due to internal partial discharge: Some thoughts on progress made and where to go now. IEEE Transactions on Dielectrics and Electrical Insulation, 12: 905–913.

9

Shimizu, N., Laurent, C. (1998). Electrical tree initiation. IEEE Transactions on Dielectrics and Electrical Insulation, 5: 651–659.

10
Ruxton, G. D., Allen, W. L., Sherratt, T. N., Speed, M. P. (2018). Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry. Oxford, UK: Oxford University Press.https://doi.org/10.1093/oso/9780199688678.001.0001
11

Leonhardt, U. (2009). Towards invisibility in the visible. Nature Materials, 8: 537–538.

12

Stevens, M., Rong, C. P., Todd, P. A. (2013). Colour change and camouflage in the horned ghost crab Ocypode ceratophthalmus. Biological Journal of the Linnean Society, 109: 257–270.

13

Egan, J., Sharman, R. J., Scott-Brown, K. C., Lovell, P. G. (2016). Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief. Scientific Reports, 6: 38274.

14

Woodcock, J., Witter, J., Dionne, R. A. (2007). Stimulating the development of mechanism-based, individualized pain therapies. Nature Reviews Drug Discovery, 6: 703–710.

15

Fields, H. (2004). State-dependent opioid control of pain. Nature Reviews Neuroscience, 5: 565–575.

16

Dekoninck, S., Blanpain, C. (2019). Stem cell dynamics, migration and plasticity during wound healing. Nature Cell Biology, 21: 18–24.

17

Witte, M. B., Barbul, A. (1997). General principles of wound healing. Surgical Clinics of North America, 77: 509–528.

18

Stuart-Fox, D., Moussalli, A. (2008). Selection for social signalling drives the evolution of chameleon colour change. PLoS Biology, 6: e25.

19

Teyssier, J., Saenko, S. V., van der Marel, D., Milinkovitch, M. C. (2015). Photonic crystals cause active colour change in chameleons. Nature Communications, 6: 6368.

20

Tracey, W. D. Jr. (2017). Nociception. Current Biology, 27: R129–R133.

21

Rabiller, L., Labit, E., Guissard, C., Gilardi, S., Guiard, B. P., Moulédous, L., Silva, M., Mithieux, G., Pénicaud, L., Lorsignol, A., et al. (2021). Pain sensing neurons promote tissue regeneration in adult mice. Npj Regenerative Medicine, 6: 63.

22

Bloch, R. (1941). Wound healing in higher plants. The Botanical Review, 7: 110–146.

23

Marsell, R., Einhorn, T. A. (2011). The biology of fracture healing. Injury, 42: 551–555.

24

Liu, Z. H., Zhang, F. X., Yu, J., Gao, K. L., Ma, W. M. (2018). Research on key technologies in ±1100 kV ultra-high voltage DC transmission. High Voltage, 3: 279–288.

25

Zeng, F. Z., Chen, X. H., Xiao, G., Li, H., Xia, S., Wang, J. F. (2020). A bioinspired ultratough multifunctional mica-based nanopaper with 3D aramid nanofiber framework as an electrical insulating material. ACS Nano, 14: 611–619.

26

Zhao, X. L., Yang, X., Gao, L., Li, Q., Hu, J., He, J. L. (2017). Tuning the potential distribution of AC cable terminals by stress cone of nonlinear conductivity material. IEEE Transactions on Dielectrics and Electrical Insulation, 24: 2686–2693.

27

Tanaka, T., Okamoto, T., Nakanishi, K., Miyamoto, T. (1993). Aging and related phenomena in modern electric power systems. IEEE Transactions on Electrical Insulation, 28: 826–844.

28

Cherney, E. A. (2013). Nanodielectrics applications-today and tomorrow. IEEE Electrical Insulation Magazine, 29: 59–65.

29

Bamji, S. S., Bulinski, A. T., Chen, Y., Densley, R. J. (1992). Threshold voltage for electrical tree inception in underground HV transmission cables. IEEE Transactions on Electrical Insulation, 27: 402–404.

30

Yoshida, K., Kozako, M., Ishibe, S., Hikita, M., Kamei, N. (2017). Evaluation on applicability to electrical insulating material of hydrocarbon-based thermosetting resin. Electronics and Communications in Japan, 100: 83–90.

31
Ying, Q. L., Wei, D., Gao, X. Q., Liu, Y. G., Chen, P. (2000). Development of high voltage XLPE power cable system in China. In: Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials (Cat. No. 00CH36347), Xi'an, China.
32

Roberts, A. (1995). Stress grading for high voltage motor and generator coils. IEEE Electrical Insulation Magazine, 11: 26–31.

33

He, J. L., Xie, J. C., Hu, J. (2014). Progress of nonlinear polymer composites for improving nonuniform electrical fields. High Voltage Engineering, 40: 637–647.

34

Zhao, X. L., Hu, J., Yuan, Z. K., He, J. L. (2021). Design of adaptive bushing based on field grading materials. High Voltage, 6: 625–636.

35
Oesterheld, J., von Olshausen, R., Poehler, S. (1992). Optimized design of accessories for 245 kV and 420 kV XLPE cables. In: Proceedings of the 1992 International Conference on Large High Voltage Electric Systems, 21–202.
36

Nelson, P. N., Hervig, H. C. (1984). High dielectric constant materials for primary voltage cable terminations. IEEE Transactions on Power Apparatus and Systems, PAS-103: 3211–3216.

37

Zhao, X., Yang, X., Hu, J., Li, Q., He, J. (2019). Globally reinforced mechanical, electrical, and thermal properties of nonlinear conductivity composites by surface treatment of varistor microspheres. Composites Science and Technology, 175: 151–157.https://doi.org/10.1016/j.compscitech.2019.03.018

38

Dissado, L. A., Mazzanti, G., Montanari, G. C. (1997). The role of trapped space charges in the electrical aging of insulating materials. IEEE Transactions on Dielectrics and Electrical Insulation, 4: 496–506.

39

Dakin, T. W. (1948). Electrical insulation deterioration treated as a chemical rate phenomenon. Transactions of the American Institute of Electrical Engineers, 67: 113–122.

40

Steennis, E. F., Kreuger, F. H. (1990). Water treeing in polyethylene cables. IEEE Transactions on Electrical Insulation, 25: 989–1028.

41

Youn, B. H., Huh, C. S. (2005). Surface degradation of HTV silicone rubber and EPDM used for outdoor insulators under accelerated ultraviolet weathering condition. IEEE Transactions on Dielectrics and Electrical Insulation, 12: 1015–1024.

42

Tanaka, T. (1986). Internal partial discharge and material degradation. IEEE Transactions on Electrical Insulation, EI-21: 899–905.

