1954
Views
314
Downloads
16
Crossref
N/A
WoS
N/A
Scopus
N/A
CSCD
Smart dielectric materials with bioinspired and autonomous functions are expected to be designed and fabricated for next-generation electrical insulation. Similar to organisms, such dielectrics with self-adaptive, self-reporting, and self-healing capabilities can be employed to avoid, diagnose, and repair electrical damage to prevent catastrophic failure and even a blackout. Compared with traditional dielectrics, the utilization of smart materials not only increases the stability and durability of power apparatus but also reduces the costs of production and manufacturing. In this review, researches on self-adaptive, self-reporting, and self-healing dielectrics in the field of electrical insulation, and illuminating studies on smart polymers with autonomous functions in other fields are both introduced. The principles, methods, mechanisms, applications, and challenges of these materials are also briefly presented.
Smart dielectric materials with bioinspired and autonomous functions are expected to be designed and fabricated for next-generation electrical insulation. Similar to organisms, such dielectrics with self-adaptive, self-reporting, and self-healing capabilities can be employed to avoid, diagnose, and repair electrical damage to prevent catastrophic failure and even a blackout. Compared with traditional dielectrics, the utilization of smart materials not only increases the stability and durability of power apparatus but also reduces the costs of production and manufacturing. In this review, researches on self-adaptive, self-reporting, and self-healing dielectrics in the field of electrical insulation, and illuminating studies on smart polymers with autonomous functions in other fields are both introduced. The principles, methods, mechanisms, applications, and challenges of these materials are also briefly presented.
Tanaka, T. (2005). Dielectric nanocomposites with insulating properties. IEEE Transactions on Dielectrics and Electrical Insulation, 12: 914–928.
Kozako, M., Fuse, N., Ohki, Y., Okamoto, T., Tanaka, T. (2004). Surface degradation of polyamide nanocomposites caused by partial discharges using IEC (b) electrodes. IEEE Transactions on Dielectrics and Electrical Insulation, 11: 833–839.
Imai, T., Sawa, F., Nakano, T., Ozaki, T., Shimizu, T., Kozako, M., Tanaka, T. (2006). Effects of nano- and micro-filler mixture on electrical insulation properties of epoxy based composites. IEEE Transactions on Dielectrics and Electrical Insulation, 13: 319–326.
Montanari, G. C., Fabiani, D., Palmieri, F., Kaempfer, D., Thomann, R., Mulhaupt, R. (2004). Modification of electrical properties and performance of EVA and PP insulation through nanostructure by organophilic silicates. IEEE Transactions on Dielectrics and Electrical Insulation, 11: 754–762.
Jarvid, M., Johansson, A., Kroon, R., Bjuggren, J. M., Wutzel, H., Englund, V., Gubanski, S., Andersson, M. R., Müller, C. (2015). A new application area for fullerenes: Voltage stabilizers for power cable insulation. Advanced Materials, 27: 897–902.
Lewis, T. J. (1994). Nanometric dielectrics. IEEE Transactions on Dielectrics and Electrical Insulation, 1: 812–825.
Gorur, R. S., Cherney, E. A., Hackam, R., Orbeck, T. (1988). The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber. IEEE Transactions on Power Delivery, 3: 1157–1164.
Morshuis, P. H. F. (2005). Degradation of solid dielectrics due to internal partial discharge: Some thoughts on progress made and where to go now. IEEE Transactions on Dielectrics and Electrical Insulation, 12: 905–913.
Shimizu, N., Laurent, C. (1998). Electrical tree initiation. IEEE Transactions on Dielectrics and Electrical Insulation, 5: 651–659.
Leonhardt, U. (2009). Towards invisibility in the visible. Nature Materials, 8: 537–538.
Stevens, M., Rong, C. P., Todd, P. A. (2013). Colour change and camouflage in the horned ghost crab Ocypode ceratophthalmus. Biological Journal of the Linnean Society, 109: 257–270.
Egan, J., Sharman, R. J., Scott-Brown, K. C., Lovell, P. G. (2016). Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief. Scientific Reports, 6: 38274.
Woodcock, J., Witter, J., Dionne, R. A. (2007). Stimulating the development of mechanism-based, individualized pain therapies. Nature Reviews Drug Discovery, 6: 703–710.
Fields, H. (2004). State-dependent opioid control of pain. Nature Reviews Neuroscience, 5: 565–575.
Dekoninck, S., Blanpain, C. (2019). Stem cell dynamics, migration and plasticity during wound healing. Nature Cell Biology, 21: 18–24.
Witte, M. B., Barbul, A. (1997). General principles of wound healing. Surgical Clinics of North America, 77: 509–528.
Stuart-Fox, D., Moussalli, A. (2008). Selection for social signalling drives the evolution of chameleon colour change. PLoS Biology, 6: e25.
Teyssier, J., Saenko, S. V., van der Marel, D., Milinkovitch, M. C. (2015). Photonic crystals cause active colour change in chameleons. Nature Communications, 6: 6368.
Rabiller, L., Labit, E., Guissard, C., Gilardi, S., Guiard, B. P., Moulédous, L., Silva, M., Mithieux, G., Pénicaud, L., Lorsignol, A., et al. (2021). Pain sensing neurons promote tissue regeneration in adult mice. Npj Regenerative Medicine, 6: 63.
Bloch, R. (1941). Wound healing in higher plants. The Botanical Review, 7: 110–146.
Marsell, R., Einhorn, T. A. (2011). The biology of fracture healing. Injury, 42: 551–555.
Liu, Z. H., Zhang, F. X., Yu, J., Gao, K. L., Ma, W. M. (2018). Research on key technologies in ±1100 kV ultra-high voltage DC transmission. High Voltage, 3: 279–288.
Zeng, F. Z., Chen, X. H., Xiao, G., Li, H., Xia, S., Wang, J. F. (2020). A bioinspired ultratough multifunctional mica-based nanopaper with 3D aramid nanofiber framework as an electrical insulating material. ACS Nano, 14: 611–619.
Zhao, X. L., Yang, X., Gao, L., Li, Q., Hu, J., He, J. L. (2017). Tuning the potential distribution of AC cable terminals by stress cone of nonlinear conductivity material. IEEE Transactions on Dielectrics and Electrical Insulation, 24: 2686–2693.
Tanaka, T., Okamoto, T., Nakanishi, K., Miyamoto, T. (1993). Aging and related phenomena in modern electric power systems. IEEE Transactions on Electrical Insulation, 28: 826–844.
Cherney, E. A. (2013). Nanodielectrics applications-today and tomorrow. IEEE Electrical Insulation Magazine, 29: 59–65.
Bamji, S. S., Bulinski, A. T., Chen, Y., Densley, R. J. (1992). Threshold voltage for electrical tree inception in underground HV transmission cables. IEEE Transactions on Electrical Insulation, 27: 402–404.
Yoshida, K., Kozako, M., Ishibe, S., Hikita, M., Kamei, N. (2017). Evaluation on applicability to electrical insulating material of hydrocarbon-based thermosetting resin. Electronics and Communications in Japan, 100: 83–90.
Roberts, A. (1995). Stress grading for high voltage motor and generator coils. IEEE Electrical Insulation Magazine, 11: 26–31.
He, J. L., Xie, J. C., Hu, J. (2014). Progress of nonlinear polymer composites for improving nonuniform electrical fields. High Voltage Engineering, 40: 637–647.
Zhao, X. L., Hu, J., Yuan, Z. K., He, J. L. (2021). Design of adaptive bushing based on field grading materials. High Voltage, 6: 625–636.
Nelson, P. N., Hervig, H. C. (1984). High dielectric constant materials for primary voltage cable terminations. IEEE Transactions on Power Apparatus and Systems, PAS-103: 3211–3216.
Zhao, X., Yang, X., Hu, J., Li, Q., He, J. (2019). Globally reinforced mechanical, electrical, and thermal properties of nonlinear conductivity composites by surface treatment of varistor microspheres.
Dissado, L. A., Mazzanti, G., Montanari, G. C. (1997). The role of trapped space charges in the electrical aging of insulating materials. IEEE Transactions on Dielectrics and Electrical Insulation, 4: 496–506.
Dakin, T. W. (1948). Electrical insulation deterioration treated as a chemical rate phenomenon. Transactions of the American Institute of Electrical Engineers, 67: 113–122.
Steennis, E. F., Kreuger, F. H. (1990). Water treeing in polyethylene cables. IEEE Transactions on Electrical Insulation, 25: 989–1028.
Youn, B. H., Huh, C. S. (2005). Surface degradation of HTV silicone rubber and EPDM used for outdoor insulators under accelerated ultraviolet weathering condition. IEEE Transactions on Dielectrics and Electrical Insulation, 12: 1015–1024.
Tanaka, T. (1986). Internal partial discharge and material degradation. IEEE Transactions on Electrical Insulation, EI-21: 899–905.
Hill, R. M., Dissado, L. A. (1983). Theoretical basis for the statistics of dielectric breakdown. Journal of Physics C:Solid State Physics, 16: 2145–2156.
Saha, T. K. (2003). Review of modern diagnostic techniques for assessing insulation condition in aged transformers. IEEE Transactions on Dielectrics and Electrical Insulation, 10: 903–917.
Stone, G. C. (2005). Partial discharge diagnostics and electrical equipment insulation condition assessment. IEEE Transactions on Dielectrics and Electrical Insulation, 12: 891–904.
Aggarwal, R. K., Johns, A. T., Jayasinghe, J. A. S. B., Su, W. (2000). An overview of the condition monitoring of overhead lines. Electric Power Systems Research, 53: 15–22.
Salvatierra, L. M., Kovalevski, L. I., Dammig Quiña, P. L., Irurzun, I. M., Mola, E. E., Dodd, S. J., Dissado, L. A. (2016). Self-healing during electrical treeing: A feature of the two-phase liquid-solid nature of silicone gels. IEEE Transactions on Dielectrics and Electrical Insulation, 23: 757–767.
Eichhorn, R. M. (1977). Treeing in solid extruded electrical insulation. IEEE Transactions on Electrical Insulation, EI-12: 2–18.
Dissado, L. A., Dodd, S. J., Champion, J. V., Williams, P. I., Alison, J. M. (1997). Propagation of electrical tree structures in solid polymeric insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 4: 259–279.
Yang, X., Zhao, X. L., Hu, J., He, J. L. (2018). Grading electric field in high voltage insulation using composite materials. IEEE Electrical Insulation Magazine, 34: 15–25.
Zhao, X. L., Yang, X., Li, Q., He, J. L., Hu, J. (2017). Synergistic effect of ZnO microspherical varistors and carbon fibers on nonlinear conductivity and mechanical properties of the silicone rubber-based material. Composites Science and Technology, 150: 187–193.
Davis, D. A., Hamilton, A., Yang, J., Cremar, L. D., van Gough, D., Potisek, S. L., Ong, M. T., Braun, P. V., Martínez, T. J., White, S. R., et al. (2009). Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature, 459: 68–72.
Peng, H., Sun, X., Cai, F., Chen, X., Zhu, Y., Liao, G., Chen, D., Li, Q., Lu, Y., Zhu, Y., et al. (2009). Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nature Nanotechnology, 4: 738–741.
Yang, Y., He, J., Li, Q., Gao, L., Hu, J., Zeng, R., Qin, J., Wang, S. X., Wang, Q. (2019). Self-healing of electrical damage in polymers using superparamagnetic nanoparticles. Nature Nanotechnology, 14: 151–155.
Gao, L., Yang, Y., Xie, J. Y., Zhang, S., Hu, J., Zeng, R., He, J. L., Li, Q., Wang, Q. (2020). Autonomous self-healing of electrical degradation in dielectric polymers using in situ electroluminescence. Matter, 2: 451–463.
Xie, J. Y., Yang, M. C., Liang, J. J., Hu, J., Li, Q., He, J. L. (2021). Self-healing of internal damage in mechanically robust polymers utilizing a reversibly convertible molecular network. Journal of Materials Chemistry A, 9: 15975–15984.
Patrick, J. F., Robb, M. J., Sottos, N. R., Moore, J. S., White, S. R. (2016). Polymers with autonomous life-cycle control. Nature, 540: 363–370.
Christen, T., Donzel, L., Greuter, F. (2010). Nonlinear resistive electric field grading Part 1: Theory and simulation. IEEE Electrical Insulation Magazine, 26: 47–59.