43

Hill, R. M., Dissado, L. A. (1983). Theoretical basis for the statistics of dielectric breakdown. Journal of Physics C:Solid State Physics, 16: 2145–2156.

44

Saha, T. K. (2003). Review of modern diagnostic techniques for assessing insulation condition in aged transformers. IEEE Transactions on Dielectrics and Electrical Insulation, 10: 903–917.

45

Stone, G. C. (2005). Partial discharge diagnostics and electrical equipment insulation condition assessment. IEEE Transactions on Dielectrics and Electrical Insulation, 12: 891–904.

46

Aggarwal, R. K., Johns, A. T., Jayasinghe, J. A. S. B., Su, W. (2000). An overview of the condition monitoring of overhead lines. Electric Power Systems Research, 53: 15–22.

47

Salvatierra, L. M., Kovalevski, L. I., Dammig Quiña, P. L., Irurzun, I. M., Mola, E. E., Dodd, S. J., Dissado, L. A. (2016). Self-healing during electrical treeing: A feature of the two-phase liquid-solid nature of silicone gels. IEEE Transactions on Dielectrics and Electrical Insulation, 23: 757–767.

48

Eichhorn, R. M. (1977). Treeing in solid extruded electrical insulation. IEEE Transactions on Electrical Insulation, EI-12: 2–18.

49

Dissado, L. A., Dodd, S. J., Champion, J. V., Williams, P. I., Alison, J. M. (1997). Propagation of electrical tree structures in solid polymeric insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 4: 259–279.

50

Yang, X., Zhao, X. L., Hu, J., He, J. L. (2018). Grading electric field in high voltage insulation using composite materials. IEEE Electrical Insulation Magazine, 34: 15–25.

51

Zhao, X. L., Yang, X., Li, Q., He, J. L., Hu, J. (2017). Synergistic effect of ZnO microspherical varistors and carbon fibers on nonlinear conductivity and mechanical properties of the silicone rubber-based material. Composites Science and Technology, 150: 187–193.

52

Davis, D. A., Hamilton, A., Yang, J., Cremar, L. D., van Gough, D., Potisek, S. L., Ong, M. T., Braun, P. V., Martínez, T. J., White, S. R., et al. (2009). Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature, 459: 68–72.

53

Peng, H., Sun, X., Cai, F., Chen, X., Zhu, Y., Liao, G., Chen, D., Li, Q., Lu, Y., Zhu, Y., et al. (2009). Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nature Nanotechnology, 4: 738–741.

54

Yang, Y., He, J., Li, Q., Gao, L., Hu, J., Zeng, R., Qin, J., Wang, S. X., Wang, Q. (2019). Self-healing of electrical damage in polymers using superparamagnetic nanoparticles. Nature Nanotechnology, 14: 151–155.

55

Gao, L., Yang, Y., Xie, J. Y., Zhang, S., Hu, J., Zeng, R., He, J. L., Li, Q., Wang, Q. (2020). Autonomous self-healing of electrical degradation in dielectric polymers using in situ electroluminescence. Matter, 2: 451–463.

56

Xie, J. Y., Yang, M. C., Liang, J. J., Hu, J., Li, Q., He, J. L. (2021). Self-healing of internal damage in mechanically robust polymers utilizing a reversibly convertible molecular network. Journal of Materials Chemistry A, 9: 15975–15984.

57

Patrick, J. F., Robb, M. J., Sottos, N. R., Moore, J. S., White, S. R. (2016). Polymers with autonomous life-cycle control. Nature, 540: 363–370.

58

Christen, T., Donzel, L., Greuter, F. (2010). Nonlinear resistive electric field grading Part 1: Theory and simulation. IEEE Electrical Insulation Magazine, 26: 47–59.

59

Donzel, L., Greuter, F., Christen, T. (2011). Nonlinear resistive electric field grading Part 2: Materials and applications. IEEE Electrical Insulation Magazine, 27: 18–29.

60

Qi, X., Zheng, Z., Boggs, S. (2004). Engineering with nonlinear dielectrics. IEEE Electrical Insulation Magazine, 20: 27–34.

61
Auckland, D. W., Su, W. B., Varlow, B. R. (1995). Smart insulation for tree resistance and surge absorption. In: Proceedings of the 1995 Conference on Electrical Insulation and Dielectric Phenomena, Virginia Beach, VA, USA.
62

Virsberg, L. G., Ware, P. H. (1967). A new termination for underground distribution. IEEE Transactions on Power Apparatus and Systems, PAS-86: 1129–1135.

63

Abd-Rahman, R., Haddad, A., Harid, N., Griffiths, H. (2012). Stress control on polymeric outdoor insulators using Zinc oxide microvaristor composites. IEEE Transactions on Dielectrics and Electrical Insulation, 19: 705–713.

64

Jeroense, M., Saltzer, M., Ghorbani, H. (2014). Technical challenges linked to HVDC cable development. Revue de l'electricite et de l'electronique, 4: 3–10.

65

Eigner, A., Semino, S. (2013). 50 years of electrical-stress control in cable accessories. IEEE Electrical Insulation Magazine, 29: 47–55.

66

Glatz-Reichenbach, J., Meyer, B., Strümpler, R., Kluge-Weiss, P., Greuter, F. (1996). New low-voltage varistor composites. Journal of Materials Science, 31: 5941–5944.

67
Robertson, J., Varlow, B. R. (2003). The AC non linear permittivity characteristics of Barium titanate filled acrylic resin. In: Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No. 03CH37417), Nagoya, Japan.
68

Wang, X., Nelson, J. K., Schadler, L. S., Hillborg, H. (2010). Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite. IEEE Transactions on Dielectrics and Electrical Insulation, 17: 1687–1696.

69

Blatter, G., Greuter, F. (1986). Carrier transport through grain boundaries in semiconductors. Physical Review B, Condensed Matter, 33: 3952–3966.

70

Blatter, G., Greuter, F. (1986). Electrical breakdown at semiconductor grain boundaries. Physical Review B, 34: 8555–8572.

71

Yang, X., Hu, J., He, J. L. (2017). Effect of interfacial charge relaxation on conducting behavior of ZnO varistors under time varying electric fields. Applied Physics Letters, 110: 182104.

72

Yang, X., Zhao, X. L., Li, Q., Hu, J., He, J. L. (2018). Nonlinear effective permittivity of field grading composite dielectrics. Journal of Physics D: Applied Physics, 51: 075304.

73

Robertson, J., Varlow, B. R. (2005). Non-linear ferroelectric composite dielectric materials. IEEE Transactions on Dielectrics and Electrical Insulation, 12: 779–790.

74

He, J. L., Hu, J. (2007). Discussions on nonuniformity of energy absorption capabilities of ZnO varistors. IEEE Transactions on Power Delivery, 22: 1523–1532.