Donzel, L., Greuter, F., Christen, T. (2011). Nonlinear resistive electric field grading Part 2: Materials and applications. IEEE Electrical Insulation Magazine, 27: 18–29.
Qi, X., Zheng, Z., Boggs, S. (2004). Engineering with nonlinear dielectrics. IEEE Electrical Insulation Magazine, 20: 27–34.
Virsberg, L. G., Ware, P. H. (1967). A new termination for underground distribution. IEEE Transactions on Power Apparatus and Systems, PAS-86: 1129–1135.
Abd-Rahman, R., Haddad, A., Harid, N., Griffiths, H. (2012). Stress control on polymeric outdoor insulators using Zinc oxide microvaristor composites. IEEE Transactions on Dielectrics and Electrical Insulation, 19: 705–713.
Jeroense, M., Saltzer, M., Ghorbani, H. (2014). Technical challenges linked to HVDC cable development. Revue de l'electricite et de l'electronique, 4: 3–10.
Eigner, A., Semino, S. (2013). 50 years of electrical-stress control in cable accessories. IEEE Electrical Insulation Magazine, 29: 47–55.
Glatz-Reichenbach, J., Meyer, B., Strümpler, R., Kluge-Weiss, P., Greuter, F. (1996). New low-voltage varistor composites. Journal of Materials Science, 31: 5941–5944.
Wang, X., Nelson, J. K., Schadler, L. S., Hillborg, H. (2010). Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite. IEEE Transactions on Dielectrics and Electrical Insulation, 17: 1687–1696.
Blatter, G., Greuter, F. (1986). Carrier transport through grain boundaries in semiconductors. Physical Review B, Condensed Matter, 33: 3952–3966.
Blatter, G., Greuter, F. (1986). Electrical breakdown at semiconductor grain boundaries. Physical Review B, 34: 8555–8572.
Yang, X., Hu, J., He, J. L. (2017). Effect of interfacial charge relaxation on conducting behavior of ZnO varistors under time varying electric fields. Applied Physics Letters, 110: 182104.
Yang, X., Zhao, X. L., Li, Q., Hu, J., He, J. L. (2018). Nonlinear effective permittivity of field grading composite dielectrics. Journal of Physics D: Applied Physics, 51: 075304.
Robertson, J., Varlow, B. R. (2005). Non-linear ferroelectric composite dielectric materials. IEEE Transactions on Dielectrics and Electrical Insulation, 12: 779–790.
He, J. L., Hu, J. (2007). Discussions on nonuniformity of energy absorption capabilities of ZnO varistors. IEEE Transactions on Power Delivery, 22: 1523–1532.
Long, W. C., Hu, J., Liu, J., He, J. L. (2010). Effects of cobalt doping on the electrical characteristics of Al-doped ZnO varistors. Materials Letters, 64: 1081–1084.
Wang, Z. P., Nelson, J. K., Hillborg, H., Zhao, S., Schadler, L. S. (2012). Graphene oxide filled nanocomposite with novel electrical and dielectric properties. Advanced Materials, 24: 3134–3137.
Lin, H. F., Lu, W., Chen, G. H. (2007). Nonlinear DC conduction behavior in epoxy resin/graphite nanosheets composites. Physica B:Condensed Matter, 400: 229–236.
Yang, X., Meng, P. F., Zhao, X. L., Li, Q., Hu, J., He, J. L. (2018). How nonlinear V-I characteristics of single ZnO microvaristor influences the performance of its silicone rubber composite. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 623–630.
Yang, X., Hu, J., Chen, S., He, J. (2016). Understanding the percolation characteristics of nonlinear composite dielectrics. Scientific Reports, 6: 30597.
Nettelblad, B., Rtensson, E. M., Nneby, C., Fvert, U. G., Gustafsson, A. (2003). Two percolation thresholds due to geometrical effects: experimental and simulated results. Journal of Physics D: Applied Physics, 36: 399–405.
Mashkouri, S., Ghafouri, M., Arsalani, N., Bidadi, H., Mostafavi, H. (2017). Mechanochemical green synthesis of exfoliated graphite at room temperature and investigation of its nonlinear properties based zinc oxide composite varistors. Journal of Materials Science: Materials in Electronics, 28: 4839–4846.
Ishibe, S., Mori, M., Kozako, M., Hikita, M. (2014). A new concept varistor with epoxy/microvaristor composite. IEEE Transactions on Power Delivery, 29: 677–682.
Du, B. X., Li, Z. L., Yang, Z. R. (2016). Field-dependent conductivity and space charge behavior of silicone rubber/SiC composites. IEEE Transactions on Dielectrics and Electrical Insulation, 23: 3108–3116.
Chen, T., Wang, M. H., Zhang, H. P., Zhao, Z. Y., Liu, T. T. (2016). Novel synthesis of monodisperse ZnO-based core/shell ceramic powders and applications in low-voltage varistors. Materials & Design, 96: 329–334.
Nan, C. W., Shen, Y., Ma, J. (2010). Physical properties of composites near percolation. Annual Review of Materials Research, 40: 131–151.
Yuan, Z. K., Hu, J., Huang, Z. W., Sun, G., Sun, Y., He, J. L. (2022). Non-linearly conductive ZnO microvaristors/epoxy resin composite prepared by wet winding with polyester fibre cloth. High Voltage, 7: 32–40.
Mårtensson, E., Gäfvert, U., Lindefelt, U. (2001). Direct current conduction in SiC powders. Journal of Applied Physics, 90: 2862–2869.
Kelen, A. (1967). On the theory of non-linear resistive field grading coatings on insulating surfaces. Elteknik, 6: 109–112.
Kimura, K., Tsukiji, M., Tani, T., Hirabayashi, S. (1984). Suppression of local heating on a silicon carbide layer by means of divided potentials. IEEE Transactions on Electrical Insulation, EI-19: 294–302.
Umemoto, T., Otake, Y., Yoshimura, M., Nada, T., Miyatake, R. (2020). Optimization of double-layer stress grading system for high voltage rotating electrical machines by electric field and thermal coupled analysis. IEEE Transactions on Dielectrics and Electrical Insulation, 27: 971–979.
Li, C. Y., Lin, C. J., Hu, J., Liu, W. D., Li, Q., Zhang, B., He, S., Yang, Y., Liu, F., He, J. L. (2018). Novel HVDC spacers by adaptively controlling surface charges–Part I: Charge transport and control strategy. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1238–1247.