75

Long, W. C., Hu, J., Liu, J., He, J. L. (2010). Effects of cobalt doping on the electrical characteristics of Al-doped ZnO varistors. Materials Letters, 64: 1081–1084.

76

Wang, Z. P., Nelson, J. K., Hillborg, H., Zhao, S., Schadler, L. S. (2012). Graphene oxide filled nanocomposite with novel electrical and dielectric properties. Advanced Materials, 24: 3134–3137.

77

Lin, H. F., Lu, W., Chen, G. H. (2007). Nonlinear DC conduction behavior in epoxy resin/graphite nanosheets composites. Physica B:Condensed Matter, 400: 229–236.

78

Yang, X., Meng, P. F., Zhao, X. L., Li, Q., Hu, J., He, J. L. (2018). How nonlinear V-I characteristics of single ZnO microvaristor influences the performance of its silicone rubber composite. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 623–630.

79
Auckland, D. W., Brown, N. E., Varlow, B. R. (1997). Non-linear conductivity in electrical insulation. In: Proceedings of the IEEE 1997 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Minneapolis, MN, USA.
80
Tavernier, K., Auckland, D. W., Varlow, B. R. (1998). Improvement in the electrical performance of electrical insulation by non-linear fillers. ICSD'98. In: Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics (Cat. No. 98CH36132), Vasteras, Sweden.
81
Matsuzaki, H., Nakano, T., Ando, H. (2012). Effects of second particles on nonlinear resistance properties of microvaristor-filled composites. In: Proceedings of the 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Montreal, QC, Canada.https://doi.org/10.1109/CEIDP.2012.6378751
82

Yang, X., Hu, J., Chen, S., He, J. (2016). Understanding the percolation characteristics of nonlinear composite dielectrics. Scientific Reports, 6: 30597.

83

Nettelblad, B., Rtensson, E. M., Nneby, C., Fvert, U. G., Gustafsson, A. (2003). Two percolation thresholds due to geometrical effects: experimental and simulated results. Journal of Physics D: Applied Physics, 36: 399–405.

84
Martensson, E., Nettelbled, B., Gafvert, U., Palmqvist, L. (1998). Electrical properties of field grading materials with silicon carbide and carbon black. ICSD'98. In: Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics (Cat. No. 98CH36132), Vasteras, Sweden.
85

Mashkouri, S., Ghafouri, M., Arsalani, N., Bidadi, H., Mostafavi, H. (2017). Mechanochemical green synthesis of exfoliated graphite at room temperature and investigation of its nonlinear properties based zinc oxide composite varistors. Journal of Materials Science: Materials in Electronics, 28: 4839–4846.

86

Ishibe, S., Mori, M., Kozako, M., Hikita, M. (2014). A new concept varistor with epoxy/microvaristor composite. IEEE Transactions on Power Delivery, 29: 677–682.

87
Mori, M., Komesu, D., Ishibe, S., Kozako, M., Hikita, M. (2014). Study on the formation of microvaristor chains in composite varistors and their electrical characteristics. In: Proceedings of the 2014 IEEE Electrical Insulation Conference, Philadelphia, PA, USA.https://doi.org/10.1109/EIC.2014.6869435
88

Du, B. X., Li, Z. L., Yang, Z. R. (2016). Field-dependent conductivity and space charge behavior of silicone rubber/SiC composites. IEEE Transactions on Dielectrics and Electrical Insulation, 23: 3108–3116.

89
Wang, X., Herth, S., Hugener, T., Siegel, R. W., Nelson, J. K., Schadler, L. S., Hillborg, H., Auletta, T. (2006). Nonlinear electrical behavior of treated ZnO-EPDM nanocomposites. In: Proceedings of the 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Kansas City, MO, USA.https://doi.org/10.1109/CEIDP.2006.311959
90

Chen, T., Wang, M. H., Zhang, H. P., Zhao, Z. Y., Liu, T. T. (2016). Novel synthesis of monodisperse ZnO-based core/shell ceramic powders and applications in low-voltage varistors. Materials & Design, 96: 329–334.

91

Nan, C. W., Shen, Y., Ma, J. (2010). Physical properties of composites near percolation. Annual Review of Materials Research, 40: 131–151.

92

Yuan, Z. K., Hu, J., Huang, Z. W., Sun, G., Sun, Y., He, J. L. (2022). Non-linearly conductive ZnO microvaristors/epoxy resin composite prepared by wet winding with polyester fibre cloth. High Voltage, 7: 32–40.

93
Wang, Z., Nelson, J. K., Hillborg, H., Zhao, S., Schadler, L. S. (2012). Nonlinear conductivity and dielectric response of graphene oxide filled silicone rubber nanocomposites. In: Proceedings of the 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Montreal, QC, Canada.https://doi.org/10.1109/CEIDP.2012.6378717
94

Mårtensson, E., Gäfvert, U., Lindefelt, U. (2001). Direct current conduction in SiC powders. Journal of Applied Physics, 90: 2862–2869.

95

Kelen, A. (1967). On the theory of non-linear resistive field grading coatings on insulating surfaces. Elteknik, 6: 109–112.

96

Kimura, K., Tsukiji, M., Tani, T., Hirabayashi, S. (1984). Suppression of local heating on a silicon carbide layer by means of divided potentials. IEEE Transactions on Electrical Insulation, EI-19: 294–302.

97

Umemoto, T., Otake, Y., Yoshimura, M., Nada, T., Miyatake, R. (2020). Optimization of double-layer stress grading system for high voltage rotating electrical machines by electric field and thermal coupled analysis. IEEE Transactions on Dielectrics and Electrical Insulation, 27: 971–979.

98

Li, C. Y., Lin, C. J., Hu, J., Liu, W. D., Li, Q., Zhang, B., He, S., Yang, Y., Liu, F., He, J. L. (2018). Novel HVDC spacers by adaptively controlling surface charges–Part I: Charge transport and control strategy. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1238–1247.

99

Li, C. Y., Lin, C. J., Yang, Y., Zhang, B., Liu, W. D., Li, Q., Hu, J., He, S., Liu, X. L., He, J. L. (2018). Novel HVDC spacers by adaptively controlling surface charges–Part II: Experiment. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1248–1258.

100

Lin, C. J., Li, Q., Li, C. Y., Zhang, B., Liu, W. D., Yang, Y., Liu, F., Liu, X. L., Hu, J., He, J. L. (2018). Novel HVDC spacers by adaptively controlling surface charges–Part III: Industrialization prospects. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1259–1266.

101
Donzel, L., Christen, T., Kessler, R., Greuter, F., Gramespacher, H. (2004). Silicone composites for HV applications based on microvaristors. In: Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, Toulouse, France.
102
Amerpohl, U., Kirchner, M., Böttcher, B., Malin, G. (2002). Dry Type Outdoor Termination with New Stress Control Management. Paris, France: Cigré.
103

Wang, N. Y., Cotton, I., Robertson, J., Follmann, S., Evans, K., Newcombe, D. (2010). Partial discharge control in a power electronic module using high permittivity non-linear dielectrics. IEEE Transactions on Dielectrics and Electrical Insulation, 17: 1319–1326.

104

Donzel, L., Schuderer, J. (2012). Nonlinear resistive electric field control for power electronic modules. IEEE Transactions on Dielectrics and Electrical Insulation, 19: 955–959.

105

Rifaie-Graham, O., Apebende, E. A., Bast, L. K., Bruns, N. (2018). Self-reporting fiber-reinforced composites that mimic the ability of biological materials to sense and report damage. Advanced Materials, 30: e1705483.

106

Abot, J. L., Song, Y., Vatsavaya, M. S., Medikonda, S., Kier, Z., Jayasinghe, C., Rooy, N., Shanov, V. N., Schulz, M. J. (2010). Delamination detection with carbon nanotube thread in self-sensing composite materials. Composites Science and Technology, 70: 1113–1119.

107

Tian, Z., Li, Y. C., Zheng, J. J., Wang, S. G. (2019). A state-of-the-art on self-sensing concrete: Materials, fabrication and properties. Composites Part B: Engineering, 177: 107437.

108

Chen, Q., Feng, Y., Zhang, D. Q., Zhang, G. X., Fan, Q. H., Sun, S. N., Zhu, D. B. (2010). Light-triggered self-assembly of a spiropyran-functionalized dendron into nano-/micrometer-sized particles and photoresponsive organogel with switchable fluorescence. Advanced Functional Materials, 20: 36–42.

109

Lu, X., Zhang, Z. D., Sun, X. M., Chen, P. N., Zhang, J., Guo, H., Shao, Z. Z., Peng, H. S. (2016). Flexible and stretchable chromatic fibers with high sensing reversibility. Chemical Science, 7: 5113–5117.

110

Black, A. L., Lenhardt, J. M., Craig, S. L. (2011). From molecular mechanochemistry to stress-responsive materials. Journal of Materials Chemistry, 21: 1655–1663.

111

Ivashenko, O., van Herpt, J. T., Feringa, B. L., Rudolf, P., Browne, W. R. (2013). Electrochemical write and read functionality through oxidative dimerization of spiropyran self-assembled monolayers on gold. The Journal of Physical Chemistry C, 117: 18567–18577.

112

Abdollahi, A., Rad, J. K., Mahdavian, A. R. (2016). Stimuli-responsive cellulose modified by epoxy-functionalized polymer nanoparticles with photochromic and solvatochromic properties. Carbohydrate Polymers, 150: 131–138.

113

Scarmagnani, S., Walsh, Z., Slater, C., Alhashimy, N., Paull, B., Macka, M., Diamond, D. (2008). Polystyrene bead-based system for optical sensing using spiropyran photoswitches. Journal of Materials Chemistry, 18: 5063–5071.

114

Park, M. K., Kim, K. W., Ahn, D. J., Oh, M. K. (2012). Label-free detection of bacterial RNA using polydiacetylene-based biochip. Biosensors and Bioelectronics, 35: 44–49.

115

Caruso, M. M., Davis, D. A., Shen, Q. L., Odom, S. A., Sottos, N. R., White, S. R., Moore, J. S. (2009). Mechanically-induced chemical changes in polymeric materials. Chemical Reviews, 109: 5755–5798.

116

Calvino, C. (2021). Polymer-based mechanochromic composite material using encapsulated systems. Macromolecular Rapid Communications, 42: 2000549.

117

Ma, L. W., Ren, C. H., Wang, J. K., Liu, T., Yang, H., Wang, Y. J., Huang, Y., Zhang, D. W. (2021). Self-reporting coatings for autonomous detection of coating damage and metal corrosion: A review. Chemical Engineering Journal, 421: 127854.

118

Abdollahi, A., Roghani-Mamaqani, H., Razavi, B. (2019). Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Progress in Polymer Science, 98: 101149.

119

Qian, X. M., Städler, B. (2019). Recent developments in polydiacetylene-based sensors. Chemistry of Materials, 31: 1196–1222.

120

Samanta, S., Locklin, J. (2008). Formation of photochromic spiropyran polymer brushes via surface-initiated, ring-opening metathesis polymerization: Reversible photocontrol of wetting behavior and solvent dependent morphology changes. Langmuir, 24: 9558–9565.

121

Exarhos, G. J., Risen, W. M. Jr, Baughman, R. H. (1976). Resonance Raman study of the thermochromic phase transition of a polydiacetylene. Journal of the American Chemical Society, 98: 481–487.

122

Calvino, C., Neumann, L., Weder, C., Schrettl, S. (2017). Approaches to polymeric mechanochromic materials. Journal of Polymer Science Part A: Polymer Chemistry, 55: 640–652.

123

Sheng, L., Li, M., Zhu, S., Li, H., Xi, G., Li, Y. G., Wang, Y., Li, Q., Liang, S., Zhong, K., et al. (2014). Hydrochromic molecular switches for water-jet rewritable paper. Nature Communications, 5: 3044.

124

Chanakul, A., Traiphol, N., Faisadcha, K., Traiphol, R. (2014). Dual colorimetric response of polydiacetylene/zinc oxide nanocomposites to low and high pH. Journal of Colloid and Interface Science, 418: 43–51.

125

Wagner, K., Byrne, R., Zanoni, M., Gambhir, S., Dennany, L., Breukers, R., Higgins, M., Wagner, P., Diamond, D., Wallace, G. G., et al. (2011). A multiswitchable poly(terthiophene) bearing a spiropyran functionality: Understanding photo- and electrochemical control. Journal of the American Chemical Society, 133: 5453–5462.

126

Gao, R., Cao, D., Guan, Y., Yan, D. P. (2016). Fast and reversible humidity-responsive luminescent thin films. Industrial & Engineering Chemistry Research, 55: 125–132.

127

Zheng, Y. J., Orbulescu, J., Ji, X. J., Andreopoulos, F. M., Pham, S. M., Leblanc, R. M. (2003). Development of fluorescent film sensors for the detection of divalent copper. Journal of the American Chemical Society, 125: 2680–2686.

128

Ma, H. Y., Gao, R., Yan, D. P., Zhao, J. W., Wei, M. (2013). Organic–inorganic hybrid fluorescent ultrathin films and their sensor application for nitroaromatic explosives. Journal of Materials Chemistry C, 1: 4128–4137.

129

Lee, S., Park, J. W. (2017). Luminescent oxygen sensors with highly improved sensitivity based on a porous sensing film with increased oxygen accessibility and photoluminescence. Sensors and Actuators B: Chemical, 249: 364–377.