Li, C. Y., Lin, C. J., Yang, Y., Zhang, B., Liu, W. D., Li, Q., Hu, J., He, S., Liu, X. L., He, J. L. (2018). Novel HVDC spacers by adaptively controlling surface charges–Part II: Experiment. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1248–1258.
Lin, C. J., Li, Q., Li, C. Y., Zhang, B., Liu, W. D., Yang, Y., Liu, F., Liu, X. L., Hu, J., He, J. L. (2018). Novel HVDC spacers by adaptively controlling surface charges–Part III: Industrialization prospects. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1259–1266.
Wang, N. Y., Cotton, I., Robertson, J., Follmann, S., Evans, K., Newcombe, D. (2010). Partial discharge control in a power electronic module using high permittivity non-linear dielectrics. IEEE Transactions on Dielectrics and Electrical Insulation, 17: 1319–1326.
Donzel, L., Schuderer, J. (2012). Nonlinear resistive electric field control for power electronic modules. IEEE Transactions on Dielectrics and Electrical Insulation, 19: 955–959.
Rifaie-Graham, O., Apebende, E. A., Bast, L. K., Bruns, N. (2018). Self-reporting fiber-reinforced composites that mimic the ability of biological materials to sense and report damage. Advanced Materials, 30: e1705483.
Abot, J. L., Song, Y., Vatsavaya, M. S., Medikonda, S., Kier, Z., Jayasinghe, C., Rooy, N., Shanov, V. N., Schulz, M. J. (2010). Delamination detection with carbon nanotube thread in self-sensing composite materials. Composites Science and Technology, 70: 1113–1119.
Tian, Z., Li, Y. C., Zheng, J. J., Wang, S. G. (2019). A state-of-the-art on self-sensing concrete: Materials, fabrication and properties. Composites Part B: Engineering, 177: 107437.
Chen, Q., Feng, Y., Zhang, D. Q., Zhang, G. X., Fan, Q. H., Sun, S. N., Zhu, D. B. (2010). Light-triggered self-assembly of a spiropyran-functionalized dendron into nano-/micrometer-sized particles and photoresponsive organogel with switchable fluorescence. Advanced Functional Materials, 20: 36–42.
Lu, X., Zhang, Z. D., Sun, X. M., Chen, P. N., Zhang, J., Guo, H., Shao, Z. Z., Peng, H. S. (2016). Flexible and stretchable chromatic fibers with high sensing reversibility. Chemical Science, 7: 5113–5117.
Black, A. L., Lenhardt, J. M., Craig, S. L. (2011). From molecular mechanochemistry to stress-responsive materials. Journal of Materials Chemistry, 21: 1655–1663.
Ivashenko, O., van Herpt, J. T., Feringa, B. L., Rudolf, P., Browne, W. R. (2013). Electrochemical write and read functionality through oxidative dimerization of spiropyran self-assembled monolayers on gold. The Journal of Physical Chemistry C, 117: 18567–18577.
Abdollahi, A., Rad, J. K., Mahdavian, A. R. (2016). Stimuli-responsive cellulose modified by epoxy-functionalized polymer nanoparticles with photochromic and solvatochromic properties. Carbohydrate Polymers, 150: 131–138.
Scarmagnani, S., Walsh, Z., Slater, C., Alhashimy, N., Paull, B., Macka, M., Diamond, D. (2008). Polystyrene bead-based system for optical sensing using spiropyran photoswitches. Journal of Materials Chemistry, 18: 5063–5071.
Park, M. K., Kim, K. W., Ahn, D. J., Oh, M. K. (2012). Label-free detection of bacterial RNA using polydiacetylene-based biochip. Biosensors and Bioelectronics, 35: 44–49.
Caruso, M. M., Davis, D. A., Shen, Q. L., Odom, S. A., Sottos, N. R., White, S. R., Moore, J. S. (2009). Mechanically-induced chemical changes in polymeric materials. Chemical Reviews, 109: 5755–5798.
Calvino, C. (2021). Polymer-based mechanochromic composite material using encapsulated systems. Macromolecular Rapid Communications, 42: 2000549.
Ma, L. W., Ren, C. H., Wang, J. K., Liu, T., Yang, H., Wang, Y. J., Huang, Y., Zhang, D. W. (2021). Self-reporting coatings for autonomous detection of coating damage and metal corrosion: A review. Chemical Engineering Journal, 421: 127854.
Abdollahi, A., Roghani-Mamaqani, H., Razavi, B. (2019). Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Progress in Polymer Science, 98: 101149.
Qian, X. M., Städler, B. (2019). Recent developments in polydiacetylene-based sensors. Chemistry of Materials, 31: 1196–1222.
Samanta, S., Locklin, J. (2008). Formation of photochromic spiropyran polymer brushes via surface-initiated, ring-opening metathesis polymerization: Reversible photocontrol of wetting behavior and solvent dependent morphology changes. Langmuir, 24: 9558–9565.
Exarhos, G. J., Risen, W. M. Jr, Baughman, R. H. (1976). Resonance Raman study of the thermochromic phase transition of a polydiacetylene. Journal of the American Chemical Society, 98: 481–487.
Calvino, C., Neumann, L., Weder, C., Schrettl, S. (2017). Approaches to polymeric mechanochromic materials. Journal of Polymer Science Part A: Polymer Chemistry, 55: 640–652.
Sheng, L., Li, M., Zhu, S., Li, H., Xi, G., Li, Y. G., Wang, Y., Li, Q., Liang, S., Zhong, K., et al. (2014). Hydrochromic molecular switches for water-jet rewritable paper. Nature Communications, 5: 3044.
Chanakul, A., Traiphol, N., Faisadcha, K., Traiphol, R. (2014). Dual colorimetric response of polydiacetylene/zinc oxide nanocomposites to low and high pH. Journal of Colloid and Interface Science, 418: 43–51.
Wagner, K., Byrne, R., Zanoni, M., Gambhir, S., Dennany, L., Breukers, R., Higgins, M., Wagner, P., Diamond, D., Wallace, G. G., et al. (2011). A multiswitchable poly(terthiophene) bearing a spiropyran functionality: Understanding photo- and electrochemical control. Journal of the American Chemical Society, 133: 5453–5462.