130

Di, S. R. (2015). Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications. Sensors, 15: 18666–18713.

131

Friedrich, K., Almajid, A. A. (2013). Manufacturing aspects of advanced polymer composites for automotive applications. Applied Composite Materials, 20: 107–128.

132

Rana, S., Subramani, P., Fangueiro, R., Gomes Correia, A. (2016). A review on smart self-sensing composite materials for civil engineering applications. AIMS Materials Science, 3: 357–379.

133

Yang, R. Z., He, Y. Z., Zhang, H. (2016). Progress and trends in nondestructive testing and evaluation for wind turbine composite blade. Renewable and Sustainable Energy Reviews, 60: 1225–1250.

134

Zhang, Z. J., Wang, L. M., Wang, J., Jiang, X. M., Li, X. H., Hu, Z. J., Ji, Y. L., Wu, X. C., Chen, C. Y. (2012). Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Advanced Materials, 24: 1418–1423.

135

Abdollahi, A., Roghani-Mamaqani, H., Salami-Kalajahi, M., Razavi, B., Sahandi-Zangabad, K. (2020). Encryption and optical authentication of confidential cellulosic papers by ecofriendly multi-color photoluminescent inks. Carbohydrate Polymers, 245: 116507.

136

Guo, Z. Q., Song, N. R., Moon, J. H., Kim, M., Jun, E. J., Choi, J., Lee, J. Y., Bielawski, C. W., Sessler, J. L., Yoon, J. (2012). A benzobisimidazolium-based fluorescent and colorimetric chemosensor for CO2. Journal of the American Chemical Society, 134: 17846–17849.

137

Zhu, M. Q., Zhu, L. Y., Han, J. J., Wu, W. W., Hurst, J. K., Li, A. D. Q. (2006). Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. Journal of the American Chemical Society, 128: 4303–4309.

138

Kundu, P. K., Samanta, D., Leizrowice, R., Margulis, B., Zhao, H., Börner, M., Udayabhaskararao, T., Manna, D., Klajn, R. (2015). Light-controlled self-assembly of non-photoresponsive nanoparticles. Nature Chemistry, 7: 646–652.

139

Li, S., Bai, H. D., Shepherd, R. F., Zhao, H. C. (2019). Bio-inspired design and additive manufacturing of soft materials, machines, robots, and haptic interfaces. Angewandte Chemie International Edition, 58: 11182–11204.

140

Isapour, G., Lattuada, M. (2018). Bioinspired stimuli-responsive color-changing systems. Advanced Materials, 30: e1707069.

141

Barthelat, F. (2007). Biomimetics for next generation materials. Philosophical Transactions Series A, Mathematical, Physical, 365: 2907–2919.

142

Gillies, E. R. (2020). Reflections on the evolution of smart polymers. Israel Journal of Chemistry, 60: 75–85.

143

Gao, R., Fang, X. Y., Yan, D. P. (2019). Recent developments in stimuli-responsive luminescent films. Journal of Materials Chemistry C, 7: 3399–3412.

144

Calvino, C., Weder, C. (2018). Microcapsule-containing self-reporting polymers. Small, 14: 1802489.

145

Sun, X. M., Chen, T., Huang, S. Q., Li, L., Peng, H. S. (2010). Chromatic polydiacetylene with novel sensitivity. Chemical Society Reviews, 39: 4244–4257.

146

Rougeau, L., Picq, D., Rastello, M., Frantz, Y. (2008). New irreversible thermochromic polydiacetylenes. Tetrahedron, 64: 9430–9436.

147

Grogan, C., Florea, L., Koprivica, S., Scarmagnani, S., O’Neill, L., Lyng, F., Pedreschi, F., Benito-Lopez, F., Raiteri, R. (2016). Microcantilever arrays functionalised with spiropyran photoactive moieties as systems to measure photo-induced surface stress changes. Sensors and Actuators B: Chemical, 237: 479–486.

148

Kim, S. H., Suh, H. J., Cui, J. Z., Gal, Y. S., Jin, S. H., Koh, K. (2002). Crystalline-state photochromism and thermochromism of new spiroxazine. Dyes and Pigments, 53: 251–256.

149

Jochum, F. D., Theato, P. (2010). Thermo- and light responsive micellation of azobenzene containing block copolymers. Chemical Communications, 46: 6717–6719.

150

Irie, M. (2000). Diarylethenes for memories and switches. Chemical Reviews, 100: 1685–1716.

151

Klajn, R. (2014). Spiropyran-based dynamic materials. Chemical Society Reviews, 43: 148–184.

152

Lokshin, V., Samat, A., Metelitsa, A. V. (2002). Spirooxazines: synthesis, structure, spectral and photochromic properties. Russian Chemical Reviews, 71: 893–916.

153

Bandara, H. M. D., Burdette, S. C. (2012). Photoisomerization in different classes of azobenzene. Chemical Society Reviews, 41: 1809–1825.

154

Logtenberg, H., van der Velde, J. H. M., de Mendoza, P., Areephong, J., Hjelm, J., Feringa, B. L., Browne, W. R. (2012). Electrochemical switching of conductance with diarylethene-based redox-active polymers. The Journal of Physical Chemistry C, 116: 24136–24142.

155

Sun, B., Hou, Q. X., He, Z. B., Liu, Z. H., Ni, Y. H. (2014). Cellulose nanocrystals (CNC) as carriers for a spirooxazine dye and its effect on photochromic efficiency. Carbohydrate Polymers, 111: 419–424.

156

Wang, G., Tong, X., Zhao, Y. (2004). Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules, 37: 8911–8917.

157

Gossweiler, G. R., Hewage, G. B., Soriano, G., Wang, Q. M., Welshofer, G. W., Zhao, X. H., Craig, S. L. (2014). Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Letters, 3: 216–219.

158

Bell, N. S., Piech, M. (2006). Photophysical effects between spirobenzopyran-methyl methacrylate-functionalized colloidal particles. Langmuir, 22: 1420–1427.

159

Schenderlein, H., Voss, A., Stark, R. W., Biesalski, M. (2013). Preparation and characterization of light-switchable polymer networks attached to solid substrates. Langmuir, 29: 4525–4534.

160

Beiermann, B. A., Davis, D. A., Kramer, S. L. B., Moore, J. S., Sottos, N. R., White, S. R. (2011). Environmental effects on mechanochemical activation of spiropyran in linear PMMA. Journal of Materials Chemistry, 21: 8443–8447.

161

Grady, M. E., Beiermann, B. A., Moore, J. S., Sottos, N. R. (2014). Shockwave loading of mechanochemically active polymer coatings. ACS Applied Materials & Interfaces, 6: 5350–5355.

162

O'Bryan, G., Wong, B. M., McElhanon, J. R. (2010). Stress sensing in polycaprolactone films via an embedded photochromic compound. ACS Applied Materials & Interfaces, 2: 1594–1600.

163

Lee, C. K., Davis, D. A., White, S. R., Moore, J. S., Sottos, N. R., Braun, P. V. (2010). Force-induced redistribution of a chemical equilibrium. Journal of the American Chemical Society, 132: 16107–16111.

164

Kosuge, T., Imato, K., Goseki, R., Otsuka, H. (2016). Polymer–inorganic composites with dynamic covalent mechanochromophore. Macromolecules, 49: 5903–5911.

165

Kosuge, T., Zhu, X. L., Lau, V. M., Aoki, D., Martinez, T. J., Moore, J. S., Otsuka, H. (2019). Multicolor mechanochromism of a polymer/silica composite with dual distinct mechanophores. Journal of the American Chemical Society, 141: 1898–1902.

166

Zhu, S. Y., Li, M. J., Tang, S. C., Zhang, Y. M., Yang, B., Zhang, S. X. A. (2014). Electrochromic switching and microkinetic behaviour of oxazine derivatives and their applications. European Journal of Organic Chemistry, 2014: 1227–1235.

167

Rosario, R., Gust, D., Hayes, M., Springer, J., Garcia, A. A. (2003). Solvatochromic study of the microenvironment of surface-bound spiropyrans. Langmuir, 19: 8801–8806.

168

Florea, L., McKeon, A., Diamond, D., Benito-Lopez, F. (2013). Spiropyran polymeric microcapillary coatings for photodetection of solvent polarity. Langmuir, 29: 2790–2797.

169

Abdollahi, A., Mouraki, A., Sharifian, M. H., Mahdavian, A. R. (2018). Photochromic properties of stimuli-responsive cellulosic papers modified by spiropyran-acrylic copolymer in reusable pH-sensors. Carbohydrate Polymers, 200: 583–594.

170

Fries, K, Samanta, S, Orski, S, Locklin, J. (2008). Reversible colorimetric ion sensors based on surface initiated polymerization of photochromic polymers. Chemical Communications: 6288–6290.

171

Shiraishi, Y., Adachi, K., Itoh, M., Hirai, T. (2009). Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor. Organic Letters, 11: 3482–3485.

172

Charych, D. H., Nagy, J. O., Spevak, W., Bednarski, M. D. (1993). Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. Science, 261: 585–588.

173

Wang, H., Han, S. H., Hu, Y. F., Qi, Z. M., Hu, C. S. (2017). Polydiacetylene-based periodic mesoporous organosilicas with colorimetric reversibility under multiple stimuli. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 517: 84–95.

174

Kamphan, A., Khanantong, C., Traiphol, N., Traiphol, R. (2017). Structural-thermochromic relationship of polydiacetylene (PDA)/polyvinylpyrrolidone (PVP) nanocomposites: Effects of PDA side chain length and PVP molecular weight. Journal of Industrial and Engineering Chemistry, 46: 130–138.

175

Shin, M. J., Kim, J. D. (2016). Reversible chromatic response of polydiacetylene derivative vesicles in D2O solvent. Langmuir, 32: 882–888.

176

Van den Heuvel, M., Löwik, D. W. P. M., van Hest, J. C. M. (2010). Effect of the diacetylene position on the chromatic properties of polydiacetylenes from self-assembled peptide amphiphiles. Biomacromolecules, 11: 1676–1683.

177

Peng, J. S., Cheng, Y. R., Tomsia, A. P., Jiang, L., Cheng, Q. F. (2017). Thermochromic artificial nacre based on montmorillonite. ACS Applied Materials & Interfaces, 9: 24993–24998.

178

Park, D. H., Heo, J. M., Jeong, W., Yoo, Y. H., Park, B. J., Kim, J. M. (2018). Smartphone-based VOC sensor using colorimetric polydiacetylenes. ACS Applied Materials & Interfaces, 10: 5014–5021.

179

Park, D. H., Hong, J., Park, I. S., Lee, C. W., Kim, J. M. (2014). A colorimetric hydrocarbon sensor employing a swelling-induced mechanochromic polydiacetylene. Advanced Functional Materials, 24: 5186–5193.

180

Hong, J., Park, D. H., Baek, S., Song, S., Lee, C. W., Kim, J. M. (2015). Polydiacetylene-embedded microbeads for colorimetric and volumetric sensing of hydrocarbons. ACS Applied Materials & Interfaces, 7: 8339–8343.

181

Seo, S., Lee, J., Kwon, M. S., Seo, D., Kim, J. (2015). Stimuli-responsive matrix-assisted colorimetric water indicator of polydiacetylene nanofibers. ACS Applied Materials & Interfaces, 7: 20342–20348.

182

Baek, W., Heo, J. M., Oh, S., Lee, S. H., Kim, J., Joung, J. F., Park, S., Chung, H., Kim, J. M. (2016). Photoinduced reversible phase transition of azobenzene-containing polydiacetylene crystals. Chemical Communications, 52: 14059–14062.

183

Zhang, W., Xu, H. B., Chen, Y., Cheng, S., Fan, L. J. (2013). Polydiacetylene-polymethylmethacrylate/graphene composites as one-shot, visually observable, and semiquantative electrical current sensing materials. ACS Applied Materials & Interfaces, 5: 4603–4606.

184

Song, S., Ha, K., Guk, K., Hwang, S. G., Choi, J. M., Kang, T., Bae, P., Jung, J., Lim, E. K. (2016). Colorimetric detection of influenza A (H1N1) virus by a peptide-functionalized polydiacetylene (PEP-PDA) nanosensor. RSC Advances, 6: 48566–48570.

185

Wang, J. P., Zhao, X. P., Guo, H. L., Zheng, Q. (2004). Preparation of microcapsules containing two-phase core materials. Langmuir, 20: 10845–10850.

186

Pang, J. W. C., Bond, I. P. (2005). ‘Bleeding composites’—Damage detection and self-repair using a biomimetic approach. Composites Part A: Applied Science and Manufacturing, 36: 183–188.

187

Patrick, J. F., Hart, K. R., Krull, B. P., Diesendruck, C. E., Moore, J. S., White, S. R., Sottos, N. R. (2014). Continuous self-healing life cycle in vascularized structural composites. Advanced Materials, 26: 4302–4308.

188

White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N., Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature, 409: 794–797.

189

Vidinejevs, S., Aniskevich, A. N., Gregor, A., Sjöberg, M., Alvarez, G. (2012). Smart polymeric coatings for damage visualization in substrate materials. Journal of Intelligent Material Systems and Structures, 23: 1371–1377.