Gao, R., Cao, D., Guan, Y., Yan, D. P. (2016). Fast and reversible humidity-responsive luminescent thin films. Industrial & Engineering Chemistry Research, 55: 125–132.
Zheng, Y. J., Orbulescu, J., Ji, X. J., Andreopoulos, F. M., Pham, S. M., Leblanc, R. M. (2003). Development of fluorescent film sensors for the detection of divalent copper. Journal of the American Chemical Society, 125: 2680–2686.
Ma, H. Y., Gao, R., Yan, D. P., Zhao, J. W., Wei, M. (2013). Organic–inorganic hybrid fluorescent ultrathin films and their sensor application for nitroaromatic explosives. Journal of Materials Chemistry C, 1: 4128–4137.
Lee, S., Park, J. W. (2017). Luminescent oxygen sensors with highly improved sensitivity based on a porous sensing film with increased oxygen accessibility and photoluminescence. Sensors and Actuators B: Chemical, 249: 364–377.
Di, S. R. (2015). Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications. Sensors, 15: 18666–18713.
Friedrich, K., Almajid, A. A. (2013). Manufacturing aspects of advanced polymer composites for automotive applications. Applied Composite Materials, 20: 107–128.
Rana, S., Subramani, P., Fangueiro, R., Gomes Correia, A. (2016). A review on smart self-sensing composite materials for civil engineering applications. AIMS Materials Science, 3: 357–379.
Yang, R. Z., He, Y. Z., Zhang, H. (2016). Progress and trends in nondestructive testing and evaluation for wind turbine composite blade. Renewable and Sustainable Energy Reviews, 60: 1225–1250.
Zhang, Z. J., Wang, L. M., Wang, J., Jiang, X. M., Li, X. H., Hu, Z. J., Ji, Y. L., Wu, X. C., Chen, C. Y. (2012). Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Advanced Materials, 24: 1418–1423.
Abdollahi, A., Roghani-Mamaqani, H., Salami-Kalajahi, M., Razavi, B., Sahandi-Zangabad, K. (2020). Encryption and optical authentication of confidential cellulosic papers by ecofriendly multi-color photoluminescent inks. Carbohydrate Polymers, 245: 116507.
Guo, Z. Q., Song, N. R., Moon, J. H., Kim, M., Jun, E. J., Choi, J., Lee, J. Y., Bielawski, C. W., Sessler, J. L., Yoon, J. (2012). A benzobisimidazolium-based fluorescent and colorimetric chemosensor for CO2. Journal of the American Chemical Society, 134: 17846–17849.
Zhu, M. Q., Zhu, L. Y., Han, J. J., Wu, W. W., Hurst, J. K., Li, A. D. Q. (2006). Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. Journal of the American Chemical Society, 128: 4303–4309.
Kundu, P. K., Samanta, D., Leizrowice, R., Margulis, B., Zhao, H., Börner, M., Udayabhaskararao, T., Manna, D., Klajn, R. (2015). Light-controlled self-assembly of non-photoresponsive nanoparticles. Nature Chemistry, 7: 646–652.
Li, S., Bai, H. D., Shepherd, R. F., Zhao, H. C. (2019). Bio-inspired design and additive manufacturing of soft materials, machines, robots, and haptic interfaces. Angewandte Chemie International Edition, 58: 11182–11204.
Isapour, G., Lattuada, M. (2018). Bioinspired stimuli-responsive color-changing systems. Advanced Materials, 30: e1707069.
Barthelat, F. (2007). Biomimetics for next generation materials. Philosophical Transactions Series A, Mathematical, Physical, 365: 2907–2919.
Gillies, E. R. (2020). Reflections on the evolution of smart polymers. Israel Journal of Chemistry, 60: 75–85.
Gao, R., Fang, X. Y., Yan, D. P. (2019). Recent developments in stimuli-responsive luminescent films. Journal of Materials Chemistry C, 7: 3399–3412.
Calvino, C., Weder, C. (2018). Microcapsule-containing self-reporting polymers. Small, 14: 1802489.
Sun, X. M., Chen, T., Huang, S. Q., Li, L., Peng, H. S. (2010). Chromatic polydiacetylene with novel sensitivity. Chemical Society Reviews, 39: 4244–4257.
Rougeau, L., Picq, D., Rastello, M., Frantz, Y. (2008). New irreversible thermochromic polydiacetylenes. Tetrahedron, 64: 9430–9436.
Grogan, C., Florea, L., Koprivica, S., Scarmagnani, S., O’Neill, L., Lyng, F., Pedreschi, F., Benito-Lopez, F., Raiteri, R. (2016). Microcantilever arrays functionalised with spiropyran photoactive moieties as systems to measure photo-induced surface stress changes. Sensors and Actuators B: Chemical, 237: 479–486.
Kim, S. H., Suh, H. J., Cui, J. Z., Gal, Y. S., Jin, S. H., Koh, K. (2002). Crystalline-state photochromism and thermochromism of new spiroxazine. Dyes and Pigments, 53: 251–256.
Jochum, F. D., Theato, P. (2010). Thermo- and light responsive micellation of azobenzene containing block copolymers. Chemical Communications, 46: 6717–6719.
Irie, M. (2000). Diarylethenes for memories and switches. Chemical Reviews, 100: 1685–1716.
Klajn, R. (2014). Spiropyran-based dynamic materials. Chemical Society Reviews, 43: 148–184.
Lokshin, V., Samat, A., Metelitsa, A. V. (2002). Spirooxazines: synthesis, structure, spectral and photochromic properties. Russian Chemical Reviews, 71: 893–916.
Bandara, H. M. D., Burdette, S. C. (2012). Photoisomerization in different classes of azobenzene. Chemical Society Reviews, 41: 1809–1825.
Logtenberg, H., van der Velde, J. H. M., de Mendoza, P., Areephong, J., Hjelm, J., Feringa, B. L., Browne, W. R. (2012). Electrochemical switching of conductance with diarylethene-based redox-active polymers. The Journal of Physical Chemistry C, 116: 24136–24142.
Sun, B., Hou, Q. X., He, Z. B., Liu, Z. H., Ni, Y. H. (2014). Cellulose nanocrystals (CNC) as carriers for a spirooxazine dye and its effect on photochromic efficiency. Carbohydrate Polymers, 111: 419–424.
Wang, G., Tong, X., Zhao, Y. (2004). Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules, 37: 8911–8917.
Gossweiler, G. R., Hewage, G. B., Soriano, G., Wang, Q. M., Welshofer, G. W., Zhao, X. H., Craig, S. L. (2014). Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Letters, 3: 216–219.
Bell, N. S., Piech, M. (2006). Photophysical effects between spirobenzopyran-methyl methacrylate-functionalized colloidal particles. Langmuir, 22: 1420–1427.
Schenderlein, H., Voss, A., Stark, R. W., Biesalski, M. (2013). Preparation and characterization of light-switchable polymer networks attached to solid substrates. Langmuir, 29: 4525–4534.
Beiermann, B. A., Davis, D. A., Kramer, S. L. B., Moore, J. S., Sottos, N. R., White, S. R. (2011). Environmental effects on mechanochemical activation of spiropyran in linear PMMA. Journal of Materials Chemistry, 21: 8443–8447.
Grady, M. E., Beiermann, B. A., Moore, J. S., Sottos, N. R. (2014). Shockwave loading of mechanochemically active polymer coatings. ACS Applied Materials & Interfaces, 6: 5350–5355.
O'Bryan, G., Wong, B. M., McElhanon, J. R. (2010). Stress sensing in polycaprolactone films via an embedded photochromic compound. ACS Applied Materials & Interfaces, 2: 1594–1600.
Lee, C. K., Davis, D. A., White, S. R., Moore, J. S., Sottos, N. R., Braun, P. V. (2010). Force-induced redistribution of a chemical equilibrium. Journal of the American Chemical Society, 132: 16107–16111.
Kosuge, T., Imato, K., Goseki, R., Otsuka, H. (2016). Polymer–inorganic composites with dynamic covalent mechanochromophore. Macromolecules, 49: 5903–5911.
Kosuge, T., Zhu, X. L., Lau, V. M., Aoki, D., Martinez, T. J., Moore, J. S., Otsuka, H. (2019). Multicolor mechanochromism of a polymer/silica composite with dual distinct mechanophores. Journal of the American Chemical Society, 141: 1898–1902.
Zhu, S. Y., Li, M. J., Tang, S. C., Zhang, Y. M., Yang, B., Zhang, S. X. A. (2014). Electrochromic switching and microkinetic behaviour of oxazine derivatives and their applications. European Journal of Organic Chemistry, 2014: 1227–1235.
Rosario, R., Gust, D., Hayes, M., Springer, J., Garcia, A. A. (2003). Solvatochromic study of the microenvironment of surface-bound spiropyrans. Langmuir, 19: 8801–8806.
Florea, L., McKeon, A., Diamond, D., Benito-Lopez, F. (2013). Spiropyran polymeric microcapillary coatings for photodetection of solvent polarity. Langmuir, 29: 2790–2797.
Abdollahi, A., Mouraki, A., Sharifian, M. H., Mahdavian, A. R. (2018). Photochromic properties of stimuli-responsive cellulosic papers modified by spiropyran-acrylic copolymer in reusable pH-sensors. Carbohydrate Polymers, 200: 583–594.
Fries, K, Samanta, S, Orski, S, Locklin, J. (2008). Reversible colorimetric ion sensors based on surface initiated polymerization of photochromic polymers. Chemical Communications: 6288–6290.
Shiraishi, Y., Adachi, K., Itoh, M., Hirai, T. (2009). Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor. Organic Letters, 11: 3482–3485.
Charych, D. H., Nagy, J. O., Spevak, W., Bednarski, M. D. (1993). Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. Science, 261: 585–588.
Wang, H., Han, S. H., Hu, Y. F., Qi, Z. M., Hu, C. S. (2017). Polydiacetylene-based periodic mesoporous organosilicas with colorimetric reversibility under multiple stimuli. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 517: 84–95.
Kamphan, A., Khanantong, C., Traiphol, N., Traiphol, R. (2017). Structural-thermochromic relationship of polydiacetylene (PDA)/polyvinylpyrrolidone (PVP) nanocomposites: Effects of PDA side chain length and PVP molecular weight. Journal of Industrial and Engineering Chemistry, 46: 130–138.
Shin, M. J., Kim, J. D. (2016). Reversible chromatic response of polydiacetylene derivative vesicles in D2O solvent. Langmuir, 32: 882–888.
Van den Heuvel, M., Löwik, D. W. P. M., van Hest, J. C. M. (2010). Effect of the diacetylene position on the chromatic properties of polydiacetylenes from self-assembled peptide amphiphiles. Biomacromolecules, 11: 1676–1683.
Peng, J. S., Cheng, Y. R., Tomsia, A. P., Jiang, L., Cheng, Q. F. (2017). Thermochromic artificial nacre based on montmorillonite. ACS Applied Materials & Interfaces, 9: 24993–24998.
Park, D. H., Heo, J. M., Jeong, W., Yoo, Y. H., Park, B. J., Kim, J. M. (2018). Smartphone-based VOC sensor using colorimetric polydiacetylenes. ACS Applied Materials & Interfaces, 10: 5014–5021.
Park, D. H., Hong, J., Park, I. S., Lee, C. W., Kim, J. M. (2014). A colorimetric hydrocarbon sensor employing a swelling-induced mechanochromic polydiacetylene. Advanced Functional Materials, 24: 5186–5193.
Hong, J., Park, D. H., Baek, S., Song, S., Lee, C. W., Kim, J. M. (2015). Polydiacetylene-embedded microbeads for colorimetric and volumetric sensing of hydrocarbons. ACS Applied Materials & Interfaces, 7: 8339–8343.
Seo, S., Lee, J., Kwon, M. S., Seo, D., Kim, J. (2015). Stimuli-responsive matrix-assisted colorimetric water indicator of polydiacetylene nanofibers. ACS Applied Materials & Interfaces, 7: 20342–20348.
Baek, W., Heo, J. M., Oh, S., Lee, S. H., Kim, J., Joung, J. F., Park, S., Chung, H., Kim, J. M. (2016). Photoinduced reversible phase transition of azobenzene-containing polydiacetylene crystals. Chemical Communications, 52: 14059–14062.
Zhang, W., Xu, H. B., Chen, Y., Cheng, S., Fan, L. J. (2013). Polydiacetylene-polymethylmethacrylate/graphene composites as one-shot, visually observable, and semiquantative electrical current sensing materials. ACS Applied Materials & Interfaces, 5: 4603–4606.