190

Vidinejevs, S., Strekalova, O., Aniskevich, A., Gaidukov, S. (2013). Development of a composite with an inherent function of visualization of a mechanical action. Mechanics of Composite Materials, 49: 77–84.

191

Li, W. L., Matthews, C. C., Yang, K., Odarczenko, M. T., White, S. R., Sottos, N. R. (2016). Autonomous indication of mechanical damage in polymeric coatings. Advanced Materials, 28: 2189–2194.

192

Di Credico, B., Griffini, G., Levi, M., Turri, S. (2013). Microencapsulation of a UV-responsive photochromic dye by means of novel UV-screening polyurea-based shells for smart coating applications. ACS Applied Materials & Interfaces, 5: 6628–6634.

193

Postiglione, G., Colombo, A., Dragonetti, C., Levi, M., Turri, S., Griffini, G. (2017). Fluorescent probes based on chemically-stable core/shell microcapsules for visual microcrack detection. Sensors and Actuators B: Chemical, 248: 35–42.

194

Odom, S. A., Jackson, A. C., Prokup, A. M., Chayanupatkul, S., Sottos, N. R., White, S. R., Moore, J. S. (2011). Visual indication of mechanical damage using core–shell microcapsules. ACS Applied Materials & Interfaces, 3: 4547–4551.

195

Robb, M. J., Li, W. L., Gergely, R. C. R., Matthews, C. C., White, S. R., Sottos, N. R., Moore, J. S. (2016). A robust damage-reporting strategy for polymeric materials enabled by aggregation-induced emission. ACS Central Science, 2: 598–603.

196

Lavrenova, A., Farkas, J., Weder, C., Simon, Y. C. (2015). Visualization of polymer deformation using microcapsules filled with charge-transfer complex precursors. ACS Applied Materials & Interfaces, 7: 21828–21834.

197

Chen, Y. X., Li, W., Luo, J., Liu, R., Sun, G. Q., Liu, X. Y. (2021). Robust damage-reporting strategy enabled by dual-compartment microcapsules. ACS Applied Materials & Interfaces, 13: 14518–14529.

198

Wu, D. Y., Meure, S., Solomon, D. (2008). Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science, 33: 479–522.

199

Wang, S., Urban, M. W. (2020). Self-healing polymers. Nature Reviews Materials, 5: 562–583.

200

Ieda, M. (1980). Dielectric breakdown process of polymers. IEEE Transactions on Electrical Insulation, EI-15: 206–224.

201

Yang, Y., Dang, Z. M., Li, Q., He, J. L. (2020). Self-healing of electrical damage in polymers. Advanced Science, 7: 2002131.

202
Tao, W. B., Song, S. Y., Bai, R., Wei, X. J., Zhou, K., Li, T. H., Huang, M. (2016). The self-healing phenomenon of non-conducting electrical trees in XLPE cables. In: Proceedings of the 2016 IEEE International Conference on High Voltage Engineering and Application, Chengdu, China.https://doi.org/10.1109/ICHVE.2016.7800765
203
Rudi, K., Andrew, D. H., Managam, R., Nawawi, Z., Hozumi, N., Nagao, M. (2012). The self-healing property of silicone rubber after degraded by treeing. In: Proceedings of the 2012 IEEE International Conference on Condition Monitoring and Diagnosis, Bali, Indonesia.https://doi.org/10.1109/CMD.2012.6416423
204

Rosensweig, R. E. (2002). Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials, 252: 370–374.

205

Fortin, J. P., Wilhelm, C., Servais, J., Ménager, C., Bacri, J. C., Gazeau, F. (2007). Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Journal of the American Chemical Society, 129: 2628–2635.

206

Corten, C. C., Urban, M. W. (2009). Repairing polymers using oscillating magnetic field. Advanced Materials, 21: 5011–5015.

207

Ahmed, A. S., Ramanujan, R. V. (2015). Curie temperature controlled self-healing magnet–polymer composites. Journal of Materials Research, 30: 946–958.

208

Yoonessi, M., Lerch, B. A., Peck, J. A., Rogers, R. B., Solá-Lopez, F. J., Meador, M. A. (2015). Self-healing of core-shell magnetic polystyrene nanocomposites. ACS Applied Materials & Interfaces, 7: 16932–16937.

209

Jeoffroy, E., Koulialias, D., Yoon, S., Partl, M. N., Studart, A. R. (2016). Iron oxide nanoparticles for magnetically-triggered healing of bituminous materials. Construction and Building Materials, 112: 497–505.

210

Wool, R. P. (2008). Self-healing materials: A review. Soft Matter, 4: 400.

211

Yang, Y., Gao, L., Xie, J. Y., Zhou, Y., Hu, J., Li, Q., He, J. L. (2020). Defect-targeted self-healing of multiscale damage in polymers. Nanoscale, 12: 3605–3613.

212

Lee, J. Y., Zhang, Q. L., Emrick, T., Crosby, A. J. (2006). Nanoparticle alignment and repulsion during failure of glassy polymer nanocomposites. Macromolecules, 39: 7392–7396.

213

Gupta, S., Zhang, Q., Emrick, T., Balazs, A. C., Russell, T. P. (2006). Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nature Materials, 5: 229–233.

214

Balazs, A. C., Emrick, T., Russell, T. P. (2006). Nanoparticle polymer composites: Where two small worlds meet. Science, 314: 1107–1110.

215
Hall, J., Hall, M. (2020). Guyton and Hall Textbook of Medical Physiology (14th Edition). Amsterdam: Elsevier.
216

Lee, J. H., Jang, J. T., Choi, J. S., Moon, S. H., Noh, S. H., Kim, J. W., Kim, J. G., Kim, I. S., Park, K. I., Cheon, J. (2011). Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotechnology, 6: 418–422.

217

Blaiszik, B. J., Kramer, S. L. B., Olugebefola, S. C., Moore, J. S., Sottos, N. R., White, S. R. (2010). Self-healing polymers and composites. Annual Review of Materials Research, 40: 179–211.

218

Diesendruck, C. E., Sottos, N. R., Moore, J. S., White, S. R. (2015). Biomimetic self-healing. Angewandte Chemie International Edition, 54: 10428–10447.

219

Wang, Y. Y., Li, Y. D., Zhang, Z. X., Zhang, Y. F. (2019). Effect of doping microcapsules on typical electrical performances of self-healing polyethylene insulating composite. Applied Sciences, 9: 3039.

220

Li, Y. Q., Wang, Y. Y., Zhang, Y. F., Yaseen, A., Li, Y. D. (2021). Effect of microcapsules on dielectric properties of self-healing low density polyethylene insulation composites. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 924–931.

221

Zhang, Y. F., Wang, Y. Y., Li, Y. D., Huang, Z. Y., Zheng, R. L., Tan, Y. X. (2021). Self-healing of mechanical damage of polyethylene/microcapsules electrical insulation composite material. Journal of Materials Science:Materials in Electronics, 32: 26329–26340.

222

Li, J. Y., Zhang, L., Ducharme, S. (2007). Electric energy density of dielectric nanocomposites. Applied Physics Letters, 90: 132901.

223

Calame, J. P. (2003). Evolution of Davidson-Cole relaxation behavior in random conductor-insulator composites. Journal of Applied Physics, 94: 5945–5957.

224

Li, J. Y., Huang, C., Zhang, Q. M. (2004). Enhanced electromechanical properties in all-polymer percolative composites. Applied Physics Letters, 84: 3124–3126.

225
Lesaint, C., Risinggård, V., Hølto, J., Sæternes, H. H., Hestad, Ø., Hvidsten, S., Glomm, W. R. (2014). Self-healing high voltage electrical insulation materials. In: Proceedings of the 2014 IEEE Electrical Insulation Conference, Philadelphia, PA, USA.https://doi.org/10.1109/EIC.2014.6869384
226

Di Credico, B., Levi, M., Turri, S. (2013). An efficient method for the output of new self-repairing materials through a reactive isocyanate encapsulation. European Polymer Journal, 49: 2467–2476.

227

Suryanarayana, C., Rao, K. C., Kumar, D. (2008). Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Progress in Organic Coatings, 63: 72–78.

228

Song, Y. K., Jo, Y. H., Lim, Y. J., Cho, S. Y., Yu, H. C., Ryu, B. C., Lee, S. I., Chung, C. M. (2013). Sunlight-induced self-healing of a microcapsule-type protective coating. ACS Applied Materials & Interfaces, 5: 1378–1384.

229

Gao, L., He, J. L., Hu, J., Wang, C. (2015). Photoresponsive self-healing polymer composite with photoabsorbing hybrid microcapsules. ACS Applied Materials & Interfaces, 7: 25546–25552.

230

Guo, W. C., Jia, Y., Tian, K. S., Xu, Z. P., Jiao, J., Li, R. F., Wu, Y. H., Cao, L., Wang, H. Y. (2016). UV-triggered self-healing of a single robust SiO2 microcapsule based on cationic polymerization for potential application in aerospace coatings. ACS Applied Materials & Interfaces, 8: 21046–21054.

231

Laurent, C., Massines, F., Mayoux, C. (1997). Optical emission due to space charge effects in electrically stressed polymers. IEEE Transactions on Dielectrics and Electrical Insulation, 4: 585–603.

232

Sima, W. X., Liang, C., Sun, P. T., Yang, M., Zhu, C., Yuan, T., Liu, F. Q., Zhao, M. K., Shao, Q. Q., Yin, Z., et al. (2021). Novel smart insulating materials achieving targeting self-healing of electrical trees: High performance, low cost, and eco-friendliness. ACS Applied Materials & Interfaces, 13: 33485–33495.

233

Zhang, C. Y., Jiang, X. B., Rong, M. Z., Zhang, M. Q. (2014). Free radical polymerization aided self-healing. Journal of Intelligent Material Systems and Structures, 25: 31–39.

234

Dailey, M. M. C., Silvia, A. W., McIntire, P. J., Wilson, G. O., Moore, J. S., White, S. R. (2014). A self-healing biomaterial based on free-radical polymerization. Journal of Biomedical Materials Research Part A, 102: 3024–3032.

235

Xiao, D. S., Yuan, Y. C., Rong, M. Z., Zhang, M. Q. (2009). A facile strategy for preparing self-healing polymer composites by incorporation of cationic catalyst-loaded vegetable fibers. Advanced Functional Materials, 19: 2289–2296.

236

Yin, T., Rong, M. Z., Zhang, M. Q., Yang, G. C. (2007). Self-healing epoxy composites—Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Composites Science and Technology, 67: 201–212.

237

Yin, T., Zhou, L., Rong, M. Z., Zhang, M. Q. (2008). Self-healing woven glass fabric/epoxy composites with the healant consisting of micro-encapsulated epoxy and latent curing agent. Smart Materials and Structures, 17: 015019.

238

Hart, K. R., Sottos, N. R., White, S. R. (2015). Repeatable self-healing of an epoxy matrix using imidazole initiated polymerization. Polymer, 67: 174–184.

239

Xie, J. Y., Gao, L., Hu, J., Li, Q., He, J. L. (2020). Self-healing of electrical damage in thermoset polymers via anionic polymerization. Journal of Materials Chemistry C, 8: 6025–6033.

240

Thakur, V. K., Kessler, M. R. (2015). Self-healing polymer nanocomposite materials: A review. Polymer, 69: 369–383.

241

Yang, Y., Urban, M. W. (2013). Self-healing polymeric materials. Chemical Society Reviews, 42: 7446–7467.

242

Wool, R. P., O’Connor, K. M. (1981). A theory crack healing in polymers. Journal of Applied Physics, 52: 5953–5963.

243

Oberhausen, B., Kickelbick, G. (2021). Induction heating induced self-healing of nanocomposites based on surface-functionalized cationic iron oxide particles and polyelectrolytes. Nanoscale Advances, 3: 5589–5604.

244
Betts, J. G., Young, K., A., Wise, J. A., Johnson, E., Poe, B., Kruse, D. H., Korol, O., Johnson, J. E., Womble, M., DeSaix, P., et al. (2013). Anatomy and Physiology. Houston, Texas, USA: OpenStax.
245

Chen, X. X., Dam, M. A., Ono, K., Mal, A., Shen, H. B., Nutt, S. R., Sheran, K., Wudl, F. (2002). A thermally re-mendable cross-linked polymeric material. Science, 295: 1698–1702.

246

Plaisted, T. A., Nemat-Nasser, S. (2007). Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer. Acta Materialia, 55: 5684–5696.

247

Postiglione, G., Turri, S., Levi, M. (2015). Effect of the plasticizer on the self-healing properties of a polymer coating based on the thermoreversible Diels–Alder reaction. Progress in Organic Coatings, 78: 526–531.

248

Turkenburg, D. H., Fischer, H. R. (2015). Diels-Alder based, thermo-reversible cross-linked epoxies for use in self-healing composites. Polymer, 79: 187–194.

iEnergy
Pages 19-49
Cite this article:
Huang X, Han L, Yang X, et al. Smart dielectric materials for next-generation electrical insulation. iEnergy, 2022, 1(1): 19-49. https://doi.org/10.23919/IEN.2022.0007

3434

Views

428

Downloads

26

Crossref

0

Web of Science

28

Scopus

Altmetrics

Received: 30 December 2021
Revised: 25 February 2022
Accepted: 07 March 2022
Published: 25 March 2022
© The author(s) 2022

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return