Song, S., Ha, K., Guk, K., Hwang, S. G., Choi, J. M., Kang, T., Bae, P., Jung, J., Lim, E. K. (2016). Colorimetric detection of influenza A (H1N1) virus by a peptide-functionalized polydiacetylene (PEP-PDA) nanosensor. RSC Advances, 6: 48566–48570.
Wang, J. P., Zhao, X. P., Guo, H. L., Zheng, Q. (2004). Preparation of microcapsules containing two-phase core materials. Langmuir, 20: 10845–10850.
Pang, J. W. C., Bond, I. P. (2005). ‘Bleeding composites’—Damage detection and self-repair using a biomimetic approach. Composites Part A: Applied Science and Manufacturing, 36: 183–188.
Patrick, J. F., Hart, K. R., Krull, B. P., Diesendruck, C. E., Moore, J. S., White, S. R., Sottos, N. R. (2014). Continuous self-healing life cycle in vascularized structural composites. Advanced Materials, 26: 4302–4308.
White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N., Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature, 409: 794–797.
Vidinejevs, S., Aniskevich, A. N., Gregor, A., Sjöberg, M., Alvarez, G. (2012). Smart polymeric coatings for damage visualization in substrate materials. Journal of Intelligent Material Systems and Structures, 23: 1371–1377.
Vidinejevs, S., Strekalova, O., Aniskevich, A., Gaidukov, S. (2013). Development of a composite with an inherent function of visualization of a mechanical action. Mechanics of Composite Materials, 49: 77–84.
Li, W. L., Matthews, C. C., Yang, K., Odarczenko, M. T., White, S. R., Sottos, N. R. (2016). Autonomous indication of mechanical damage in polymeric coatings. Advanced Materials, 28: 2189–2194.
Di Credico, B., Griffini, G., Levi, M., Turri, S. (2013). Microencapsulation of a UV-responsive photochromic dye by means of novel UV-screening polyurea-based shells for smart coating applications. ACS Applied Materials & Interfaces, 5: 6628–6634.
Postiglione, G., Colombo, A., Dragonetti, C., Levi, M., Turri, S., Griffini, G. (2017). Fluorescent probes based on chemically-stable core/shell microcapsules for visual microcrack detection. Sensors and Actuators B: Chemical, 248: 35–42.
Odom, S. A., Jackson, A. C., Prokup, A. M., Chayanupatkul, S., Sottos, N. R., White, S. R., Moore, J. S. (2011). Visual indication of mechanical damage using core–shell microcapsules. ACS Applied Materials & Interfaces, 3: 4547–4551.
Robb, M. J., Li, W. L., Gergely, R. C. R., Matthews, C. C., White, S. R., Sottos, N. R., Moore, J. S. (2016). A robust damage-reporting strategy for polymeric materials enabled by aggregation-induced emission. ACS Central Science, 2: 598–603.
Lavrenova, A., Farkas, J., Weder, C., Simon, Y. C. (2015). Visualization of polymer deformation using microcapsules filled with charge-transfer complex precursors. ACS Applied Materials & Interfaces, 7: 21828–21834.
Chen, Y. X., Li, W., Luo, J., Liu, R., Sun, G. Q., Liu, X. Y. (2021). Robust damage-reporting strategy enabled by dual-compartment microcapsules. ACS Applied Materials & Interfaces, 13: 14518–14529.
Wu, D. Y., Meure, S., Solomon, D. (2008). Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science, 33: 479–522.
Wang, S., Urban, M. W. (2020). Self-healing polymers. Nature Reviews Materials, 5: 562–583.
Ieda, M. (1980). Dielectric breakdown process of polymers. IEEE Transactions on Electrical Insulation, EI-15: 206–224.
Yang, Y., Dang, Z. M., Li, Q., He, J. L. (2020). Self-healing of electrical damage in polymers. Advanced Science, 7: 2002131.
Rosensweig, R. E. (2002). Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials, 252: 370–374.
Fortin, J. P., Wilhelm, C., Servais, J., Ménager, C., Bacri, J. C., Gazeau, F. (2007). Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Journal of the American Chemical Society, 129: 2628–2635.
Corten, C. C., Urban, M. W. (2009). Repairing polymers using oscillating magnetic field. Advanced Materials, 21: 5011–5015.
Ahmed, A. S., Ramanujan, R. V. (2015). Curie temperature controlled self-healing magnet–polymer composites. Journal of Materials Research, 30: 946–958.
Yoonessi, M., Lerch, B. A., Peck, J. A., Rogers, R. B., Solá-Lopez, F. J., Meador, M. A. (2015). Self-healing of core-shell magnetic polystyrene nanocomposites. ACS Applied Materials & Interfaces, 7: 16932–16937.
Jeoffroy, E., Koulialias, D., Yoon, S., Partl, M. N., Studart, A. R. (2016). Iron oxide nanoparticles for magnetically-triggered healing of bituminous materials. Construction and Building Materials, 112: 497–505.
Yang, Y., Gao, L., Xie, J. Y., Zhou, Y., Hu, J., Li, Q., He, J. L. (2020). Defect-targeted self-healing of multiscale damage in polymers. Nanoscale, 12: 3605–3613.
Lee, J. Y., Zhang, Q. L., Emrick, T., Crosby, A. J. (2006). Nanoparticle alignment and repulsion during failure of glassy polymer nanocomposites. Macromolecules, 39: 7392–7396.
Gupta, S., Zhang, Q., Emrick, T., Balazs, A. C., Russell, T. P. (2006). Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nature Materials, 5: 229–233.
Balazs, A. C., Emrick, T., Russell, T. P. (2006). Nanoparticle polymer composites: Where two small worlds meet. Science, 314: 1107–1110.
Lee, J. H., Jang, J. T., Choi, J. S., Moon, S. H., Noh, S. H., Kim, J. W., Kim, J. G., Kim, I. S., Park, K. I., Cheon, J. (2011). Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotechnology, 6: 418–422.
Blaiszik, B. J., Kramer, S. L. B., Olugebefola, S. C., Moore, J. S., Sottos, N. R., White, S. R. (2010). Self-healing polymers and composites. Annual Review of Materials Research, 40: 179–211.
Diesendruck, C. E., Sottos, N. R., Moore, J. S., White, S. R. (2015). Biomimetic self-healing. Angewandte Chemie International Edition, 54: 10428–10447.
Wang, Y. Y., Li, Y. D., Zhang, Z. X., Zhang, Y. F. (2019). Effect of doping microcapsules on typical electrical performances of self-healing polyethylene insulating composite. Applied Sciences, 9: 3039.
Li, Y. Q., Wang, Y. Y., Zhang, Y. F., Yaseen, A., Li, Y. D. (2021). Effect of microcapsules on dielectric properties of self-healing low density polyethylene insulation composites. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 924–931.
Zhang, Y. F., Wang, Y. Y., Li, Y. D., Huang, Z. Y., Zheng, R. L., Tan, Y. X. (2021). Self-healing of mechanical damage of polyethylene/microcapsules electrical insulation composite material. Journal of Materials Science:Materials in Electronics, 32: 26329–26340.
Li, J. Y., Zhang, L., Ducharme, S. (2007). Electric energy density of dielectric nanocomposites. Applied Physics Letters, 90: 132901.
Calame, J. P. (2003). Evolution of Davidson-Cole relaxation behavior in random conductor-insulator composites. Journal of Applied Physics, 94: 5945–5957.
Li, J. Y., Huang, C., Zhang, Q. M. (2004). Enhanced electromechanical properties in all-polymer percolative composites. Applied Physics Letters, 84: 3124–3126.
Di Credico, B., Levi, M., Turri, S. (2013). An efficient method for the output of new self-repairing materials through a reactive isocyanate encapsulation. European Polymer Journal, 49: 2467–2476.
Suryanarayana, C., Rao, K. C., Kumar, D. (2008). Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Progress in Organic Coatings, 63: 72–78.
Song, Y. K., Jo, Y. H., Lim, Y. J., Cho, S. Y., Yu, H. C., Ryu, B. C., Lee, S. I., Chung, C. M. (2013). Sunlight-induced self-healing of a microcapsule-type protective coating. ACS Applied Materials & Interfaces, 5: 1378–1384.
Gao, L., He, J. L., Hu, J., Wang, C. (2015). Photoresponsive self-healing polymer composite with photoabsorbing hybrid microcapsules. ACS Applied Materials & Interfaces, 7: 25546–25552.
Guo, W. C., Jia, Y., Tian, K. S., Xu, Z. P., Jiao, J., Li, R. F., Wu, Y. H., Cao, L., Wang, H. Y. (2016). UV-triggered self-healing of a single robust SiO2 microcapsule based on cationic polymerization for potential application in aerospace coatings. ACS Applied Materials & Interfaces, 8: 21046–21054.
Laurent, C., Massines, F., Mayoux, C. (1997). Optical emission due to space charge effects in electrically stressed polymers. IEEE Transactions on Dielectrics and Electrical Insulation, 4: 585–603.
Sima, W. X., Liang, C., Sun, P. T., Yang, M., Zhu, C., Yuan, T., Liu, F. Q., Zhao, M. K., Shao, Q. Q., Yin, Z., et al. (2021). Novel smart insulating materials achieving targeting self-healing of electrical trees: High performance, low cost, and eco-friendliness. ACS Applied Materials & Interfaces, 13: 33485–33495.
Zhang, C. Y., Jiang, X. B., Rong, M. Z., Zhang, M. Q. (2014). Free radical polymerization aided self-healing. Journal of Intelligent Material Systems and Structures, 25: 31–39.
Dailey, M. M. C., Silvia, A. W., McIntire, P. J., Wilson, G. O., Moore, J. S., White, S. R. (2014). A self-healing biomaterial based on free-radical polymerization. Journal of Biomedical Materials Research Part A, 102: 3024–3032.
Xiao, D. S., Yuan, Y. C., Rong, M. Z., Zhang, M. Q. (2009). A facile strategy for preparing self-healing polymer composites by incorporation of cationic catalyst-loaded vegetable fibers. Advanced Functional Materials, 19: 2289–2296.
Yin, T., Rong, M. Z., Zhang, M. Q., Yang, G. C. (2007). Self-healing epoxy composites—Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Composites Science and Technology, 67: 201–212.
Yin, T., Zhou, L., Rong, M. Z., Zhang, M. Q. (2008). Self-healing woven glass fabric/epoxy composites with the healant consisting of micro-encapsulated epoxy and latent curing agent. Smart Materials and Structures, 17: 015019.
Hart, K. R., Sottos, N. R., White, S. R. (2015). Repeatable self-healing of an epoxy matrix using imidazole initiated polymerization. Polymer, 67: 174–184.
Xie, J. Y., Gao, L., Hu, J., Li, Q., He, J. L. (2020). Self-healing of electrical damage in thermoset polymers via anionic polymerization. Journal of Materials Chemistry C, 8: 6025–6033.
Thakur, V. K., Kessler, M. R. (2015). Self-healing polymer nanocomposite materials: A review. Polymer, 69: 369–383.
Yang, Y., Urban, M. W. (2013). Self-healing polymeric materials. Chemical Society Reviews, 42: 7446–7467.
Wool, R. P., O’Connor, K. M. (1981). A theory crack healing in polymers. Journal of Applied Physics, 52: 5953–5963.
Oberhausen, B., Kickelbick, G. (2021). Induction heating induced self-healing of nanocomposites based on surface-functionalized cationic iron oxide particles and polyelectrolytes. Nanoscale Advances, 3: 5589–5604.
Chen, X. X., Dam, M. A., Ono, K., Mal, A., Shen, H. B., Nutt, S. R., Sheran, K., Wudl, F. (2002). A thermally re-mendable cross-linked polymeric material. Science, 295: 1698–1702.
Plaisted, T. A., Nemat-Nasser, S. (2007). Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer. Acta Materialia, 55: 5684–5696.
Postiglione, G., Turri, S., Levi, M. (2015). Effect of the plasticizer on the self-healing properties of a polymer coating based on the thermoreversible Diels–Alder reaction. Progress in Organic Coatings, 78: 526–531.
Turkenburg, D. H., Fischer, H. R. (2015). Diels-Alder based, thermo-reversible cross-linked epoxies for use in self-healing composites. Polymer, 79: 187–194.
This work was financially supported by the National Key R&D Program of China (No. 2018YFE0200100) and the National Natural Science Foundation of China (Nos. U1766221 and 51921005).
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).